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1. ABSTRACT

Since 1970, the DNA polymerase gamma (PolG) 
has been known to be the DNA polymerase responsible 
for replication and repair of mitochondrial DNA, and until 
recently it was generally accepted that this was the only 
polymerase present in mitochondria. However, recent 
data has challenged that opinion, as several polymerases 
are now proposed to have activity in mitochondria. To 
date, their exact role of these other DNA polymerases 
is unclear and the amount of evidence supporting their 
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role in mitochondria varies greatly. Further complicating 
matters, no universally accepted standards have been set 
for definitive proof of the mitochondrial localization of a 
protein. To gain an appreciation of these newly proposed 
DNA polymerases in the mitochondria, we review the 
evidence and standards needed to establish the role of 
a polymerase in the mitochondria. Employing PolG as 
an example, we established a list of criteria necessary 
to verify the existence and function of new mitochondrial 
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proteins. We then apply this criteria towards several other 
putative mitochondrial polymerases. While there is still a 
lot left to be done in this exciting new direction, it is clear 
that PolG is not acting alone in mitochondria, opening new 
doors for potential replication and repair mechanisms.

2. INTRODUCTION TO MITOCHONDRIA AND 
BACKGROUND

Mitochondria are essential organelles 
containing their own DNA that carry out respiration, 
producing >90% of the cellular ATP. Mitochondria were 
first isolated in 1948 after the development of zonal 
centrifugation. In the early 1960s it was determined that 
these cytoplasmic organelles contain their own DNA. The 
sequence of human mitochondrial DNA (mtDNA) was 
determined in 1981 (1) and gene products were assigned 
by 1985  (2), making mtDNA the first component of the 
human genome to be fully sequenced. Human mtDNA 
is composed of a circular 16.5. kb circular genome in 
very high copy number, coding for 13 essential proteins 
needed to carry out oxidative phosphorylation, 22 tRNAs 
and 2 ribosomal RNA genes needed for the synthesis of 
those 13 polypeptides.

As discussed in detail below, mitochondrial 
DNA is replicated and repaired by the nuclear encoded 
DNA polymerase gamma (PolG). In mammals, PolG is 
comprised of a 140  kDa catalytic subunit containing a 

DNA polymerase activity, a 3’-5’ exonuclease activity and 
a 5’-deoxyribose lyase activity, and a dimeric accessory 
subunit, p55. The catalytic subunit is encoded by the 
POLG gene on chromosome 15q26 while the accessory 
subunit is encoded by the POLG2 gene on chromosome 
17q23-24. MtDNA integrity depends on the accurate 
replication and repair of the genome. Repair of mtDNA is 
limited compared to nuclear DNA, as there is no evidence 
of nucleotide excision repair (3), and only limited evidence 
for mismatch repair (MMR) (4). However, due to the 
highly oxidative environment, mitochondria do have an 
efficient base excision repair (BER) to remove damaged 
or oxidized bases (4-9). Most of the machinery needed 
for BER is shared with the nucleus.

To date, there are 17 DNA polymerases that have 
been identified from humans (Table  1). Besides PolG, 
several have been implicated in mitochondria, although 
their exact role is unclear and the amount of evidence 
supporting their role in mitochondria varies greatly between 
the different polymerases. In the past, identification of a 
protein in the mitochondria was hampered by the inability 
to obtain highly purified mitochondrial fractions or to 
determine the genetic or biological function of a putative 
mitochondrial protein. Furthermore, no universally 
accepted standards have been set for definitive proof 
of the mitochondrial localization of a protein. To gain an 
appreciation of these newly proposed DNA polymerases 
in the mitochondria, here we review the evidence and 

Table 1. Human DNA polymerases and their function1

Polymerase Family Chromosome Mol. Wt. (kDa) Function/comments

alpha (PolA) B Xq21.3.‑q22.1. 165 Initiates replication

beta (PolB) X 8p12‑p11 39 BER, other functions

gamma (PolG) A 15q25 140 Mitochondrial replication & repair

delta (PolD) B 19q13.3.‑.4 125 Replication, BER, NER, MMR

epsilon (PolE) B 12q24.3. 255 Replication, checkpoint control

zeta (PolZ) B 6q22 344 yREV3 homolog, lesion bypass

eta (PolH) Y 6p21.1. 78 Lesion bypass, XPV, skin cancer susceptibility

theta (PolQ) A 3q13.3.1 300 crosslink repair, Dm308, lesion bypass

iota (PolI) Y 18q21.1. 80 Lesion bypass? BER?

kappa (PolK) Y 5q13.1. 99 Lesion bypass, mutator when overexpressed

lambda (PolL) X 10q23 64 TLS, NER

mu (PolM) X 7p13 55 TdT homolog, NHEJ

nu (PolN) A 4p16.3. 100 lesion bypass, crosslink repair?

sigma (PolS) X 5p15 82 TRF4 or PAPD7, sister chromatid adhesion

 Rev1 Y 2q11.1.‑.2 125 lesion bypass

 TdT X 10q23‑24 57 Terminal transferase

PrimPol AEP 4q35.1. 65 Restart during replication stress, Mitochondrial TLS

1.Adopted from (125)
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standards needed to establish the role of a polymerase 
in the mitochondria. Employing PolG as an example, 
we established a list of criteria necessary to verify the 
existence and function of new mitochondrial proteins. 
We then apply this criteria towards several other putative 
mitochondrial polymerases (Table 2).

