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1. ABSTRACT

As a nutritionally essential metal ion, zinc 
(Zn) not only constitutes a structural element for more 
than 3000 proteins but also plays important regulatory 
functions in cellular signal transduction. Zn homeostasis 
is tightly controlled by regulating the flux of Zn across 
cell membranes through specific transporters, i.e.  ZnT 
and ZIP family proteins. Zn deficiency and malfunction of 
Zn transporters have been associated with many chronic 
diseases including cancer. However, the mechanisms 
underlying Zn regulatory functions in cellular signaling 
and their impact on the pathogenesis and progression 
of cancers remain largely unknown. In addition to these 
acknowledged multifunctions, Zn modulates a wide range 
of ion channels that in turn may also play an important role 
in cancer biology. The goal of this review is to propose 
how zinc deficiency, through modified Zn homeostasis, 
transporter activity and the putative regulatory function 
of Zn can influence ion channel activity, and thereby 
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contribute to carcinogenesis and tumorigenesis. This 
review intends to stimulate interest in, and support 
for research into the understanding of Zn-modulated 
channels in cancers, and to search for novel biomarkers 
facilitating effective clinical stratification of high risk 
cancer patients as well as improved prevention and 
therapy in this emerging field.

2. INTRODUCTION

The essential micronutrient zinc (Zn) is the 
second most abundant and essential trace element in 
the human body after iron. It conducts multifunctional 
biological roles, and up to 10% of all proteins in mammalian 
cells require Zn for their folding, conformational change 
or activity (1). Zn is required for the activity of over 300 
enzymes, and as such it participates in many enzymatic 
and metabolic functions in the body (more detailed reviews 
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can be found elsewhere) (2-5). Zn is also known to be 
an essential component for DNA-binding proteins with 
Zn fingers, as well as copper/Zn superoxide dismutase 
and various proteins involved in DNA repair (6, 7). Thus, 
Zn plays a critical role in transcription factor function, 
antioxidant defense and DNA repair.

In the human body, Zn is absorbed across the 
intestinal mucosa and excreted mostly through pancreatic 
acinar cells into the small intestine, thus maintaining body 
zinc homeostasis. Intracellular Zn homeostasis is also 
tightly controlled by the regulation of Zn fluxes across 
membranes, the buffering of free Zn by metallothionein, 
and the storage of Zn in subcellular organelles such as 
vesicles. As Zn cannot freely cross cellular membranes, 
a number of proteins such as Zn permeable channels 
and transporters fulfill this function. Among them, 
Zrt, Irt-like protein (ZIP) also called Solute Carrier 
family 39A (SLC39A) (8, 9) and Zn transporter (ZnT, 
SLC30A) (10-12) are the two most important transporter 
families. There is increasing evidence that dysregulation 
and/or mutations in ZIP and ZnT transporter genes may 
result in functional disorders (13). For example, ZnT8 
with a single-nucleotide polymorphism (SNP) has been 
shown to be associated with increased risk of both type 1 
and type 2 diabetes mellitus (14-19) and a ZIP4 mutation 
results in acrodermatitis enteropathica (20-24). The roles 
of ZnTs and ZIPs in diseases are the current focus of 
much research and clinical attention.

Dietary Zn deficiency is a global health problem, 
especially in developing countries, and about two billion 
people are thought to be affected. Since it was first 
reported by Prasad et al, in 1961  (25), epidemiological 
studies indicate that Zn deficient populations have 
increased susceptibility to numerous diseases (26-28). 
The broad spectrum of Zn-deficient related diseases 
includes growth retardation, diarrhea in children, immune 
system dysfunction (29), neurological disorders  (30), 
diabetes and cardiovascular disorders (31-33). More 
recently, the association between Zn deficiency and 
increased risk of cancer has been suggested (11, 27, 34). 
The mechanisms underlying the association are attributed 
to Zn deficiency induced single- and double-strand DNA 
breaks, increased oxidative stress and/or impaired 
immune function, however, other mechanisms may 
very likely co-exist. In particular, Zn is able to modulate 
a number of transporters and ion channels, such as 
TRP channels and K+ channels; Zn as a secondary 
signaling mediator is able to cross-talk to other cellular 
signaling pathways, e.g.  Ca2+ signaling. Given the 
importance of these channels and signaling pathways in 
cell proliferation, migration and metastasis, appreciating 
the impact of Zn deficiency on the functions of these 
channels in cancer cells is an exigent priority. This review 
presents the case that Zn homeostasis in cancers and its 
potential regulatory function on various ion channels may 
contribute to carcinogenesis and tumorigenesis. This 

review also discusses the possible translational value of 
new information on Zn deficiency, Zn and Zn modulated 
channels in cancers, such as novel biomarkers, for 
effective clinical assessment to stratify high risk patients.

3. ZN HOMEOSTASIS IN HUMAN CELLS

3.1. Plasma Zn and intracellular Zn
The human body mass contains 2-3  g of Zn, 

and 57% is in skeletal muscle, 29%, 6% and 5% in 
bone, liver and skin, respectively (35, 36). There is only 
about 0.1% of total Zn circulating in plasma, and yet 
this tiny fraction of total Zn is important to maintain Zn 
homeostasis at a systemic level. Plasma Zn turns over 
rapidly to meet tissue needs and has to be replenished 
daily from diet. Once getting into plasma, the dietary Zn is 
further delivered to peripheral tissues. The systemic level 
of Zn distribution is tightly regulated and the physiological 
concentration of plasma Zn is maintained within the 
range of 10-20 mM  (37). The plasma Zn concentration 
is normally around 15 mM in Zn adequate adults and 
around 11.0-13.5 mM in Zn adequate children (2, 38). 
Greater than 70% of plasma Zn is weakly bound to 
albumin and is mostly coming from intestinal absorption 
with a destination of the liver and soft tissues.

