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1. ABSTRACT

Reward deficiency syndrome (RDS) was
first proposed by Kenneth Blum in 1995 to provide a
clinically relevant and predictive term for conditions
involving deficits in mesocorticolimbic dopamine
function. Genetic, molecular, and neuronal alterations in
key components of this circuitry contribute to a reward
deficit state that can drive drug-seeking, consumption,
and relapse. Among the dysfunctions observed in RDS
are dysregulated resting state networks, which recently
have been assessed in detail in chronic drug users
by, positron emission tomography, functional magnetic
resonance imaging, and functional connectivity analysis.
A growing number of studies are helping to determine
the putative roles of dopamine and glutamatergic
neurotransmission in the regulation of activity in resting
state networks, particularly in brain reward circuitry
affected in drug use disorders. Indeed, we hypothesize
in the present review that loss of homeostasis of
these systems may lead to ‘unbalanced’ functional
networks that might be both cause and outcome of
disrupted synaptic communication between cortical and
subcortical systems essential for controlling reward,
emotional control, sensation seeking, and chronic drug
use.
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2. INTRODUCTION

Drug use disorders continue to represent a
major health and socioeconomic challenge affecting the
lives of many in the U.S. and worldwide. In 2013, in the
U.S. alone 24.6. million individuals aged 12 years or older
reported illicit drug use, and among these, 1.5. million
reported using the psychostimulant cocaine (1). An
astounding 21.6. million adults 18 or older were reported
that same year as having a substance use disorder, with
4.2. million showing abuse of dependence on marijuana,
1.9. million on pain relievers, 855,000 cocaine, and
517,000 heroin (1). These staggering numbers warrant
more preclinical research, especially in novel directions
that could ultimately help diagnose drug use disorders
(through genetic testing) and offer effective treatments.

Reward Deficiency Syndrome (RDS) was first
defined by K. Blum in 1995 as a putative predictor of
impulsive and addictive behaviors related in large part
to mesolimbic dopamine (DA) system dysfunction (see
Table 1) (2-6). Binding of the neurotransmitter dopamine
(DA) to the D2 DA receptor (DRD2), for example, has
been linked to a variety of behaviors reflecting reward
seeking (7-9), and the DRD2 has been referred to as
a reward gene (10-14). The Tagl A1 allele of the DRD2
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Table 1. Reward Deficiency Behaviors a biogenetic model for the diagnosis and treatment of impulsive,

addictive, and compulsive behaviors (3)

Addictive Behaviors Impulsive behaviors Obsessive Personality
Substance Related| Non substance related Spectrum disorders Disruptive compulsive disorders
impulsive behaviors
Alcohol Thrill seeking (novelty) Attention-deficit Hyperactivity Anti-social Body Paranoid
Dysmorphic
Cannabis Sexual Tourettes and Conduct Hoarding Schizoid
Sadism Tic Syndrome
Opioids Sexual Masochism Autism Intermittent Trichotillomania Borderline
Explosive (hair pulling)
Sedatives and Hypersexual Oppositional Excoriation Schizotypal
Hypnotics Defiant (skin picking)
Stimulants Gambling Exhibitionistic Non-suicidal Histrionic
Self-Injury
Tobacco Internet Narcissistic
Gaming
Glucose Avoidant
Food Dependant
Modified according to DSM-5. Reproduced with permission from (2).

gene has been most associated with neuropsychiatric
disorders in general, and aggression (15), alcoholism, and
chronic drug use conditions (16). Co-Morbid antisocial
personality disorder symptoms and children and adults
with attention deficit hyperactivity disorder (ADHD) or
Tourette’s Syndrome and high novelty seeking (17) and
gambling and obesity (18, 19) have also been associated
with the DRD2A1.

The brain reward circuitry, in particular, the
DAergic system and the DA D1 and D2 receptors, have
been implicated in reward mechanisms (10, 20). The net
outcome of neurotransmitter interaction in mesolimbic
brain regions is to produce “reward” when DA is released
from afferent ventral tegmental area (VTA) synapses on
GABAergic medium spiny neurons (MSNs) in the nucleus
accumbens (NAc). This interaction involves D1 and D2
class of receptors among possibly nine total receptor
subtypes (2, 21-23). Although initially dubbed the
pleasure or anti-stress neurotransmitter DA may primarily
be considered to be a “motivation molecule” (24-26) that
when released into the synapse increases feelings of
well-being and reduces stress (27, 28).

The mesocorticolimbic DA pathway plays an
especially important role in mediating the reinforcement
of natural reward-seeking behaviors, such as sex
and eating, as well as non-natural reward-seeking
behaviors mostly centered around chronic drug use (29).
Completion of the consummatory phase of natural
reward seeking involves the satisfaction of physiological
(appetitive) drives (e.g., hunger and reproduction).