3. HISTORY AND EVIDENCE SUPPORTING 
POLG AS THE REPLICATIVE MTDNA 
POLYMERASE

3.1. Identification of PolG as the mitochondrial 
replicase

The polymerase activity responsible for replication 
of mtDNA was first identified in 1970 (10, 11). This activity 
was found to be RNA dependent, though it failed to utilize 
natural RNA as a substrate, and was distinct from PolA and 
PolB (10-14). In 1975 the new polymerase was officially 
designated as Polymerase Gamma (PolG), and two 
years later it was shown to localize to the mitochondrial 
compartment (see below) (15, 16). Based on extensive 
homology alignments (17), PolG has been grouped 
with E. coli pol I in the Family A DNA polymerase class 
(Table 1). More extensive details on the history, structure, 
and function of PolG has been previously reviewed (18).

The identification of PolG as a mitochondrial 
polymerase was done in the reverse order from most 
proteins. Instead of assigning mitochondrial localization 
to a known cytosolic or nuclear protein, DNA polymerase 
activity was detected from isolated mitochondria and was 
characterized as having the same activity as the gamma 
polymerase isolated from the cytosol (16). Evidence 
supporting the functional role of PolG in mitochondria 
was obtained two years later in a study of isolated 
brain synaptosomes-  resealed membrane derived from 
pinched off nerve endings that contain residual cytoplasm, 
mitochondria, and synaptic vesicles (19). PolG is the 
only polymerase found in these synaptosomes, and it 
was shown that (3H)TTP was actively incorporated into 
mtDNA during replication (19). The role of PolG as the 

only replicative polymerase was confirmed in subsequent 
studies which showed that introducing antibodies 
directed against PolG inhibited mtDNA replication (20). 
Cloning of the human POLG gene in 1996 allowed for 
the identification of the mitochondrial targeting sequence. 
The sequence was examined by PSORT and MitoProt, 
two programs designed to predict mitochondrial targeting 
sequences (see below), and both programs readily 
identified a 25 aa mitochondrial targeting sequence 
(MTS) and cleavage site (21).

Subsequent in vivo studies confirmed 
mitochondrial localization of PolG. Early 
immunofluorescence staining for PolG utilized rabbit 
polyclonals against the human protein and found that the 
PolG was colocalized with mitochondria as stained with 
MitoTracker Red, even in the absence of mtDNA (22). 
Fluorescence from GFP-labeled PolG has also been 
shown to associate with mitochondria co-stained with 
MitoTracker Red, indicating that PolG is exclusive to 
mitochondria (23). Sub-localization studies showed myc-
tagged PolG primarily localized to the inner mitochondrial 
membrane fraction, with a small portion found in the outer 
membrane fraction (similar to mtTFA, and mtSSB) (23). 
Furthermore, recent visualization of the p55 accessory 
subunit tagged with GFP revealed distinct punctate 
staining of the PolG2 and associated with mitochondrial 
nucleoids (24).

3.2. Genetic evidence supporting PolG in 
mitochondria
3.2.1. Genetic evidence in model organisms

In 1989 the yeast mip1 gene was isolated and 
sequenced and found to be homologous to bacterial Family 
A DNA polymerases (25, 26). Inactivation of mip1 lead to 
a loss of mitochondrial polymerase activity, resulting in a 
rho0 (no mitochondrial DNA) phenotype and proving that 
Mip1 is responsible for mtDNA replication (27). Inactivation 
of the exonuclease by site directed mutagenesis provided 
further genetic evidence for the proofreading function in 
the fidelity and maintenance of yeast mtDNA (28). Site 

Table 2. Human DNA polymerases proposed in the mitochondria and how they meet the criteria for a 
mitochondrial protein

Criteria PolG PolB PrimPol PolZ PolN PolQ

Mitochondrial tageted sequence identified Yes No No Suggested* No No

Listed in MitoCarta 2.0. or MitoMiner Yes No No No No No

Visualized in mitochondria by Immunofluorescence Yes No Suggested Suggested Suggested in yeast Yes

Identified in highly purified mitochondria1 Yes No Yes? No Not Done Yes

Genetic mutants or KO demonstrating defect in mtDNA Yes No No Suggested Suggested in yeast Yes

Evidence for biological function in mitochondria Yes No Yes No No Suggested

Interaction with other mitochondrial proteins Yes No Yes Suggested Unknown Unknown

1The proof to identified proteins in highly purified mitochondria requires purification beyond the typical sucrose gradient
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directed mutagenesis of essential residues in the three 
exonuclease domain motifs in mip1 led to a several 
hundred fold increase in spontaneous mutations (28).

Genetic evidence beyond yeast is also plentiful 
demonstrating the role of PolG in mitochondrial DNA 
maintenance. In the first mouse model that eliminated PolG 
exonuclease activity, the PolG variant was transgenically 
targeted to the heart resulting in severe cardiomyopathy 
accompanied by mtDNA mutations and deletions (29). 
Several years later, two groups independently created 
mice homozygous for exonuclease-deficient PolG (30, 31). 
These mice exhibited premature aging between six and 
nine months, characterized by graying hair, loss of hair 
and hearing, curvature of the spine, enlarged hearts, and 
decreased body weight and bone density (30, 31). Using 
the “random capture method,” where the frequency of 
mutations that cause resistance to restriction endonuclease 
digestion is enriched, Vermulst et al. determined the 
mutation frequency in mtDNA in homozygous exonuclease 
deficient mice was ~2500-fold higher than wild type (32). 
Knockout of the Polg gene as well as the Polg2 gene 
causes embryonic lethality in mice at embryonic day ~8.5. 
with concomitant loss of mtDNA (33, 34).

3.2.2. Genetic evidence in human cells
Cells overexpressing PolG mutants that have 

no polymerase activity (but have active exonuclease 
activity intact), such as the D1135A and D890N 
mutants, have decreased levels of mtDNA 96 hours 
after expression (23). In addition to replication activity, 
in vivo proofreading (3’-5’) activity of mtDNA has also 
been demonstrated for PolG. Alanine substitution of 
crucial residues leads to accumulation of mtDNA point 
mutations, demonstrating a direct role for PolG in mtDNA 
replication and repair (23, 35).