After Zn enters the cells, it is further distributed to 
different cellular organelles: about 30-40% to the nucleus, 
10% to membranes and more than 50% to the cytoplasm. 
The intracellular Zn exists in three pools: 1) tightly bound 
to metalloenzymes, metalloproteins, and nucleoproteins; 
2) loosely bound with various protein and amino acid 
ligands; 3) unbound as the free Zn2+ ion, albeit at very low 
concentrations. While the total cellular Zn concentration is 
estimated to be in mM range, the cytosolic concentration 
of free Zn2+ is estimated to be in the nM-pM range. The 
accurate determination of free Zn2+ concentration is of 
importance to understand many Zn-mediated cellular 
events, yet the reliable measurement of free intracellular 
Zn2+ and visualization of its dynamic changes remain a 
technical challenge. This is partially a consequence of the 
selectivity and sensitivity of Zn probes, which is strongly 
influenced by the concentrations of Zn and other cations 
in living biological systems. Attempts have been made to 
develop fluorescent probes for Zn using benzothiazole, 
fluorescein and quinolone  (39,  40). Some commonly 
used Zn fluorescent indicators include N-(6-methoxy-8-
quinolyl)-p-toluenesulfonamide (TSQ) (41, 42), FluoZin-2 
and FluoZin-3  (43, 44). Additionally, fluorescent 
resonance energy transfer (FRET)-based engineered 
fluorescent proteins have also been developed as Zn 
biosensors (45,  46). Many of these Zn probes can be 
used under various physiological conditions, but they 
suffer from one or more problems such as inadequate 
selectivity, insufficient sensitivity, and dependence of 
fluorescence upon the dye concentration, slow kinetics 
and so forth. It will continue to be an active research area 
to develop brighter and highly selective Zn indicators 
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with different Kds to suit measurement at different 
physiological conditions.

3.2. ZIPs and ZnTs
We now know that maintenance of intracellular 

Zn homeostasis is mainly dependent on two families 
of Zn transporters (47-49). In particular, ZIP family 
proteins function in the uptake of Zn into the cytoplasm 
of the cell from the extracellular space or from 
intracellular compartments, such as endoplasmic 
reticulum (ER), Golgi apparatus, and mitochondria; 
ZnT proteins function in the efflux of Zn from the 
cytoplasm to the extracellular space or to intracellular 
compartments. There are at least 14 ZIP transporters 
and 10 ZnT proteins in the human body with differential 
tissue-specific expression (50). Depending on their 
degree of sequence conservation, the 14 ZIP proteins 
can be further classified into 4 subgroups: the ZIP 
subfamily I, the ZIP subfamily II, the gufA subfamily, 
and the LIV-1 subfamily (51). While the functions of 
the ZIP subfamily II and the LIV-1 subfamily have been 
extensively investigated, the ZIP subfamily I (ZIP9) and 
the gufA subfamily (ZIP11) are less well characterized. 
The structural homology and differences among these 
Zn transporters as well as their tissue distributions and 
functions has been the subject of numerous excellent 
reviews (13, 49, 50). This review will focus on recent 
advances in the pathophysiology roles of the Zn 
transporters in cancers in section 4.3.

3.3. Zn permeable channels
Long before the first mammalian Zn 

transporter, i.e.,  ZnT1 was discovered two decades 
ago, Zn was thought to cross membranes through 
certain ion channels  (52, 53). Because of the similar 
divalent cationic properties of Ca2+ and Zn2+, some 
Ca2 + permeable channels were suspected to be Zn 
permeable. The first identified Zn-permeable channel 
was the voltage-dependent Ca2+ channel (VDCC) in 
neurons. The supporting evidence includes that Zn influx 
or Zn influx-mediated action potentials could be blocked 
by VDCC inhibitors, such as Co2+, La3+ and verapamil 
(54, 55). Subsequent studies indicated that VDCCs 
were permeable to Zn2+ in other cells as well, such as 
cardiomyocytes, pancreatic β cells and chromaffin cells 
(56, 57). The different subunits of VDCCs may have 
different Zn2+ permeability and/or properties (58). For 
example, both Cav1.2 and Cav1.3 isoforms of VDCCs 
permeate Zn2+ using direct recording of zinc currents, 
while Cav1.3 Zn currents are much more sensitive to 
extracellular acidification than Cav1.2 currents (59).

In addition to VDCCs, another group of Ca2+ 
permeable channels may conduct Zn influx in neurons. 
Imaging and neurotoxicity studies demonstrated that 
Zn2+  can enter neurons through NMDA receptors 
and Ca2+-permeable AMPA/kainate (Ca-A/K) 
channels (55, 60).