Seeking unnatural rewards not critical to survival tend
to involve learning and habit formation, and thus entails
satisfaction from acquired, pleasures like hedonic
sensations derived from alcohol and other drugs, as
well as from gambling and other risk-taking behaviors
(30-33). Utilizing positron emission tomography (PET)
others have found substantially lower levels of D2
receptors in obese, and alcohol and drug dependent
subjects compared to non-dependent individuals (34-37).
In animals, overexpression of the D2 receptor via viral
vector-mediated delivery of the DRD2 gene directly into
the NAc resulted in a significant reduction of alcohol and
cocaine consumption (38-41). Also, there is clinical and
preclinical evidence that obesity is inversely proportional
to DRD2 levels in the brain, and that food restriction
reversed this finding (36, 37, 42).

3. “DOPAMINE HOMEOSTASIS”: BRINGING
FUNCTIONAL BALANCE TO THE DOPAMINE
REWARD PATHWAY

Based on the notion that dysregulation of
mesocorticolimbic DAergic activity promotes further drug
use, a goal should be to regulate key components of
this system to reduce abnormal craving, drug seeking,
and other addictive behaviors included under the
term RDS (43). Indeed, neuronal populations in the
mesocorticolimbic system can be identified based on
their unique gene expression patterns. Such information
offers potential targets for the development of treatments
to modulate deficient components of the reward circuit.
Regarding therapeutic targets, it is believed that there
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are many potential gene polymorphisms involved in
the brain reward system and these known (and even
unknown) polymorphisms will need to be identified across
the central nervous system (CNS) especially along the
brain reward circuitry (44, 45). Certainly, damage to DNA
along this reward circuitry likely leads to altered, or even
diminished, DAergic activity (46). Reduced dopaminergic
activity has the effect of increasing sensitivity to stress,
blunting reward sensation, and even impairing aspects
of reward learning, especially in aged individuals (47-49).

There are numerous genes involved in regulating
the activity of this system. The result of their patterns of
expression, or their normal function, is to mediate a series
of neurochemical mechanisms that have previously been
described as the “brain reward cascade” (50). The brain
reward cascade involves the release of serotonin, which
has been shown to stimulate hypothalamic release of
enkephalin in the substantia nigra. Enkephalin in turn
inhibits GABA in the substantia nigra, which regulates
the amount of DA released in the nucleus accumbens
(“reward site”). The origin of the release of DA is the VTA.
Various receptors (including 5HT2a receptors, u-opiate
receptors, GABA-A receptors, GABA-B receptors, and
D1 and D2 like DA receptors) are critical in reward
cascade. It is well known that under normal conditions
DA in the nucleus accumbens works to maintain normal
drives (51-56). Recent evidence postulates the role of
dorsa raphe nuclei in the reward cascade.

For over forty years the Dorsal Raphe
Nucleus (DRN) have been classified as a serotonergic
structure and the VTA as a DAergic structure. These
are two brain reward areas where electrical stimulation
produces reinforcement responding at the highest rates
and lowest thresholds (meaning increased reward
sensitivity). Although multiple studies have examined
the contributions of the DRN and VTA to reward most of
these studies, have been focused on the serotonergic
effects. As a result, these investigations have produced
conflicting results, and the actual role of DRN-to-VTA
circuitry in regulating motivated behaviors remains
unclear. Contrary to the idea that the major input from
DRN to VTA is serotonergic, Marisela Morales and
her group (57) found that DRN neurons expressing
the vesicular glutamate transporter-3 (GluT3) provide
a major source of inputs from DRN to VTA. Within the
VTA, these DRN-derived GlutT3 terminals synapse on
DA neurons. Qi et al. (57) found that some of these VTA
neurons innervated by DRN GIuT3 synapses, in turn,
innervate neurons in the NAc. By genetic approaches to
specifically express channel rhodopsin 2 (ChR2) in DRN-
GlutT3 neurons, it was also found that AMPA-mediated
excitatory currents on DA-neurons that innervate the
NAc can be elicited by intra-VTA light stimulation of
the VGLUT3 -fibers. Such stimulation causes DA
release in the NAc, reinforces instrumental behaviors,
and established conditioned place preference. The

Qi et al. (57) discovery of a rewarding excitatory
glutamatergic synaptic input to the meso-accumbens DA
neurons arising from DRN neurons containing VGLUT3,
suggested that, new targets that may be important to
improve deficits in motivation observed in RDS patients.
Moreover, unpublished work from this research team at
NIDA also found that GABA from the Substania Nigra
regulates VGLUT3 synaptic inputs, and as a result may
control VTA DA release in the NAc.

In RDS, reduced sensitivity and inefficiency
of the reward system has been a theme considered by
many investigators and has generated some controversy
regarding the regulation of “liking” and “wanting” rewards,
particularly drugreward (58-63). However, various genetic/
epigenetic factors and neuroanatomical substrates
converge upon the mesocorticolimbic DA reward system
in mediating multiple ways in which addictions and related
psychiatric conditions are expressed (64). Both genetic
antecedents and environmental influences (epigenetic),
may result in a deficiency of synaptic DA and predispose
individuals to a high risk for multiple addictive, impulsive,
and compulsive behaviors (65).