3.3. PolG in health and disease
A wide array of mitochondrial disorders are 

caused by defects in nuclear proteins that are responsible 
for the replication and maintenance of mitochondrial DNA. 
Multiple mtDNA deletions and point mutations can cause 
disorders such as progressive external ophthalmoplegia 
(PEO) and ataxia-neuropathy syndromes, and MtDNA 
depletion can lead to early childhood disorders such as 
Alpers-Huttenlocher syndrome (AHS), hepatocerebral 
syndromes, myocerebrohepatopathy spectrum 
(MCHS), and fatal myopathies (36-38). To date, over 
300 point mutations in PolG have been associated with 
mitochondrial disease, and PolG mutations are the most 
common cause of inherited mitochondrial disorders (38), 
reviewed in (4, 39-41) (42).

4. CRITERIA TO SUPPORT THE EVIDENCE 
FOR MITOCHONDRIAL PROTEINS

We can easily look back on the literature and 
determine what was used to establish and convince 

the scientific community that PolG is mitochondrial 
localized and is the only replicative DNA polymerase in 
the mitochondria. Our goal is to use that evidence, as 
well as new methodologies and techniques, to set up a 
list of standards for other putative mitochondrial proteins. 
Therefore, we have created criteria from old and new 
techniques that focus on two fundamental areas: 
1) Localization of the protein in the mitochondria, and 
2) Biological function. Subsequent sections evaluate the 
evidence supporting the presence of other polymerases 
in the mitochondria based on these criteria. These criteria 
can also readily be applied to any proposed mitochondrial 
protein.

4.1. Localization
4.1.1. MitoCarta 2.0. and MitoMiner

Current online tools and databases, such as 
MitoCarta 2.0. and MitoMiner, list and predict putative 
mitochondrial proteins. MitoCarta is a dynamic inventory 
of mitochondrial proteins (http://www.broadinstitute.
org/scientific-community/science/programs/metabolic-
disease-program/publications/mitocarta/mitocarta-in-0). 
Developed by V. Mootha and coworkers, MitoCarta 2.0. (43) 
is an update of MitoCarta 1.0. (44) and is a comprehensive 
inventory of mitochondrial proteins as determined by 
mass spectrometry of isolated mitochondria, GFP-
tagging, and microscopy that is integrated with several 
other genome datasets of mitochondrial localization. 
In this inventory, PolG and PolG2 are included, but no 
other human or mouse DNA polymerases are found 
in MitoCarta 2.0. (Table 2). However, this does not rule 
out the possibility of other DNA polymerases transiently 
existing in the mitochondria. For example, p53 is also not 
in this inventory, but is generally accepted to have a role 
in mitochondrial mediated apoptosis (45, 46). MitoMiner 
(http://mitominer.mrc-mbu.cam.ac.uk/release-4.0./) is an 
integrated web resource of proteins with mitochondrial 
localization evidence and phenotype data from mammals, 
zebrafish and yeasts. It is integrated with several other 
databases and prediction programs (see next section) as 
well as with MitoCarta 2.0.

4.1.2. Identifying the mitochondrial targeting 
sequence (MTS)

Mitochondrial proteins are directed to the 
mitochondria by targeting sequences (MTS), usually 
located at the N-terminus, that are recognized by the 
TOM and TIM23 complexes for transport across the 
outer and inner membranes, respectively, followed by 
proteolytic cleavage of the MTS. Several computation 
algorithms can predict both the MTS and in some 
cases the cleavage site; the most popular programs 
are Target P (http://www.cbs.dtu.dk/services/TargetP/), 
MitoProt II (https://ihg.gsf.de/ihg/mitoprot.html), Predotar 
(https://urgi.versailles.inra.fr/predotar/predotar.html), 
and PSORT II (http://psort.hgc.jp/). Each program uses 
slightly different criteria for prediction, and thus multiple 
programs should be used to help identify a putative MTS.
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To confirm a predicted MTS, the sequence can 
be engineered to drive a reporter gene product, such as 
GFP, into the mitochondria. Further proof can be provided 
by disruption of this MTS by point mutations followed by 
failure to drive the reporter protein. While the majority of 
MTS sequences are found at the N-terminus, a handful 
of proteins contain a C-terminal or internal MTS, and 
these MTS’s can elude prediction by the programs 
mentioned above. For example, Dna2 is a protein with an 
internal MTS that can drive the EGFP fusion protein into 
mitochondria (6).

4.1.3. Fluorescence microscopy
Visualizing proteins by immunofluorescence 

has come a long way since its first introduction, and today 
there are several choices of mitochondrial dyes, protein 
labels, and much improved high-resolution fluorescence 
microscopy that allow for much greater confidence in 
colocalization studies. Some of the original colocalization 
of PolG in mitochondria relied on polyclonal antibodies 
co-staining with MitoTracker Red (22). For polymerases 
or other proteins expected to act on mtDNA, new 
advances in high-resolution fluorescence microscopy 
allow for the visualization of discreet puncta within a 
field of MitoTracker Red staining mitochondria, as has 
been recently shown using GFP labeled PolG2  (24). 
Because mtDNA is the substrate for DNA polymerases, a 
requirement of localization should be to visualize the DNA 
polymerase coincident with nucleoids. It is worth noting 
that some polymerases might localize to mtDNA under 
normal growth conditions, while others might require 
conditions that obligate mitochondrial DNA replication 
(growth on glycerol for yeast or growth in galactose media 
for mammalian cells) or subjected cells to DNA damaging 
stress. Therefore testing multiple conditions should be 
required to satisfy this fluorescence requirement.