The third group of Zn permeable channels is the 
Transient Receptor Potential (TRP) channel group (61). 
The TRP superfamily has been extensively studied and 
nearly thirty genes have been identified. These genes 
are further classified into seven subfamilies, i.e. TRPC 
(canonical), TRPV (vanilloid), TRPM (melastatin), 
TRPML (mucolipin), TRPP (polycystin), TRPA (ankyrin 
transmembrane protein) and TRPN (NompC-like) (62). 
TRP channels have widespread distribution in the 
human body and play important roles in a wide range 
of physiological and pathophysiological processes, such 
as cell proliferation, migration, adhesion, differentiation, 
apoptosis and necroptosis. Based on patch clamp and 
fluorescent Zn2+ imaging data, several members of this 
family are Zn2+-permeable, such as TRPC6, TRPV6, 
TRPM3, TRPM6/7, TRPML1 and TRPA1  (53). TRPM6 
and TRPM7 are two unique TRP channels in that they 
contain both ion conducting pore and kinase domains (63). 
They are non-selective, cationic channels permeable to 
various divalent cations including Zn2+ and Mg2+. Indeed, 
the permeation profile for TRPM7 revealed a permeability 
sequence of Zn2+ >> Mg2+ > Ca2+ indicating that TRPM7 
may mainly function as a Zn permeable channel and could 
potentially play a major role in Zn-related neurotoxicity 
in the brain during ischemia (64, 65). TRPM3 channels, 
endogenously expressed in pancreatic β cells, are also 
highly permeable for Zn ions (66). Using FluoZin3 to 
image changes of the intracellular Zn concentration, 
pancreatic β cells were found to incorporate Zn 
through TRPM3 channels even when extracellular Zn 
concentrations were low and physiological levels of Ca2+ 

and Mg2+ were present. Activation of TRPM3 channels 
caused plasma membrane depolarization and additional 
Zn influx through VDCCs in pancreatic b cells. In addition 
to Zn permeating through plasma membrane, TRPs are 
also likely involved in Zn transport between cytosol and 
intracellular organelles. TRPC6 is associated with Zn 
accumulation in the nucleus and TRPML1, also known 
as mucolipin-1 localized in endosomes and lysosomes, 
is responsible for Zn entering these intracellular 
organelles (67).

4. ZN IN HUMAN HEALTH AND CANCERS

4.1. Zn homeostasis and human health
The optimal amount of nutritional Zn and 

maintenance of systemic and cellular Zn homeostasis are 
essential for human health. Both “too much” and “too little” 
are associated with various diseases (Figure 1). Excess 
Zn is known to be toxic to cells, especially to neurons. 
Acute toxicity from Zn poisoning affects the respiratory 
and gastrointestinal systems and is characterized by 
nausea, vomiting, loss of appetite, abdominal cramps 
and headaches (68). Excess Zn in neuronal and 
glial cells is associated with a variety of excitotoxicity 
conditions, such as epilepsy, ischemia, brain trauma, 
neuro-degenerations in Alzheimer’s disease. However, 
the evidence for significant toxic effects of Zn in humans 
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is limited to accidental exposure to compounds of high Zn 
concentration and these cases are rather rare.

On the other hand, Zn deficiency is widespread 
and remains a major public health issue. Nutritional 
deficiency of Zn is common in countries with a high 
consumption of cereal-based foods low in Zn and high 
in phytic acid (69), a potent inhibitor of intestinal Zn 
absorption. Zn deficiency has also been reported in 
developed countries such as the USA (34). Depending 
on the severity of Zn deficiency, the patients can suffer 
from a wide range of symptoms and diseases (70) 
(Figure  1). There are many signs of acute or severe 
Zn deficiency including parakeratosis, hair loss, poor 
growth, impaired wound healing and teratogenesis. 
More moderate or mild Zn deficiency adversely affects, 
for example, immune function, cognitive function and 
cardiovascular health. Immunodeficiency syndromes 
have been reported in patients with Zn deficiency, leading 
to increased susceptibility to infections. We previously 
suggested that Zn deficiency may be a risk factor for 
atherosclerosis  (70) and demonstrated evidence for 
this using a mouse model of atherosclerosis  (71). 
A  progressive age-related reduction of plasma Zn 
concentration has been observed in the elderly and age-
related macular degeneration (AMD) has been related 
to Zn deficiency. Low concentration of Zn could lead to 
oxidative stress and retinal damage (72). The number of 
diseases associated with Zn deficiency is growing and 
a more comprehensive list can be found in other recent 
reviews (13, 73, 74).

4.2. Zn deficiency and cancers
As a co-factor for more than 300 enzymes, Zn 

participates in the function of enzymes including key 
kinases, proteases and phosphatases. Zn also stabilizes 

the structure of proteins, DNA, RNA and ribosomes, 
and regulates gene expression through 3000 zinc finger 
transcription factors, which are all highly relevant to 
cancers. In addition, Zn protects against inflammatory 
and oxidative stress. Therefore, the idea that Zn has a 
tumor suppressing role and an association between Zn 
deficiency and cancer can be hypothesized. However, 
the specific evidence and mechanisms underlying for this 
association remain largely undefined. Although serum or 
plasma Zn is not a good biomarker for Zn deficiency, there 
is compelling evidence that dysregulated Zn homeostasis 
is indeed associated with many cancers. Multiple studies 
show that serum Zn levels are generally low in patients 
with certain cancers, including esophageal squamous 
cell carcinoma (ESCC) (75-78), malignant prostate 
cancer (79, 80), breast cancer (79), ovarian cancer, and 
so on (81-83). Normal physiological concentrations of Zn 
inhibit cancer cell proliferation and migration, maintain 
balanced metabolism and promote apoptosis in cancer 
cells. Thus, Zn deficiency appears to be involved in every 
aspect of cancer cell generation and growth.