It is well known that alcohol and other drugs
of abuse, as well as sex, food, gambling, aggressive
thrills and other positive reinforcers, cause activation
and neuronal release of brain DA and involvement of
the Na(+)/K(+)-ATPase (66). Increases in DA release,
particularly in NAc, can decrease negative feelings and
satisfy abnormal feelings like cravings for substances
like alcohol, cocaine, heroin, and nicotine, which among
others are linked to low DA activity (67). Therefore, a
formidable challenge to both scientists and clinicians in
the field of substance and non-substance compulsive
seeking behaviors is the development of compounds
that can induce “dopamine homeostasis”. In other words,
rather than tilting the dopamine-mediated brain reward
balance to either extreme (too high or too low), a balance
needs to be maintained within a limited functional range.
Assessing such functional limits within mesocorticolimbic
circuitry requires in vivo brain functional biomarkers
of activity, which are only possible through functional
magnetic resonance imaging (fMRI) and potentially
functional connectivity analysis of brain network activity.
Emerging evidence strongly suggests that cognitive,
emotional and behavioral disturbances observed in
some psychiatric illnesses are associated with functional
deficits in widespread brain networks (68-72). The same
principle of dysregulated functional circuitry may hold true
for drug addiction (73). However, the cellular mechanisms
mediating resting state functional connectivity, and in
particular the role of dopamine, serotonin, and glutamate
in mediating specific patterns of functional connectivity
remain unclear. In the following sections, we summarize
some of the work that has been done, specifically focusing
on studies examining changes in functional connectivity
and drug use disorders.
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4. UNDERSTANDING RESTING STATE BRAIN
FUNCTIONAL CONNECTIVITY

Recently, there has been controversy concerning
the role of brain DAin reward and addiction. David Nuttand
associates eloquently proposed that DA may be central
to psychostimulant dependence, and somewhat relevant
for alcohol, but not important for opiates, nicotine, or
even cannabis (74). Others have also argued that surfeit
theories can explain cocaine-seeking behavior and non-
substance-related addictive behaviors. It seems prudent
to make a distinction between, what constitutes “surfeit”
as compared to “deficit” regarding short-term (acute),
and long-term (chronic), brain reward circuit responsivity.
In an attempt to resolve the controversy regarding the
contributions of mesolimbic DA systems to reward, we
cite the three most important competing explanatory
categories: “liking,” “learning,” and “wanting.” They are
(a) the hedonic impact (liking reward), (b) the ability to
predict rewarding effects (learning) and (c) rewarding
stimuli incentive salience (wanting).

Regarding acute effects, RDS behaviors,
and most drugs of abuse have been linked to
hyperdopaminergic states and heightened feelings
of well-being due to the preferential DA release at
mesolimbic-VTA-caudate-accumbens loci. Also, most of
the evidence seems to favor the “surfeit theory” (59, 75)
in the acute phase of the experience. The “dopamine
hypotheses”, is now known to be complex and involves
encoding attention, reward expectancy, incentive
motivation and the set point of hedonic tone.

In terms of chronic effects, the work of
Willuhn’s group provides impetus to develop anti-RDS
compounds that can modulate dopamine function. They
demonstrated, in an extended access cocaine self-
administration paradigm, that excessive use of cocaine
is caused by decreased phasic DA signaling in the
striatum (76). Also regarding chronic addictions, others
have shown a blunted responsivity at brain reward sites
with food, nicotine, and even gambling behavior. Being
cognizant that there are differences in DAergic function
as addictions progress, relapse may involve a prolonged
state of DA deficiency. Vulnerability to compulsive
drug use and relapse may be the cumulative effects of
genetic reward polymorphisms and elevated sensitivity
to stress. The preferred goal to combat relapse may be
DA homeostasis and with this aim functional connectivity
in both animal and human models is an emerging area
of interest.

Compulsive drug use can affect widely distributed
regions of the brain and evidence is accumulating that
the functional interactions between brain regions change
throughout the stages of cocaine use, abstinence, and
relapse (77-88). Identifying neural circuits affected
by cocaine use disorders, and understanding their
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association with compulsive drug seeking behavior,
remains a challenge (73). Some researchers have
addressed this matter by applying novel optogenetic
approaches to investigate the causal role of individual
neuronal groups in driving drug self-administration and
reinstatement (89-96).

The brain of humans and rodents show a high
degree of intrinsic synchronous activity measured by blood
oxygen level-dependent (BOLD) fMRI during rest (97, 98).
Functional connectivity analysis of these synchronous
BOLD signals may provide insight into network-level
changes associated with cocaine and other RDS behaviors
during self-administration, withdrawal, and reinstatement.
BOLD signal oscillations have neurobiological and
behavioral significance (99-101) in human subjects
and animal models (97, 98). Changes in functional
connectivity in humans are associated with dysfunctional
cognitive and behavioral states (68) that might contribute
to addiction severity and relapse (81, 85, 88, 102). For
example, it has been reported that cocaine users show
a reduction in resting state activity along specific neural
pathways, also significantly increased connectivity has
been cited (81). In cocaine users, shorter withdrawal
lengths mostly involve increased or altered connectivity,
in cortical, striatal and midbrain regions, while, longer
duration withdrawal times mostly involve significant
reductions in functional connectivity in comparison to
controls. However, changes in functional connectivity can
vary according to factors such as length of abstinence,
propensity to relapse, response to treatment (81, 85, 103).
For example, impulsivity and loss of control over recent
cocaine use are associated with increased functional
connectivity between prefrontal cortex and striatum (104).
Subjects with cocaine use disorders that were stabilized
for 4-8 days in inpatient clinics (short-term abstinence)
showed hyperconnectivity between structures involved in
memory, visuospatial processing, and motivation (105).
This novel approach can reflect the integrity of functional
circuits that mediate aspects of neural communication
between CNS regions (106). This method is an informative
biomarker that may be used to examining the effects of
drugs of abuse on mesocorticolimbic regions.