4.1.4. Isolating the native protein from highly 
purified mitochondria

While technical aspects immunofluorescence 
studies have vastly improved, there are still some 
potential pitfalls to consider. For instance, fluorescence 
staining of GFP fusion proteins is usually derived from 
an overexpression system, and one needs to consider 
that overexpression of any protein may precipitated in the 
cytoplasm that causing aberrant immunofluorescence. 
Therefore it has become important to show direct isolation 
of the protein(s) in question from purified mitochondria.

Proving a protein is located within mitochondrial 
can be difficult and highly contentious because of 
the level of contaminants that can associate with the 
mitochondrial outer membrane. Mitochondria are highly 
charged lipophilic organelles, and disruption of the cells 
can result in many different species of proteins artificially 
associating with the outer membrane. The conventional 
purification of mitochondria involves gentle disruption 
of the cell in hypotonic buffer followed by differential 

centrifugation to remove nuclei then followed by pelleting 
of the mitochondria (47). These enriched mitochondria are 
then further purified by two-step sucrose gradients (47). 
As discussed below, after sucrose gradient this enriched 
mitochondria may still have many other contaminants 
in the preparation that require further purification or 
treatment. Further separation of the mitochondria over 
percoll gradients will usually remove the remaining 
contaminants, or protease treatment of the mitochondria 
will remove proteins bound to the outer membrane. 
Digitonin treatment of purified mitochondria strips away 
the outer membrane thus more thoroughly accomplishing 
the same goal as proteolysis treatment, but it is more 
difficult to use. Trypsin digests can also be used to 
assign the location of a putative mitochondrial protein to 
a specific compartment of the mitochondria.

4.1.5. Import assays
The import of mitochondrial proteins can be 

visualized by an in vitro import assay involving the import 
of radiolabeled in vitro translated polypeptides into 
purified mitochondria. Full length protein is translated 
in vitro by reticulocyte lysate containing 35S-labeled 
methionine in the presence of isolated mitochondria, 
followed be protease treatment and re-isolation of the 
mitochondria (48). The imported protein is then visualized 
by autoradiography in the re-isolated mitochondria.

4.2. Function in the mitochondria: Biology and 
genetics

A critical element in determining whether a 
protein is mitochondrial or not is biological or genetic 
evidence supporting function. Gene deletions or genetic 
mutations in the polymerase gene should result in a 
measurable defect in the mtDNA, either in loss of mtDNA 
or increase in mutations. Examples of gene knockout and 
point mutations in the polG gene in yeast and mammals 
were previously discussed. For a repair DNA polymerase, 
the increase in mtDNA mutations may not be measurable 
until the cell is challenged with DNA damaging agents that 
give rise to lesions in mtDNA. It is important to consider 
the possibility of measureable defects in a wide array of 
in vitro and in vivo models. Furthermore, clinical disease 
alleles can also provide strong evidence for a biological 
role for a putative mitochondrial protein.

5. PRIMPOL

Human PrimPol (CCDC111) is a member of 
the AEP superfamily of archaeo-eukaryotic primase/
polymerases (49). It had unique DNA and RNA priming 
activities and has important roles in translesion 
synthesis (TLS), the ability of a polymerase to insert a 
nucleotide opposite a lesion or adduct and extend the 
nucleotide (50-53). We will only briefly discuss key 
features and activities of PrimPol, as it has recently been 
reviewed (54), and will primarily focus on PrimPol’s role 
in mitochondria.
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PrimPol contains an N-terminal AEP polymerase 
domain and a C-terminal zinc-finger domain responsible 
for DNA binding. The C-terminal is responsible for 
modulating the primase activity, processivity, and fidelity 
of the enzyme (55). The N-terminal contains 3 catalytic 
motifs, with the motif I and III responsible for divalent 
metal ion binding and motif II required for nucleotide 
binding. PrimPol can utilize either Mn2+ or Mg2+ in vitro, 
and the choice of divalent cation can affect the activity of 
PrimPol (see below) (51).

The primary role for PrimPol is to rescue replication 
forks stalled at bulky lesions by either bypassing the 
damage through translesion synthesis or adding primers 
downstream of the damage and restarting replication. 
Loss of PrimPol results in slower replication forks and 
increased sensitivity to DNA damaging agents (53, 55). 
PrimPol’s primase activity is unique for eukaryotes in that 
it is capable of utilizing either dNTPs or NTPs for primer 
synthesis; Mn2+ is a 1,000-fold better activator than 
Mg2+ and results in primers longer than 100 nucleotides 
in length, whereas the use of Mg2+ results in primers of 
roughly 50 or 20 nucleotides long when dNTPs or NTPs 
are used, respectively (51). PrimPol is also capable of 
bypassing lesions that PolG cannot, including pyrimidine 
6-4 pyrimidone photoproducts (52, 55), oxidative and 
UV-induced lesions such as 8-oxo-guanine (51, 55, 56), 
abasic sites (51), and cyclobutane pyrimidine dimers (52). 
Translesion synthesis by PrimPol is particularly error 
prone yet transient, as it has been shown the PrimPol 
incorporates only 4  bp  on average per binding 
event (55, 57). However, while TLS conducted by 
PrimPol is highly mutagenic (57), PrimPol repriming 
events downstream of an AP site, particularly those 
created an APOBEC/AID family protein, leads to error-
free resumption of replication, resulting in an overall anti-
mutagenic effect (58). Taken together, these unique roles 
indicate an important role for PrimPol in maintenance of 
nuclear and potentially mitochondrial DNA.

5.1. Identification of PrimPol as a mitochondrial 
protein

The initial characterization of PrimPol was 
published independently by two groups (50, 51), 
however it was Garcia et al. who first identified 
PrimPol as a mitochondrial protein. Using HeLa cell 
fractionation, they found 34% of PrimPol signal was in 
the mitochondria compartment (compared to 19% in the 
nuclear compartment). The submitochondrial location 
was determined by treating mitochondria isolated from 
HEK 293  cells with either hypotonic buffer or digitonin 
and trypsin; PrimPol was resistant to trypsin digest in 
a manner similar to TFAM, indicating it is located in the 
matrix (51). At the time of this review no mitochondrial 
targeting sequence has been identified for PrimPol, and 
no mitochondrial targeting sequence is predicted by 
MitoProtII using either identified isoform (data not shown). 
Furthermore, no immunoflorescence studies have been 

used to show the colocalization with mitochondria or 
formation of puncta on mtDNA.