The anti-cancer function of Zn has been 
extensively studied in prostate cancer. The normal 
human prostate stores the highest content of Zn of all 
soft tissues in the body, with a typical Zn content more 
than 1000  µg/g dry tissue (84). The accumulation of 
Zn by prostate glandular epithelial cells is essential for 
the specialized function of these cells: to produce and 
secrete enormously high levels of citrate. During the 
transformation from prostatic epithelial hyperplasia to 
carcinoma, a reduction in Zn concentration occurs at 
a relative early stage and continues throughout tumor 
progression towards the androgen-resistant stage in 
prostate cancer patients. Zn contents in the prostate at 
the malignant stage can decline to as low as 150 µg/g 

Figure 1. Zn homeostasis and human disorders. There is an optimal nutrient range for human body. Too much or too little is detrimental to health. 
Dependent upon severity of Zn deficiency, one can suffer from a school of disorders. AE, acrodermatitis enteropathica; AMD, age-related macular 
degeneration; ARDS, adult respiratory distress syndrome; CVD, cardiovascular disorders; GI, gastrointestinal tract.
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dry tissue, which in turn dramatically decreases the 
production of citrate in the prostate. Concomitantly, the 
plasma Zn levels in patients with prostate carcinoma were 
much lower than those in healthy subjects or in patients 
with benign prostatic hyperplasia (80). A number of recent 
studies suggested that Zn deficiency is more than a 
bystander or “passenger” during the carcinogenesis and 
tumorigenesis. For example, the Akt-Mdm2-p53 signaling 
axis in human normal prostate epithelial cells PrEC cells 
was activated as response to Zn deficiency while the Akt-
p21 signaling axis was stimulated in malignant prostate 
LNCaP cells under the same condition (85). As a result, 
LNCaP cells but not PrEC cells survived better and 
progressed through the G0/G1 phase of the cell cycle 
at Zn deficient conditions (85). In a study with combined 
gene profiling and protein analysis, nuclear p53 protein 
expression was increased with Zn deficiency along 
with an increase in the binding activity of transcription 
factors involved in regulating cell proliferation and 
apoptosis (86). Thus, this study supported the contention 
that Zn deficiency may compromise DNA integrity in 
the prostate by impairing the function of zinc-containing 
proteins. In androgen-independent PC-3 and DU-145 
prostate cancer cells, Golovine et al, showed that 
physiological levels of Zn suppressed NF- kB activity and 
reduced expression of pro-angiogenic and pro-metastatic 
cytokines VEGF, IL-6, IL-8, and MMP-9 associated with 
negative prognostic features in prostate cancer (87). 
Selective Zn deficiency induced by the Zn chelator 
N,N,N’,N’-tetrakis(2-pyridylmethyl)-ethylenediamine 
(TPEN) increased activation of NF- kB and up-regulated 
expression of the NF- kB controlled pro-angiogenic and 
pro-metastatic cytokines VEGF, IL-6 and IL-8. This study 
supports the contention that Zn deficiency may contribute 
to tumor progression via increased expression of the NF- 
kB-dependent pro-tumorigenic cytokines (87).

The “driver” function of Zn deficiency in 
carcinogenesis has been best documented in a series 
of in vivo studies in carcinogen-induced esophageal 
cancer animal models. Epidemiological studies suggest 
that ESCC, a major form of esophageal cancer, is 
strongly related with environmental factors. Among them, 
Zn deficiency is well-known to enhance esophageal 
tumor induction (88-90). Fong et al, have conducted 
serial studies using N-nitrosomethylbenzylamine 
(NMBA)-induced esophageal cancer rat or mouse 
models to understand the impact of dietary Zn 
deficiency on carcinogenesis and tumor development 
(88, 91-101). In these studies, the animals were fed 
with either Zn-deficient or Zn-sufficient diet. The data 
demonstrated that the tumor incidence increased from 
6% in the Zn-sufficient group to 100% in the Zn-deficient 
group at 11  weeks after NMBA treatment (96). Using 
in vivo bromodeoxyuridine (BrDU) labeling followed by 
immunohistochemical detection of cells in S-phase, 
they further showed that Zn deficiency significantly 
increased cell proliferation in esophageal epithelial 

cells, with shortened lag time for tumor induction. 
In cultured esophageal cancer cells, reports from a 
number of groups suggested that replenishment of Zn 
inhibits proliferation and induces apoptosis. In another 
words, the replenishment of Zn in the diet could reduce 
cell proliferation and induce apoptosis in esophageal 
epithelia and thus greatly reduce both tumor incidence 
and tumor size in the esophagi and forestomach of 
NMBA-treated animals  (88, 90, 92). Recent genomic 
profiling established the deregulation of genes 
associated with Zn homeostasis in ESCC (102).