4.1. Functional connectivity and addiction:
neurobiological underpinnings

Understand functional connectivity changes,
particularly in the context of well-studied intrinsically
active networks such as Salience, Executive, and Default
networks, is key to being able to address widespread
neuroadaptations involved in and/or contributing to
addictive behaviors. Activity in these and other previously
described networks, in turn, may relate to underlying
cellular adaptations in the biophysical properties of
neuronal membranes. These adaptations include
changes in electrical excitability of select neurons within a
broader network and the occurrence of synaptic plasticity
that can modify the responsiveness of mesocorticolimbic
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DA and glutamate neurons to subsequent drug reward
challenges (107-113). For example, in rats, repeated
cocaine or amphetamine administration alters the
number of dendritic spines, their morphology, and hinders
structural plasticity in NAc, prefrontal cortex, and other
neocortical regions (114-118).

A single exposure or repeated administration of
cocaine and other drugs of abuse increases the ability
to elicit long-term potentiation (LTP) and long-term
depression (LTD) in VTADA neurons (109, 110, 119-121).
Repeated cocaine also alters these forms of synaptic
plasticity in NAc, amygdala, and forebrain (109, 110),
and effect biophysical parameters leading to changes
in excitability of NAc MSNs (122, 123). Altered synaptic
plasticity may impact subsequent excitability and
plasticity within these regions (110, 122), with the
consequence of altering the activity of downstream and
upstream structures (124-126). For example, changes
in excitability of NAc MSNs (123) may affect activity in
both the VTA directly, or through the ventral pallidum (91),
and this circuitry is influential for reinstatement of drug
seeking behavior (127). Moreover, NAc neurons are
also influenced by changes in prefrontal cortical
(PFC) (128, 129) and ventral hippocampal (125, 130)
activity via incoming glutamatergic synapses, which may
elicit reinstatement (89, 93, 131). Given the extensive
connectivity these neurons share with other structures,
it is likely that the effects of repeated cocaine on their
activity significantly impacts activity in broadly distributed
regions of the brain. Thus, in the cocaine-addicted brain,
a wider network of structures may show altered functional
connectivity through synaptic changes in PFC, NAc, and
VTA neurons. Connectivity is likely to involve ventral
hippocampus, amygdala, pallidal areas, substantia
nigra, anterior thalamus, and other higher cortical
centers integrating sensory and spatial information, and
long-term memory. A critically important aspect of the
mentioned in vivo functional neurocircuitry of cocaine use
is that key players in the circuitry vary through distinct
stages of addiction (78).

4.2. Are glutaminergic and dopaminergic
pathways therapeutic targets for reward
homeostasis?

Glutamate and DA represent potential
targets for novel treatments that modulate not only
cocaine seeking behavior, but also other RDS
behaviors, and there is growing evidence that these
neurotransmitters are necessary for the establishment
of resting state functional connectivity networks. Both
substrates are affected by chronic psychostimulant
administration (111, 112). In cocaine self-administering
rats, basal extracellular glutamate concentrations are
reduced in the core of NAc (128), which also receives
heightened PFC-evoked glutamate release (94, 123).
Evidence supports this heightened release and reduced
tonic extracellular glutamate in reinstatement (123, 132).

Elevating extrasynaptic glutamate by stimulating the
cystine-glutamate exchanger using the pro-cystine
drug, N-acetylcysteine (NAC), has been found to reduce
cue-and cocaine-prompted reinstatement (123, 132-135).
This outcome supports its development as a treatment
for cocaine craving and addiction (136). N-acetylcysteine
restores synaptic plasticity in NAc, normalizes neuronal
excitability, and glutamate transport (122, 133).
Additionally, it was recently shown that as cocaine intake
escalates, phasic DA signaling in the ventromedial
striatum is reduced (76). The DA precursor L-3,4-
dihydrophenylalanine (L-DOPA) was found to reduce
escalated cocaine intake and restore striatal DA (76).
Consistent with this result, in human subjects, L-DOPA
was observed to increase functional connectivity between
midbrain and striatal regions (72). In this regard, Febo and
Blum (unpublished) have examined the effects of a DA
precursor complex (KB220Z) on functional connectivity
and have observed that there is a significant increase in
functional connectivity strength in PFC and NAc of the
rat (Figure 1).