5.2. Biological evidence supporting PrimPol in 
the mitochondria

In addition to the mitochondria localization, 
the initial evidence presented for PrimPol in the 
mitochondria was mainly biological. Fractionation of 
detergent-solubilized mitochondria showed that PrimPol 
co-fractionated with mtDNA only after formaldehyde 
treatment, implying that PrimPol bound to mtDNA, albeit 
transiently. Furthermore, the mitochondrial fractions 
that included PrimPol showed robust priming activity. 
For PrimPol to rescue blocked replication forks in 
mitochondria, PolG would have to be able to utilize the 
primers made by PrimPol. This was shown to be the 
case, as both PolG and PolE can utilize the primers made 
by PrimPol. The authors also showed that knockdown of 
PrimPol in human and mouse cells resulted in a decrease 
in overall mtDNA levels and inhibited the cell’s ability to 
recover after chemical depletion of mtDNA (51).

In addition to the initial study, further evidence 
has supported the presence of PrimPol in mitochondria. 
Immunoprecipitation assays using mass spectroscopy 
to identify binding partners of PrimPol identified mtSSB 
as a bona fide binding partner. Further studies showed 
that mtSSB inhibits PrimPol primase primer extension 
activities. The mechanism for this inhibition appears to 
be due to mtSSB occluding PrimPol binding to DNA, as 
PrimPol was unable to displace mtSSB bound to single-
stranded DNA. This is in direct contrast to PolG, which is 
stimulated by mtSSB and easily displaces mtSSB when 
encountered along single-stranded DNA (57).

PrimPol has been shown to interact with PolDIP2 
(PDIP38), a polymerase-interacting protein that has 
been proposed to regulate TLS (59, 60). This interaction 
has been shown to stimulate PrimPol’s polymerase 
activity, DNA binding, processivity, and bypass of 
8-oxoG (61). PolDIP2 has also been shown to localize 
to the mitochondria. PolDIP2 has a robust N-terminal 
mitochondria targeting sequence (the probability of 
mitochondrial localization is 0.9.998 as predicted by 
MitoProt II), and is included in the MitoCarta 2.0. library. 
Immunocytochemistry staining showed colocalization 
between mitochondria and a C-terminally HA tagged 
recombinant PolDIP2. Cellular fractionation showed 
the majority of PolDIP2 is present in the mitochondrial 
fraction, and trypsin digests suggest PolDIP2 is present 
in the matrix (62, 63). While the specific role of the 
PolDIP2-PrimPol interaction in mitochondria has yet 
to be elucidated, it is possible that these two proteins 
interact to increase TLS on mtDNA.

Taken together, these data support a role for 
PrimPol that is similar to its nuclear role, where it rescues 
stalled replication forks through repriming events at bulky 
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DNA adducts. This repriming activity is proposed to be 
mediated by mtSSB. While PrimPol is proposed to have 
a nuclear role in TLS, to date the evidence for this role in 
mitochondria is lacking. In fact, recent in vitro data showed 
that addition of PrimPol to the mitochondrial replisome 
does not increase replication past an 8-oxo-G lesion or 
abasic site (64). However, this study was performed without 
PolDIP2 or any other potential cofactors for PrimPol, which 
may be required for any mitochondrial TLS.

5.3. PrimPol in health and disease
There is currently only one disease mutation 

associated with PrimPol. PrimPolY89D is a mutation that is 
proposed to be involved in high myopia. On a molecular 
level, this mutation causes a decrease in RNA primase 
activity, decreased processivity, reduced DNA binding, 
slower replication fork progression, and increased cell 
sensitivity to UV damage (65). At this time it is unclear if 
the replication defects of PrimPolY89D directly lead to high 
myopia, and if these effects are mitochondrial or nuclear 
in nature.

Mitochondrial DNA replication has also been 
shown to be a secondary target of nucleoside-reverse 
transcript inhibitors, a class of antivirals that targets HIV 
reverse-transcriptase (HIV-RT). The structural similarities 
between PolG and HIV-RT result in misincorporation of the 
nucleoside reverse transcriptase inhibitor (NRTI), leading 
to chain termination and mitochondrial dysfunction. 
Recently it was shown that PrimPol can also incorporate 
NRTI’s, albeit with different discrimination than PolG. 
PrimPol readily incorporated AZT-TP and CBV-TP, two 
commonly administered NRTIs for HIV treatment, while 
PolG discriminates against these two analogs by a factor 
of 58 and 270,000. Both of these analogs have showed 
mitochondrial dysfunction with long-term use, and the 
lack of discrimination by PrimPol could be a potential 
mechanism for this toxicity (66).

6. DNA POLYMERASE BETA

DNA polymerase beta (PolB) is a 39 kDa single 
subunit family X DNA polymerase involved in nuclear 
base excision repair, specifically single nucleotide base 
excision repair (67). PolB prefers to incorporate single 
nucleotides and is distributive on most DNA substrates. 
High resolution X-ray crystal structures have been solved 
for Pol b which shows that it is structurally arranged 
with the polymerase in a stable  31  kDa domain and a 
cleavable 8 kDa domain (68, 69). Located in the 8 kDa 
domain is a 5’-deoxyribose-5-phosphate lyase activity 
that efficiently removes the 5deoxyribose-phosphate 
moiety from the downstream DNA following nicking by AP 
endonuclease (70-72). This 5-sugar phosphate moiety 
blocks ligation and needs to be removed prior to ligation. 
Because of this lyase activity and the single nucleotide 
incorporation, this polymerase is ideally suited for base 
excision repair.