Studies regarding the association between 
serum Zn and breast cancer are controversial. A recent 
statistical study conducted a systematic literature search 
and identified 14 reports presenting data for serum Zn 
concentrations in breast cancer patients (103). Based 
on a random effects model, the meta-analysis revealed 
no difference in serum Zn levels between breast cancer 
patients and controls (SMD (95%CI): -0.65[-1.42, 0.13]). 
However, the hair Zn levels were lower in women with 
breast cancer compared with those of control subjects 
(SMD (95%CI): -1.99[-3.46, -0.52]). Using a Zn deficient 
mouse model, Bostanci et al, demonstrated that 
marginal Zn intake created a toxic microenvironment 
in the mammary gland impairing breast development, 
which could increase the risk for breast disease and 
cancer (104).

It is worthwhile noting that breast biopsies 
from breast cancer patients contain significantly higher 
Zn levels compared with normal breast tissue (105). 
Epidemiological studies have established a relationship 
between high breast tissue Zn levels and development 
of breast cancer (106). It seems paradoxical since breast 
cancer patients have low Zn levels in hair or serum and 
Zn deficiency is believed to contribute to the development 
of breast cancer. These studies suggest that the 
dysregulated Zn homeostasis is complicated, and relates 
not only to Zn concentrations but also to its distribution as 
well as its temporal pattern (107). The high Zn content in 
breast tumor tissues implies that cancer cells selectively 
increase Zn uptake or decrease Zn efflux via regulating 
one or more Zn transporters.

4.3. Zn transporters in cancers
There are a growing number of studies that 

report the involvement of ZnTs and ZIPs in a wide 
variety of cancers. Although no mutation or SNP variant 
of Zn transporter genes has been reported so far to be 
associated with a particular cancer, a common scenario is 
that these Zn transporters have either altered expression 
levels or abnormal activity, which in turn contributes to 
Zn homeostasis dysregulation in cancer cells or tumor 
tissues. As summarized in Table 1, at least 5 ZnTs and 
almost all ZIP transporters are involved in a number 
of cancers, such as prostate, pancreatic, breast and 
esophageal cancers.
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ZnT1 can transport cytosolic Zn to the 
extracellular space and thus make the cells resistant 
to Zn toxicity (52). The mRNA expression level of 
ZnT1 is significantly lower in human prostate cancer 
tissues compared to that in benign prostate hyperplasia 
tissues (108), while extracellular Zn treatment increases 
the expression level of ZnT1 protein in cultured human 
prostate cancer cell lines, i.e.  LNCaP and PC-3  cells. 
Abundant ZnT2 was observed in Luminal breast tumors 
but not in Basal tumors and adjacent non-malignant 
tissues  (107). ZnT4 was found in cytoplasmic vesicles, 
Golgi apparatus, and the plasma membrane (109, 110). 
From immunohistochemistry data with normal, 

hyperplastic and malignant prostate tissues, low 
expression levels of ZnT4 were associated with more 
advanced cancer stages (110). In esophageal cancer, 
ZnT7 gene expression was up-regulated compared 
to esophageal nonmalignant or dysplastic tissue 
samples (102).

Compared with ZnT transporters, there are 
much more data on the association between ZIP 
members and cancers. As mentioned before, Zn 
concentrations in prostate gland decrease dramatically 
during tumorigenesis (111). Four Zn influx transporters, 
i.e.  ZIP1-4, were reported to be down-regulated in 

Table 1. Zn transporters in cancers
Zn transporter Cancer type Changes Reference

ZnT1 Prostate cancer Decreased mRNA in tumor tissues (108)

lymphoblastic leukemia Increased mRNA in gallium‑resistant CCRF‑CEM cells (170)

ZnT2 Breast cancer Increased in luminal but not basal tumors (107)

ZnT3 Prostate cancer Increased mRNA in low‑ androgen‑sensitive LNCaP cells (171)

ZnT4 Prostate cancer Decreased malignant vs. benign (110)

ZnT7 Esophageal cancer Increased mRNA (102)

ZIP1 Prostate cancer Decreased in malignant tissue (112)

ZIP2 Prostate cancer Decreased in malignant tissue (113)

ZIP3 Prostate cancer Decreased in malignant tissue (113)

Pancreatic cancer Decreased in adenocarcinoma tissue (115,117,172)

ZIP4 Hepatocellular cancer Increased in tumor tissue (173)

Glioma Increased in higher grade (174,175)

Pancreatic cancer Increased pancreatic ductal adenocarcinoma (116,176,177)

Prostate cancer Decreased (114)

ZIP5 Esophageal cancer Increased in ESCC tissue (178)

ZIP6 LIV‑1 Breast cancer Increased in ER‑positive invasive ductal carcinoma tissue (179‑181)

Prostate cancer Increased (182)

Pancreatic cancer Increased (183)

Cervical cancer Increased (184)

Hepatic cancer Increased in liver carcinoma tissues (185)

Esophageal cancer Increased in ESSC tissues (186)

ZIP7 HKE4 Breast cancer Increased in Tamoxifen‑resistant MCF‑7 cells (121,187,188)

ZIP9 Prostate cancer Increased in malignant tissues (189)

Breast cancer Increased in malignant breast tissues (189)

ZIP10 Kidney cancer Increased mRNA in tumor (190)

Breast cancer Increased mRNA in lymph‑node metastasis‑positive tumor tissues (191)

ZIP11 Glioma Decreased in higher grade glioma (175)

Bladder cancer, kidney cancer SNPs are associated with the risks (192)