Keyingredientsinthis complexact synergistically
toreplenish the pool of L-DOPAand facilitate its conversion
to DA. The formulation is directed at re-establishing
baseline connectivity through the DAbiosynthetic pathway
amongst other ingredients (L-Tyrosine and pyridoxine,
which provide the enzymatic co-factor pyridoxal-5'-
phosphate for L-amino acid decarboxylase conversion
of L-DOPA to DA) (6, 137). A KB220 variant has been
tested in abstinent psychostimulant abusers and found to
normalize quantitative electroencephalographic (QEEG)
abnormalities (137). Moreover, a preliminary double-
blind cross-over study in heroin-dependent participants
shows increases in ventral striatal functional connectivity
(Figure 2).

Understanding how DA and glutamate
systems modulate resting state functional connectivity
in mesocorticolimbic structures increases the utility of
this functional mapping strategy as a biomarker for drug
use disorders. Research in this regard is limited but has
recently been approached indirectly through examination
of the effects of, DA depletion (like Parkinsonism and
related conditions), DA replacement therapies (like
L-DOPA), DAergic agonists and N-methyl-D-aspartate
(NMDA) receptor blockers, on resting state functional
connectivity (138-141).

The role of DA in the brain at rest is an important
and an emerging area of research interest especially in
Parkinsonism (142). Piray et al. (143) using systematic
pharmacological manipulation of dopamine D2-receptors
and resting-state functional imaging in humans, found
that DA modulates interactions between motivational and
cognitive regions, as well cognitive and motor regions
of the striatum. Specifically, stimulation and blockade of
the dopamine D2-receptor had opposite (increasing and
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Seed: Nucleus Accumbens

Placebo

W’S\

KB220Z _

Figure 1. Administration of a complex (KB220Z) increases connectivity with the NAc and PFC. This effect would presumably benefit cocaine-addicted
individuals showing reduced functional connectivity in mesocorticolimbic circuitry. Reproduced with permission from (79).

KB220 (n=5)

Placebo (n=5)

Figure 2. A double-blind cross-over study in abstinent heroin-dependent
participants of KB220Z, a DA precursor complex one hour following delivery
of neurotransmitter precursors, functional connectivity between regions of
the accumbens and the medial orbital cortex is enhanced. Arrow and blue
circle are shown to emphasize increases in functional connectivity in NAc
with oral KB220Z. Reproduced with permission from (6).

decreasing) effects on the efficacy of those interactions.
In fact, trait impulsivity was specifically associated
with DAergic modulation of ventral-to-dorsal striatal
connectivity. Ventral-to-dorsal striatal connectivity in
individuals with high trait impulsivity exhibited greater
drug-induced increases (after stimulation) and decreases
(after blockade) of than those with low trait impulsivity.

Individuals with early stage Parkinsonism, which
have some initial level of DA depletion in basal ganglia
structures, showed decreased connectivity of the left
dorsolateral prefrontal cortex and right insular cortex, right
superior frontal gyrus and anterior cingulate compared to
unaffected subjects (138). Others have reported reduced
connectivity (specifically, node degree) in left putamen,
right globus pallidus (139). Interestingly, Nagano-Saito
and colleagues used a transient DA depletion strategy
by administering an amino acid solution deficient of
D-Phenylalanine/L-Tyrosine to healthy participants and
found that performance on set shifting tasks and frontal-
striatal connectivity were both reduced in comparison to
administering a more balanced amino acid solution (140).
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Thus, deficits in cognitive flexibility caused by acute
reductions in DA may be associated with a reduction
in functional connectivity between prefrontal cortex and
striatum.

Thereisalsobuildingevidence thatenhancement
of DA synthesis and increasing the releasable pool of
this catecholamine adjusts functional connectivity in
mesocorticolimbic areas. Thus, administering (L-DOPA;
which is a precursor for DA synthesis) to healthy
participants reduced connectivity between the amygdala
and bilateral inferior frontal gyri and areas of the default
mode network (DMN) (141). Another group showed
that L-DOPA increased functional connectivity between
midbrain and DMN, between caudate and frontal-
parietal areas, and ventral striatum and a frontoinsular
network (72). On the other hand, blocking DA receptors
with haloperidol exerted opposite effects on functional
connectivity between these regions (144). L-DOPA has
also been shown to increase functional connectivity areas
of the putamen, cerebellum, and brainstem, and between
inferior ventral striatum and ventrolateral prefrontal
cortex (145). Interestingly, it was observed to disrupt
connectivity between striatal areas and the DMN (145).
In further support that DA replacement therapies may
correct deficits in functional connectivity, recently it was
shown that Parkinson’s patients without medication
showed significantimpairments in connectivity with striatal
divisions, which was improved by upon administering DA
medications to patients (142). The above-cited effects of
DA depletion and replenishment with L-DOPA illustrate
the important role of DA in modulating resting state
networks. Consistent with the role of DA in regulating
activity in basal ganglia, most effects are observed in
ventral and dorsal striatal regions and their connectivity
with cortical structures known to receive DA inputs.
However, it is important to note that in the case of RDS,
the networks impacted by deficient DA activity may vary
from DA pathways affected in Parkinsonism due to the
source of DA being VTA in the mesolimbic pathway rather
than through Substantia Nigra (nigrostriatal pathway).
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Importantly, a caveat to focusing on L-DOPA as a
treatment strategy is that it omits other components of
the Brain Reward Cascade.