6.1. Proposed role of PolB in the mitochondria
As mentioned above, mitochondria do have 

an efficient base excision repair system and many of 
the enzymes in this pathway are shared between the 
nucleus and mitochondria. For example, uracil DNA 
glycosylase, OGG1, APE1, FEN1, DNA2 are all involved 
in base excision repair and all have been found in both 
the nucleus and mitochondria (4-9). In the mitochondria, 
as in the nucleus, base excision repair can occur via a 
short patch (single nucleotide) and long patch repair. 
The 5’deoxyribose-phosphate moiety that is retained 
after APE1 cleavage is susceptible to oxidation 
that would further block lyase action and ligation, if 
oxidized (5). Long patch BER deals with this 5’ block by 
strand displacement synthesis and cleavage of the flap, 
and in the mitochondria PolG can perform this long patch 
repair with displacement of the downstream DNA.

In single nucleotide or short patch BER, the 
polymerase fills the single nucleotide gap and also 
cleaves the 5’-suger moiety with its 5’ lyase function. In 
the nucleus, SN-BER is carried out by PolB that also has 
a 5’ lyase function in its 8-kDa domain. DNA PolG can 
also carry out SN-BER and does have a weak 5’-lyase 
function, although it is generally believed that PolG would 
likely carry out LP-BER because of its robust strand 
displacement activity. However, when we consider only 
SN-BER, the rates of 5’-lyase activity by PolG is 40-fold 
less than PolB (73). Since, all of the other proteins 
required for BER are shared between the nucleus and 
the mitochondria, it has been postulated that PolB may 
be shared between the nucleus and mitochondria to 
efficiently carry out mitochondrial SN-BER. For this 
reason, and the historical similarities of PolG and PolB 
with regards to inhibitors, it is logical to consider PolB as 
a potential mitochondrial DNA polymerase.

6.2. Conflicting evidence for PolB in 
mitochondria

In 2000, Nielsen-Preiss and Low reported the 
identification of a beta polymerase in the mitochondria 
isolated from bovine heart (74). Using mitochondria 
isolated by differential centrifugation, Nielsen-Preiss and 
Low identified and purified a 38 kDa polymerase that was 
resistant to N-ethylmaleimide and dideoxynucleotides, 
lacked a 3’-5’ exonuclease activity and was distributive 
in nature. This activity remained associated with the 
mitochondrial preparation when the mitochondria was 
further purified over two successive sucrose gradients.

In contrast to the bovine heart preparations, in 
2005 Hanson et al. presented compelling evidence for 
the lack of PolB in human mitochondria by obtaining 
highly purified mitochondrial preparations (75). Using 
mitochondria purified by differential centrifugation and 
discontinuous sucrose density gradient centrifugation, 
they demonstrated that PolB activity was still associated 
with the mitochondrial preparation and showed by 
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electron microscopy that this preparation still contained 
many other cytoplasmic factors such as polysomes, 
microsomes, and liposomes. Upon further purification 
of this fraction over a percoll gradient the authors 
demonstrated that the PolG activity and mitochondrial 
fraction can be cleanly separated from the polysomes, 
microsomes, and liposomal fraction as well as PolB (75). 
PolB activity was found primarily in the polysomes, 
microsomes, and liposomal fraction, and not the 
mitochondrial fraction. Furthermore, sequence analysis 
of mtDNA to detect mutation frequency in mtDNA in polB 
null mouse embryonic fibroblast cells compared to wild 
type cells did not show any appreciable increase, while 
PolG exonuclease deficient cells had a >17-fold increase 
in mtDNA point mutations (75). However, the scenario 
where cells are under exogenous or increased stress 
from DNA damaging agents has not been examined as 
of yet, and it remains possible that PolB is only imported 
into mitochondria when the mtDNA is under stress.

7. DNA POLYMERASE ZETA

Polymerase zeta is an error-prone TLS 
polymerase composed of two subunits: the catalytic 
RevL3 (Rev3) subunit and the structural Rev7 
subunit (76). The rev3 gene produces two isoforms of 
Rev3 due to the presence of two AUG translation initiation 
codons. Translation from the first AUG site produces 
a 3130aa, ~352  kDa protein, and translation from the 
second produces a 3052 aa, ~343 kDa protein. Rev3 has 
been shown to be important in the bypass of UV-  and 
chemically-induced DNA damage, although this bypass 
typically results in mutations (77-79). The regulation 
of Rev3 expression appears to be crucial for genome 
stability. Deletion of rev3 leads to chromosome instability 
in human and mouse cells and is embryonic lethal in 
mice (80-83). Conversely, overexpression of rev3 leads to 
increased spontaneous mutations, and is associated with 
multiple types of cancer (84-86). While Rev3 has been 
long established as a nuclear TLS protein, more recent 
evidence has suggested that Rev3 is also localized to the 
mitochondria in humans and yeast to participate in TLS 
on mtDNA. While Rev7 is also suggested to localize to 
the mitochondria in yeast, as of the time of this review no 
such evidence has been reported for Rev7 localizing to 
the mitochondria in humans.

7.1. Rev3 and Rev7 in yeast
PolZ was initially proposed to be localized 

to the mitochondria in S. cerevisiae. The N-terminal of 
Rev1 (an accessory protein to PolZ), Rev3, and Rev7 
were all predicted to contain mitochondrial targeting 
sequences by PSORTII, although the exact sequence 
or probability of localization was not reported. Based on 
these predictions, the N-terminals of each of the three 
proteins were fused to GFP and expressed in yeast. 
Immunofluorescence studies showed that all three were 
capable of localizing GFP into the mitochondria, and that 

this fusion protein was present in mitochondrial extracts 
(although the presence or absence of contaminating 
nuclear proteins were not shown) (87).