ZIP14 Hepatocellular cancer Decreased in hepatoma tissues (193)
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prostate cancer tissues, which may result in the reduction 
of Zn concentration in prostate gland (111-114). Both 
ZIP3 and ZIP4 were also found to be altered in pancreatic 
cancer in the opposite manner, namely a reduction of 
ZIP3 and elevation of ZIP4 in tumor tissues (115, 116). 
According to in situ Zn staining images of human 
pancreatic tissues, the Zn concentration in pancreatic 
adenocarcinoma is lower than that in normal pancreatic 
ductal and acinar epithelium (115). These changes in Zn 
concentration and ZIP3 expression level are believed 
to be an early event in the development of  pancreatic 
cancer, which likely makes the malignant cells resistant 
to Zn cytotoxic effects  (117,  118). As regards ZIP4, 
it is difficult to understand why its expression level is 
increased in pancreatic cancer cells and even positively 
correlated with tumor progression in a xenograft animal 
model  (116,  119). A  recent study provided evidence to 
show that ZIP4 could render pancreatic cancer cells 
resistant to Zn deficiency-induced apoptosis (120), 
however, the exact mechanism remains elusive.

In addition to involvement in cancer cell 
proliferation and apoptosis, Zn transporters also 
contribute to drug-resistant properties in cancer cells. 
Taylor et al. reported that TamR cells, a MCF7-derived 
tamoxifen resistant breast cancer cell line had increased 
levels of Zn and ZIP7. Using siRNA specifically targeting 
the ZIP7 gene to reduce the expression level of ZIP7, 
they further demonstrated that TamR cells recovered 
tamoxifen sensitivity by reducing intracellular Zn levels 
and destroying EGFR/IGF-I receptor/Src signaling (121).

Despite accumulating evidence to reveal 
dysregulated Zn transporters in cancers, whether the 
malfunction of Zn transporter is a “driver” or a “passenger” 
for carcinogenesis or tumorigenesis is still unclear. It is 
also unclear whether the dysregulated Zn transporters 
per se or the consequent changes in Zn status exert 
these effects. The data summarized in Table  1 appear 
to reveal a trend toward ZIP transporters upregulation in 
most of cancers except prostate cancer. It may indicate 
an increased necessity of cellular Zn uptake to meet the 
needs of increased rate of proliferation and metabolism. 
Since Zn transporters are also subject to regulation by 
Zn status itself, hormones, growth factors as well as 
cellular redox state, multiple mechanisms underlying the 
involvement of Zn transporters may co-exist in cancers, 
which require further investigation.

5. ZN AS A CHANNEL MODULATOR

The well-understood multifunctions of Zn 
include roles in reducing oxidative stress and in cell 
signaling. Labile Zn ions, which are free or loosely bound 
to small molecules or proteins, can signal directly and 
are able to cross talk to other signaling pathways, such 
as Ca2+ signaling and participate in a redox signaling 
network  (122-124). Since these functions have been 

summarized in other reviews (124, 125), we will not 
reiterate them here but rather discuss another hitherto 
less-appreciated roles of Zn in cancers: Zn as a modulator 
for a multitude of Ca2+ channels and voltage-gated K 
channels. It is beyond the scope of this brief review to 
cover all the channels regulated by Zn; again, we will just 
focus on a few representative channels that may play an 
important role in cancers.

5.1. Zn modulated-ion channels
Zn-regulated channels have been investigated 

to some extent in the central nervous system 
(CNS) (126). Many channels in CNS excitable cells are 
regulated by Zn, such as NMDA and GABA receptors, 
glycine receptors (glyR) and serotonin receptors (5-HT3). 
The purinergic receptors are adenosine triphosphate 
(ATP) gated cation channels at the plasma membrane, 
with wide cell-type expression including neurons, cancer 
and immune cells. The physiological concentrations 
of Zn can strongly inhibit human purinergic receptors 
P2X2 (hP2X2), while Zn enhances current activated 
by 5 µM ATP in a voltage independent manner for 
P2X4 (127, 128). Acid-sensing ion channel 3 (ASIC3) is 
a proton-gated, voltage-insensitive Na(+) channel that 
plays an important role in pain perception, particularly as 
a pH sensor following cardiac ischemia. Zinc is reported 
to be “an important regulator of ASIC3 at physiological 
concentrations”, and it inhibits ASIC3 in a pH- and Ca2+-
independent manner. The inhibition of ASIC3 currents is 
dependent upon the interaction of zinc with extracellular 
domain(s) of ASIC3 (129).

For large-conductance voltage-  and Ca2+-
activated Slo1 K (BK) channels, intracellular Zn potently 
and reversibly activates the channel through His(365) 
in the RCK1 (regulator of conductance for K+) domain 
of the channel (130). Extracellular Zn activates Slo1 BK 
channels when they are coexpressed with Zn-permeable 
TRPM7. The study suggests that Zn can positively and 
directly regulate BK channels and shape the overall 
intracellular signaling.