Administering the DA and norepinephrine
transporter blocker methylphenidate to healthy subjects
has been shown to exert varied effects across a
number of studies, which include increased motor-
memory circuit connectivity and reduced prefrontal
cortical connectivity (146). Others have reported that
methylphenidate, mostly reduced functional connectivity
betweenNAcandventralpallidumandsubthalamicnucleus,
and reduced connectivity between NAc and prefrontal
and temporal cortices (147). However, in another study
methylphenidate at the same dose (40 mg) was mostly
found to increase connectivity between dorsal attentional
networks and thalamus, increase connectivity between
association areas and primary sensorimotor regions,
and decrease connectivity with striatothalamocortical
circuits (148). These above-mentioned effects of
methylphenidate, are mediated, in part, by elevated
extracellular levels DA and norepinephrine. However,
the effect of DA receptor stimulation on functional
connectivity is unclear. Subjects administered the DA
agonist, bromocriptine show changes in frontal-striatum
functional connectivity, which specifically correlated with
working memory performance (149). In consideration
of the functional connectivity changes affected in drug
use disorders (summarized in the preceding sections);
it makes much less sense to use drugs that bind to DA
receptors or transporter. That is to say, the results of such
studies do not seem to be well aligned with outcomes,
that would benefit or correct deficits in functional
connectivity. However, based on the effects of L-DOPA
and our preliminary results with KB220, we argue that
enhancement of DAergic biochemical pathways would
instead be an improved strategy adjusting or balancing
resting state networks, particularly in frontal and striatal
regions (Figures 1 and 2).

The role of glutamate in functional connectivity
has largely been assessed by studies seeking to
understand the effects of ketamine on functional
connectivity. Ketamine, which has antidepressant
properties, is a NMDA receptor blocker. Based on the
excitatory neurotransmission mediated through NMDA
receptors (activation leading to neuronal depolarization),
one would expect significant reductions in functional
connectivity (because such depolarizations would
be prevented in the presence of the drug). However,
some studies have shown hyperconnectivity instead.
Ketamine increased prefrontal connectivity in healthy
participants (150) and corticothalamic circuitry (151).
Positive symptoms of ketamine are associated with
increased cortical paracentral lobule and left precentral
gyral connectivity, whereas increased connectivity in
prefrontal and striatal areas was surprisingly associated
with negative symptoms (152). Interestingly, NMDA
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blockade reduced functional connectivity between the
DMN and dorsomedial prefrontal cortex, and DMN
to prefrontal, anterior and posterior cingulate cortical
areas (153). Regulating extracellular levels of glutamate
and increasing glutamate transmission (which are both
disrupted in drug use disorders) with N-acetylcysteine
(NAC) increases functional connectivity between major
mesocorticolimbic areas including the ventral striatum,
prefrontal cortex, precuneus, and areas of the DMN (154).
This increased functional connectivity correlates with
improved affective scores and less craving (154).

Overall, the above results bring us a step closer
to understanding the contributions of DA and glutamate
in modulating resting state networks. An important aspect
of these studies that should be considered in light of the
varied results is the potential for baseline connectivity
to differ across individual subjects. Moreover, regarding
treatment strategies, it appears that treatments directed
at balancing biochemical functioning in mesocorticolimbic
areas, like L-DOPA, KB220, and NAC, might provide a
better strategy for correcting the deficiencies present in
these regions and a better and more consistent readout
in functional connectivity studies.

To summarize, Willuhn’s group (76) reported
that dopaminergic function is reduced as substance
(cocaine) and non-substance-related addictive behavior
increases. Decreases in D2/D3 receptors and lower
activation of cues in occipital cortex and cerebellum were
associated with chronic cocaine exposure by Volkow
et al. in a recent PET study (155). Therefore, treatment
strategies, directed towards dopamine homeostasis like
less powerful pro-dopamine regulators (unable to induce
DA receptor down —regulation), along with glutaminergic
optimization using NAC that might conserve DA function
and may be an attractive approach to relapse prevention
in psychoactive drug and behavioral addictions. However,
we caution against the sole use of L-DOPA because of
known side effects as seen with Parkinson patients (156).

4.3. Dopamine and brain functional
connectivity: Psychiatric genetic links

Arvid Carlsson, Paul Greengard, Eric Kandel
equally shared the 2000 Nobel Prize in Physiology or
Medicine for their outstanding work concerning signal
transduction in the nervous system and the role of DA as
a neurotransmitter. Now fifteen years later neuroscientists
and clinicians have seen some amazing advances
concerning DA and brain functional connectivity and
genetic risk factors affecting psychiatric conditions.
With advances in neuroimaging techniques such as
fMRI, single-photon emission computerized tomography
(SPECT), PET, and now optogenetics, understanding
of DAs role in the brain will change. Keeping within this
narrow perspective some studies that further enhance
our knowledge related to DA and potential DA regulation
will briefly be discussed.