Biologically, it has been proposed that PolZ has 
both error-prone and error-free roles in bypassing lesions 
in mitochondria. Deletion of rev3 or rev7 led to reduced 
spontaneous and UV-induced frameshift mutations (87, 88). 
However, point mutations were increased in both deletion 
strains that had been treated with UV compared to wildtype 
strains, suggesting that PolZ is capable of error-free lesion 
bypass and competes with an error prone system, most 
likely involving PolG (88, 89). This is in direct contrast with 
the nuclear role for PolZ, as spontaneous point mutations 
are reduced in knockout strains.

It has been proposed that PolZ and PolG 
have a complex interaction when maintaining mtDNA. 
With regard to frameshift mutations, rev3mip1 double 
mutants had only a slight increase in both spontaneous 
and UV-induced frameshift mutations, suggesting 
that PolG and PolZ belong to the same epistatic 
pathway (87). However, overexpression of Rev3 can 
rescue the increased point mutability found in certain 
mip1 mutants in a manner that is dependent on Rev7 but 
not Rev1  (89). This suggests that Rev1 function is not 
required in mitochondria, although it is potentially present 
in yeast mitochondria. While the exact mechanistic details 
remain to be worked out, it appears that PolZ contributes 
to genome stability in yeast mitochondria.

7.2. Identification of Rev3 as a mitochondrial 
protein in humans

Currently there is only one report of human Rev3 
in mitochondria. Singh and colleagues found a putative 
MTS in the N-terminus of the short isoform of Rev3, a 
107 aa tag with a 76.9.% confidence as predicted by 
MitoProtII (90). The long isoform contains 78aa upstream 
of the MTS, which makes it less likely that this isoform 
is localized to the mitochondria. Immunofluorescence of 
cells expressing a plasmid containing the 107aa putative 
MTS fused to GFP showed some overlap between GFP 
and Mitotracker red, suggesting that some of the GFP 
colocalized with mitochondria. In an earlier work, it was 
shown that the first 100aa of the long isoform do not 
contain a MTS, as GFP fused to the first 100 N-terminal 
aa did not colocalize with mitochondria, supporting 
the idea that only the short isoform contains an active 
MTS (87). Western blots on cytoplasmic, nuclear, and 
mitochondrial protein fractions showed small amounts of 
the short isoform of Rev3 in the mitochondrial fraction 
with only trace amounts of the long isoform (90).

7.3. Biological evidence for Rev3 in human 
mitochondria

Singh et al., also showed there is interplay 
between rev3 expression and mitochondria function. 
Deletion of rev3 in MEF cells showed decreased levels 
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of COXII mRNA and protein, and lower Complex IV 
activity (90). The Rev3-/-  cells also showed signs of 
mitochondria distress with higher glucose consumption 
rates, decreased mitochondrial membrane potential, 
and lower ROS levels, all presumably due to the lower 
Complex IV activity. Conversely, rev3 expression 
was higher in cells treated with inhibitors of oxidative-
phosphorylation (OXPHOS) and in rhoo cells, suggesting 
that increased Rev3 levels can help compensate for 
lowered OXPHOS.

The authors also attempted to show that Rev3 
directly acts on mtDNA to help protect it from UV damage. 
MtDNA had increased levels of lesions following UV 
treatment in cells expressing Rev3 that is lacking the MTS 
as measured by quantitative PCR. MtDNA copy numbers 
were also decreased in Rev3-/- cells. ChIP assays using 
WT cells with and without UV exposure showed Rev3 
bound to both the D-loop (a non-coding region of mtDNA 
responsible for transcription and replication initiation) 
and CoxII of mtDNA. However, these were the only two 
regions presented so a comprehensive picture of Rev3 
binding sites, particularly on mtDNA, is still lacking (90).

7.4. PolZ in health and disease
There currently are no disease mutations 

associated with mitochondrial disorders for either Rev3 
or Rev7. However, in the study by Singh et al, the authors 
suggested a link between mitochondrial Rev3 and 
tumorigenesis, and showed that overexpression of Rev3 
missing the nuclear localization signal increased cell 
migration and survival after UV exposure compared to 
overexpression of WT Rev3. In light of these results they 
suggest that the mitochondrial functions, and not nuclear, 
are primarily responsible for the higher tumorigenicity of 
the cells (90).

8. DNA POLYMERASE ETA

Polymerase eta (PolH) is a Family Y TLS 
polymerase that lacks 3’-5’ proofreading exonuclease 
activity and can perform both error prone and error free 
TLS (91, 92). The primary role for PolH is the bypass of 
UV photoproducts, which performs in a primarily error-
free manner. The active site of PolH is very open, allowing 
for full accommodation of a thymine-thymine cyclobutane 
pyrimidine dimer and preferentially incorporates two 
adenines during replication (93-95). PolH also appears 
to contribute to the error-free bypass of (6-4) pyrimidine-
pyrimidone photoproducts (78, 96). In addition to 
photoproducts, PolH is capable of bypassing cisplatin 
induced lesions (97), 8-oxo-G (98), and me6G (99). In 
a more mutagenic role, PolH also contributes to somatic 
hypermutation and DNA replication under conditions 
of nucleotide deprivation (100, 101). Loss of PolH 
function leads to UV-sensitivity and skin cancer and 
causes xeroderma pigmentosum in the XP variant (XPV) 
complementation group (102).