Zn is also able to modulate a number of subunits 
of Ca2+ channels, including Cav1.2, Cav1.3, Cav3.1, 
Cav3.2 and Cav3.3 (126). In cultured cells exogenously 
expressing recombinant T-type Ca2+ channels (transient 
opening Ca2+ channels), i.e. Cav3.1, Cav3.2 and Cav3.3, 
the Cav3.2 current is significantly more sensitive to Zn 
than that of Cav3.1 and Cav3.3  (131). Zn can cause a 
significant increase in Cav3.3 current in action potential 
clamp experiments while Cav3.1 and Cav3.2 currents are 
significantly reduced, indicating Zn exhibits differential 
modulatory effects on T-type Ca2+ channels. In addition 
to voltage-gated Ca2+ channels, other Ca2+ channels can 
be modulated by Zn in general, such as TRP channels. 
In whole-cell patch-clamp recordings, extracellular 
application of Zn inhibited TRPM5 currents (132). Using 
mutagenesis approach, it was further demonstrated 
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that inhibition by 30 µM ZnCl2 was impaired in TRPM5 
mutants in which His at 896, and Glu at 926 and/or Glu 
at 939 in the outer pore loop were replaced with Gln. 
These data suggest that extracellular Zn inhibits TRPM5 
channels through its interaction with the extracellular pore 
loop domain. Another Zn-modulated unique TRP family 
member is TRPA1 (133, 134). In this case, the activation 
of TRPA1 firstly requires Zn influx through the TRPA1 
channel which subsequenctly activates the channel itself. 
Several intracellular cysteine and histidine residues are 
required for the Zn activation. TRPA1 is highly sensitive 
to intracellular Zn and nM concetrations are sufficient to 
activate the channel.

5.2. Dysregulated channels in cancer cells
Recently, the role of ion channels in driving the 

cell cycle phases (135), resistance to apoptosis (136), 
cell invasiveness (137), and angiogenesis (138) has been 
proved. Ion transport is implicated in these cell functions 
in many ways, including the classic mechanisms relating 
membrane potential to Ca2+ homeostasis, control of pH, 
cell volume, and interaction with the extracellular matrix. 
A  major function of ion channels is to mediate the cell 
interaction with its environment. For these reasons, ion 
channels have now become a promising player for the 
development of novel cancer biomarkers and anticancer 
therapies.

Interestingly, many of these carcinogenesis 
or tumorigenesis involved channels either have been 
reported or theoretically can be regulated by Zn. Here, 
we will overview the recent studies on channels involved 
carcinogenesis and tumor progression, such as K+, TRP 
and Orai channels.

5.3. K channels
Multiple studies have reported dysregulated K+ 

channel expression in cancers. Among the four classes 
of K+ channels, voltage-gated K+ channels (Kv) and 
Ca2+-activated K+ channels (KCa) are the most studied in 
cancer (139-142). For example, Kv10.1 is overexpressed 
in almost all solid tumors compared to the matched 
normal tissue, which makes it a differential diagnostic 
factor and a prognostic factor often correlating with bad 
clinical outcomes (143, 144). The intermediate Ca2+-
activated K+ channel, (KCa3.1) has been also reported 
to be overexpressed in several cancer types including 
lung and breast cancers (145, 146). Recently, Schwab’s 
team demonstrated that KCa3.1 channel gene (KCNN4) 
promoter is hypomethylated in an aggressive non-small 
cell lung carcinoma cell line and in patient samples (145). 
The loss of DNA methylation of the KCNN4 promoter was 
associated with increased KCa3.1 channel expression 
and function; both findings are strong indicators of poor 
prognosis in lung cancer.

Many studies have highlighted the importance of 
K+ channels in cancer cell proliferation, survival, migration, 
and invasion (147). In breast cancer, both Kv10.1 and 

KCa3.1 play a dual role in cancer cells according to the 
tumor phenotype. Kv10.1 is involved in both agonist and 
serum-induced membrane hyperpolarization that leads 
to Ca2+ entry, cell cycle progression by upregulating 
both cyclins D1 and E expression, and therefore cell 
proliferation in the non-invasive MCF-7  cells (148, 
149). In contrast, in the invasive MDA-MB-231 breast 
cancer cell line, Kv10.1 does not affect proliferation 
but regulates migration through two mechanisms: 
the regulation of the Ca2+ influx and the formation of 
a complex with β-integrin and focal adhesion kinase 
(FAK) (150). In concordance with this notion, Kv10.1 
participates in the acquisition of a malignant phenotype 
in lung tumor cells (151). Additionally, KCa3.1 regulates 
both cancer cell proliferation and migration (142, 152). 
In breast cancer, KCa3.1 regulates the G1 phase and 
G1/S transition of the cell cycle (153). According to the 
“potential membrane model,” activation of K+ channels 
amplifies the Ca2+ signals by hyperpolarizing the 
membrane potential, thus increasing the driving force for 
Ca2+ influx and this, in turn, activates Ca2+-dependent 
transcriptional factors leading to the expression of 
G1 regulating cyclins and CDK proteins. Both TRPC1 
and TRPV6 co-localize with KCa3.1 and may be the 
major provider of passive Ca2+ influx in response to 
the hyperpolarization associated with KCa3.1 channel 
activation in cancer cells. In invasive MDA-MB231-breast 
cancer cells, KCa3.1 is also co-localized with TRPC1 
and controls cell migration. Moreover, silencing KCa3.1 
or TRPC1 reduced metastasis in vivo (unpublished data).