© 1996-2017



Dopamine homeostasis: brain functional connectivity in RDS

It is important to acknowledge the seminal
findings of Blum et al. (10) published in JAMA on the
first association of the DRD2 A1 allele as a risk factor
for severe alcoholism. The role of the A1 allele of the
DRD2 gene and other reward genes like Mu-Opiate
Receptor, MOA-A, GABAA, COMT, 5-HTTLPR, DRD4,
and associated risk alleels, have been confirmed in
RDS behaviors (157-170). There is also evidence of an
association of the DRD2 Tag A1 polymorphisms with
addiction relapse (171), increased hospitalization (172),
and even mortality (173). However, much less is known
about the actual role of DA per se in brain functional
connectivity and potential allelic risk factors in developing
deficits.

As of 06-29-2016 a word Pubmed search
“Psychiatric Genetics” revealed 17,433 articles. However,
a word search using the terms, “Psychiatric Genetics”
and “Brain Functional Connectivity” revealed only 74
articles suggesting the relatively new area of research.
The following section provides a brief snapshot of this
emerging area of psychiatry.

In one experiment, Zhou et al. (174) found
significant COMT (rs4680)xDRD2(rs1076560) interaction
in intra-network connectivity. The network included the
left medial prefrontal cortex of the anterior DMN, the
right dorsal attention network at the right dorsolateral
frontal cortex, and the left dorsal anterior cingulate cortex
in the salience network. Moreover, they also found that
DRD2 genotypes exerted differential effects on intra-
network connectivity in subgroups of COMT genotypes.
Zhou et al. concluded that “These findings suggest a
network-dependent modulation of the DA-related genetic
variations on intra-network connectivity.” Regarding
clinical relevance, (175) a set of structured multimodal
activities (Combination Training; CT), revealed that
cognitive/occupational performances and reorganization
of functional connectivity benefited from greater functional
connectivity and cortical thickness in a group of healthy
elderly individuals. This effect was most pronounced in
carriers of polymorphisms of both COMT (Val158Met)
and DAergic genes (DRD3 ser9gly).

Work by Tian et al. (176) suggested that COMT
and DRD2 genotypes may associate with brain functional
connectivity and dopamine signaling. In support, Xu
et al. (177) evaluated different genotypic combinations
of COMT and DRD2 in healthy humans and found a
non-additive COMT x DRD2 interaction in rsFC in the
right dorsal anterior cingulate cortex (dACC) exhibiting
a U-shape modulation by DA signaling. Interestingly, the
authors suggest “healthy young adults without optimal
DA signaling may maintain their normal behavioral
performance via a functional compensatory mechanism
in response to structural deficit due to genetic variation.”

Interestingly, Meyer et al. (178) pointed out
that prefrontal DA levels are relatively increased in
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adolescence compared to adulthood. It is well known
that carriers of the MET variant of COMT result in lower
enzymatic activity and higher DA availability. Oppositional
effects were observed in prefrontal brain networks at
rest, of adolescents and adults, in areas of the brain
including anterior medial PFC and ventrolateral as well
as the dorsolateral PFC, and parahippocampal gyrus.
They also observed an age-dependent and significant
reversal of COMT Val158Met effects on resting state
functional connectivity between the anterior medial
PFC and ventrolateral and the dorsolateral PFC, and
parahippocampal gyrus. Val homozygous adults exhibited
increased and adolescents decreased connectivity
compared to Met homozygotes for all reported
regions. This finding is somewhat surprising given the
understanding that carriers of the Val variant results in
a lower availability of synaptic DA. As such, one would
expect a decrease in rsFC and not an increase as seen
in adults compared to adolescents (179). Nevertheless,
it does suggest that adolescent and adult resting state
networks are dose-dependent and diametrically affected
by COMT genotypes when a hypothetical model of DA
function that follows an inverted U-shaped curve is
followed.

It is well known that DA signaling through D2
and other DA receptors has been implicated in reward
processing, regulation of cognition and the effects of
drugs of abuse, and also has significant effects on
responses to stressors and salient aversive stimuli (180).
In fact, Pecifia et al. (181) found that a haplotype block
comprised of two SNPs, rs4274224, and rs4581480,
had an effect on the hemodynamic responses of the
subgenual anterior cingulate cortices (sgACC) during
implicit emotional processing and the dorsolateral PFC
during reward expectation. The authors suggest that
these findings may be normal variation and contribute
to potential vulnerability to psychopathology associated
with functions, such as risk for mood and substance use
disorders (or RDS behaviors).