8.1. PolH in yeast mitochondria
While there have been no reports of PolH in 

the mitochondria in humans, one study has reported 
evidence of Rad30 (the yeast PolH homolog) in 
mitochondria in S. cerevisiae. Chatterjee et al. noted 
colocalization of Rad30-GFP with DAPI signals using 
fluorescence microscopy, and found presence of Rad30-
Myc in mitochondria purified using gradient centrifugation 
from a strain expressing Rad30-Myc from its native 
promoter (103). In support of a biological role for Rad30 on 
mtDNA, the authors showed that deletion of Rad30 leads 
to an increase in mutations following UV treatment as 
detected by erythromycin selection, and a small increase 
in frameshift reversions in an arg8 reversion assay. This 
suggests that Rad30 decreases the amount of mutations 
during UV damage in a similar manner as Rev3. In 
fact, the authors found Rad30 worked epistatically with 
Rev3, and proposed that these two proteins function 
together to promote lesion bypass in a manner that is 
less mutagenic than if PolG attempted to carry out the 
bypass (103). However, several key factors in the role 
of these proteins, the potential interplay between the 
various repair polymerases, and the relevance in human 
cells, remains to be elucidated.

9. DNA POLYMERASE THETA

The full-length cDNA for polymerase theta 
(PolQ) has been shown to encode a 2592 amino acid 
polypeptide with an amino-terminal helicase domain, a 
carboxy-terminal polymerase domain, and an intervening 
spacer region (104, 105). Like PolG, PolQ belongs 
to the Family A polymerases (104, 106). Biochemical 
studies have shown that purified full-length human PolQ 
exhibits template-directed DNA polymerase activity 
on nicked double-stranded DNA and on a single-
primed DNA template. PolQ is capable of conducting 
translesion DNA synthesis by inserting bases opposite 
an AP site or thymine glycol residue in the template 
strand and extending an unpaired primer base opposite 
these lesions (107). In contrast, PolQ cannot insert 
bases opposite a cyclobutane pyrimidine dimer or 
a (6-4) photoproduct (108). More recently, PolQ has 
been implicated in DSB repair, NHEJ and replication 
timing (109-113). Fidelity measurements of human PolQ 
revealed that the polymerase generates single base pair 
substitutions at a rate 10-  to 100-fold higher than other 
characterized Family A DNA polymerases, making it 
one of the least faithful members of the Family A DNA 
polymerases (114).

9.1. Polymerase theta in human mitochondria
Recently, Wisnovsky et al. conducted a 

siRNA screen of known nuclear DNA repair factors in 
combination with cellular treatment by mt-Ox, a DNA 
damaging agent that exclusively elicits oxidative damage 
in mtDNA due to it being tethered to a mitochondria-
specific peptide, to measure cell viability when grown in 
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low glucose. Surprisingly, several known nuclear (but not 
previously known to be mitochondrial) DNA repair genes 
were identified that cause a loss of cell viability under 
these conditions (115). Of these genes, siRNA knock 
down of PolQ and PolZ induced high levels of intrinsic 
toxicity when treated with mt-Ox, implicating a role in 
mitochondrial DNA maintenance. PolQ was further 
shown to be mitochondrial by identification in enriched 
mitochondrial fractions and protection from degradation 
by proteases in these fractions. Immunofluorescence 
showed that PolQ co-localized with MitoTracker Red 
and, in fact, demonstrated punctate staining and 
co-localization with nucleoids when stained by anti-
dsDNA antibodies. Finally, polQ KO cells showed a 
reduction in basal and maximal oxygen consumption 
as measured by the Seahorse XF analyzer and showed 
a reduction in mtDNA copy number when challenged 
with the mt-Ox. Finally, mtDNA mutation rates as 
measured by deep sequencing were reduced in polQ 
KO cells. These results implicate a role in error-prone 
mitochondrial DNA replication when DNA adducts and 
damage is encountered (115).

10. TRYPANOSOMATID MITOCHONDRIAL 
POLYMERASES

Having multiple polymerases acting in 
mitochondria is not an entirely new concept; it has 
been known for a few decades that trypanosomes 
have multiple mitochondrial DNA polymerases. In 
trypanosomes, the mitochondrial DNA is wrapped up 
in kinetoplasts (kDNA), where it is replicated and/or 
repaired by a number of beta-like DNA polymerases 
and Family A type DNA polymerases (116-121). Early 
studies showed localization of beta polymerases 
from Crithidia fasciculata mitochondria (119), and 
two distinct DNA beta polymerases were identified 
in Trypanosoma brucei (122). PolIB is essential for 
growth and kinetoplast replication in T. brucei (123). 
Four different mitochondrial DNA polymerases 
belonging to family A DNA polymerases, TbPolIA, 
IB, IC, and ID have also been identified in T. 
brucei (121). All four polymerases are related to 
bacterial PolI. Interference with TbPolIB and TbPolIC 
activities leads to shrinkage of kDNA. Silencing 
TbPolIC caused depletion of kDNA minicircles 
and maxicircles, and concomitant accumulation of 
minicircle replication intermediates (121). PolIB, IC 
and ID are essential for parasite growth while PolIA 
was found to be non-essential under normal growth 
conditions (121). Finally, a kappa DNA polymerase 
from Trypanosoma cruzi has also been found to 
localize to the mitochondria (124), bringing the total 
number of DNA polymerase involved in kinetoplast 
DNA replication to seven. Interestingly, a gamma-
like DNA polymerase has never been isolated from or 
identified in trypanosome mitochondria.

11. SUMMARY

Current literature is clearly moving away from 
the initial belief that PolG is the only DNA polymerase 
acting in the mitochondria, opening new doors for 
potential replication and repair mechanisms. In the past 
ten years we have witnessed several reports implicating 
other DNA polymerases in the mitochondria besides DNA 
PolG, namely, PrimPol, PolB, PolZ, PolH and PolQ. As 
can be seen from Table 2, there are many gaps in our 
knowledge about the roles of these other polymerases 
in the mitochondria and additional research needs to be 
performed to galvanize and unequivocally determine the 
roles of these other polymerases in the mitochondria.
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