5.4. TRP channels
During the past 20 years, numerous studies have 

indicated that the expression and/or the activity of TRP 
channels are altered in cancers. In particular, the presence 
of the TRPC, TRPM, and TRPV subfamilies correlates with 
malignant growth and cancer progression (154, 155). As 
such, the expression of TRP channels has been proposed 
as a tool for diagnosis or predicting prognosis in several 
diseases (156), and targeting TRP channels has been 
suggested as a novel therapeutic strategy. For example, 
TRPV6 and TRPM8 have been proposed as markers 
of prostate cancer progression (157) and TRPC6 as a 
novel therapeutic target for esophageal carcinoma (158). 
In breast cancer, TRPC6, TRPM7, TRPM8, and TRPV6 
are overexpressed, and their expression profiles are 
associated with pathologic parameters, suggesting 
their use as prognostic markers (155, 159). TRPM8 is 
considered a good prognostic marker for non-invasive 
well-differentiated estrogen-positive breast cancer 
tumors (ER+). While the expression profile of TRPM7 
depends on both invasive and hormonal status (in 
non-invasive ER+ cells, TRPM7 as a proliferative 
marker of poorly differentiated tumors by regulating cell 
proliferation through the calcium influx (160)), these 
same channels may be proposed as a marker of poor 
prognosis in aggressive estrogen-negative cancers 
(ER–) by regulating cell migration through an interaction 
with cytoskeleton proteins.
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5.5. Orai channels
To date, three Orai channels isoforms have 

been identified (Orai1, Orai2, and Orai3) (161-163). Of 
these isoforms, Orai1 was the first reported to play a 
crucial role in store operated calcium entry (SOCE) in 
breast cancer migration and metastasis. In this process, 
Orai1 is associated to Stim1 that senses the Ca2+ store 
depletion and triggers the SOCE (164). Orai1 is reported 
to promote MDA-MB-231 breast cancer cell migration 
through the promotion of a high rate of focal adhesion 
turnover, while its knockdown reduces the spread of tumor 
cells in xenografted mice. We also reported that elevated 
Orai1 was associated with poor prognosis in esophageal 
squamous cell carcinoma patients and inhibition of the 
Orai1 channels either by the pharmacological compounds 
or the knocking-down of Orai1 expression could block 
cancer cell proliferation and migration in vitro as well as 
tumor growth in vivo (165). Moreover, Orai1 is reported 
to be associated to Kv10.1 and SK3 K+ channels in 
regulating breast cancer migration (150, 166).

Orai3 is overexpressed in breast cancer tissues 
and MCF-7 and T47D cell lines as compared to adjacent 
normal tissues and non-cancerous MCF-10A cell line, 
respectively (167). Orai3 is involved in cell proliferation, 
cell cycle progression, and cell survival through regulating 
the expression of the G1 phase and G1/S transition 
regulatory proteins. Indeed, silencing Orai3 leads to 
significant down regulation of cell proliferation and stops 
the cell cycle at the G1 phase along with an up regulation 
of cell apoptosis. Moreover, knockdown of Orai3 results 
in a decrease of CDKs 4/2 (cyclin-dependent kinases) 
and cyclins D1/E expression concurrently with an 
up-regulation of p21Waf1/Cip1 (a cyclin-dependent kinase 
inhibitor) and p53 expression. It also increases Bax/
Bcl-2 ratio, a measure of apoptotic susceptibility by the 
ratio between the major pro-apoptotic protein Bax and 
the major anti-apoptotic protein Bcl-2 in breast cancer 
cells (167). Interestingly, these effects are exclusively 
observed in cancer cells but not in a non-cancerous MCF-
10A cell line. The above mentioned involvement of Orai3 
in cell proliferation, survival and cell cycle progression 
is, in part, related to Ca2+ influx through this same 
channel as illustrated by the significant decrease in cell 
proliferation subsequent to decreasing extracellular Ca2+ 
concentration to 0.2 mM (167). The Orai3 mediated Ca2+ 
entry is reported to affect the proto-oncogenes NFAT 
and C-myc through the MAP kinase pathway (168, 169). 
This finding will undoubtedly help in determining the 
downstream events whereby Orai3 ultimately controls 
cell proliferation, the cell cycle progression, cell survival, 
and cell invasion of ERα+ breast cancer cells (168, 169).

6. CONCLUSIONS AND PERSPECTIVES

It is becoming evident that Zn deficiency and 
Zn transporters are involved in many types of cancer. 
Dysregulated Zn homeostasis may play a role more 

like a “driver” than a “passenger” in carcinogenesis 
or tumorigenesis. Traditionally, the diseases 
caused by inherited mutations that alter ion channel 
biophysical properties are called “channelopathies”. 
Currently, certain diseases caused by dysregulated 
ion channel expression, membrane trafficking, and/
or posttranslational modifications are included in this 
group. In fact, some electrical and episodic disorders 
classified as channelopathies, have no defects in the 
ion channel itself but instead have a dysfunctional 
regulatory protein of the ion channel (or transporter). 
Since many cancers may be caused by the dysregulation 
of ion channel expression and/or activity, the cancers 
caused by Zn-dysregulated channel may be classified 
within the channelopathy family. Investigation of the 
pathophysiological roles of ZnTs and ZIPs in various 
cancers is an emerging research field. Further 
investigation may help to determine the mechanistic 
basis of the association between Zn-modulated channels 
and cancers. Novel biomarker discovery for the effective 
clinical identification of high risk in cancer patients with 
Zn deficiency are required, as are improved preventive 
measures and therapy.
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