Recent evidence supports the notion that
the DMN consists of brain regions which relative to
cognitive processing have “increased” activity during
rest. Moreover, this activity in the DMN is associated
with  functional connectivity with the striatum, a
DA-enriched brain region (182). Specifically, it was
found a lowered DA state caused the following network
changes: reduced global and local efficiency of the
whole brain network, reduced regional efficiency in limbic
areas, reduced modularity of brain networks, and greater
connectivity between the normally anti-correlated task-
positive and DMN. In support of the work, earlier studies
by Sambataro et al. (183) evaluated a functional SNP
within the dopamine D2 receptor gene (DRD2, rs1076560
G > T) shifts splicing of the 2 D2 isoforms, D2 short and
D2 long. Within the anterior DMN, the variant GG subjects
had relatively greater connectivity in medial PFC, which
was directly correlated with striatal DA transporter (DAT)
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binding. However, within the posterior DMN, GG subjects
had reduced connectivity in posterior cingulate relative
to T carriers. Additionally, rs1076560 genotype predicted
connectivity differences within a striatal network, and
these changes were correlated with connectivity in
medial PFC and posterior cingulate within the DMN.
Sambataro et al. (183), proposed that that genetically
determined D2 receptor signaling is associated with DMN
connectivity and that these changes are correlated with
striatal function and presynaptic DA signaling. Moreover,
regarding cognitive processing, non-carriers of the
A1 allele of the DRD2/ANKK1-Tag A1 polymorphism
associated with higher DRD2 density show increased task-
switching costs, increased prefrontal switching activity in
the inferior frontal junction area, and increased functional
connectivity in dorsal frontostriatal circuits relative to
A1 allele carriers (184). Also, Stelzel et al. (184) found
a DRD2 haplotype analysis confirmed an association
between high D2 density and increased switching effort.
Accordingly, these results emphasize the importance of
individual differences in striatal D2 signaling in healthy
humans, leads to individual differences in switching
intentionally to newly relevant behaviors.

Finally, understanding that personality traits
linked to emotion processing are, in part, heritable and
genetically based, Blasi et al. (185), evaluated the role of
the DRD2 (intronic single nucleotide polymorphism within
the DRD2 (rs1076560, guanine > thymine or G > T). They
found greater amygdala activity during implicit processing
and dorsolateral PFC response during explicit processing
of facial emotional stimuli in GG subjects compared with
GT. They also discovered that rs1076560 genotype
is associated with differential relationships between
amygdala/dorsolateral PFC functional connectivity and
emotion control scores.

5. SUMMARY AND PERSPECTIVES

Based on the above-cited literature, we predict
that a feeling of well-being can be achieved only when
DA is released in the nucleus accumbens at balanced
“dopamine homeostatic” levels. Any deviation causes
“dopamine resistance” and as such could result in
increased aberrant cravings. Accordingly, there is a
need for a compound that can target and achieve DA
regulation, i.e. DA homeostasis. There is further need for
a compound that can be administered to normalize such
brain functional impairments by activating the release of
brain DA at the reward site and thus reduce excessive
craving behaviors.

It is now known that drug addiction is
characterized by widespread abnormalities in brain
function and neurochemistry, including drug-associated
effects on concentrations of the excitatory and inhibitory
neurotransmitters glutamate and gamma-aminobutyric
acid (GABA), respectively. In healthy individuals,
these neurotransmitters may drive the resting state,

a default condition of brain function that is disrupted
in addiction. We are in agreement with the concept
that resting state functional connectivity may have
valuable clinical relevance to the development of
and risk for RDS behaviors. Studies have shown that
addicted individuals tended to show decreases in the
glutaminergic system compared with healthy controls.
Moreover, select corticolimbic brain regions showing
glutamatergic and/or GABAergic abnormalities have
been similarly implicated in resting-state functional
connectivity deficits in drug addiction (186). There are
many studies showing impairments of resting state
functional connectivity with alcohol, opiates, cannabis,
psychostimulants, nicotine, glucose and even some of
the behavioral addictions, further suggesting the need
to find compounds that will restore normal resting state
functional connectivity (6, 187-200).

Along these lines, it has been shown that
when NAC was compared to placebo, smokers who
maintained abstinence, reported less craving and higher
positive affect, and concomitantly exhibited stronger
rsFC between ventral striatal nodes, medial prefrontal
cortex and precuneus-key DMN nodes, and the
cerebellum (154). Most recently, our laboratory proposed
the combination of NAC with a well-known enkephalinase
inhibitor and other pro-DAergic substances to combat
aberrant RDS behaviors (6).

6. CONCLUSION

The role of DA in brain function is being clarified
by the advancement of neuroimaging tools indicating its
critical involvement in resting state functional connectivity
in the brain reward circuitry. It is accepted that alterations
of dopaminergic regulation, lead to changes in brain
functional connectivity considered by many as a key to
all addictions. Given the vast amount of research in this
area as an emerging science, it is important to realize
that ultimately studies on humans are tantamount to
the development of clinically relevant therapeutics.
However, continued work on animal models of addiction
involving, for example, fMRI coupled with optogenetics
seems parsimonious to extract not only required neuro-
mechanisms of substance and non-substance-related
addictive behaviors (RDS) and provide a mechanistic
rationale to evaluate promising anti-RDS agents.
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