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1. ABSTRACT

The involvement of mitochondrial content, 
structure and function as well as of the mitochondrial 
genome (mtDNA) in cell biology, by participating in the 
main processes occurring in the cells, has been a topic 
of intense interest for many years. More specifically, the 
progressive accumulation of variations in mtDNA of post-
mitotic tissues represents a major contributing factor to 
both physiological and pathological phenotypes. Recently, 
an epigenetic overlay on mtDNA genetics is emerging, 
as demonstrated by the implication of the mitochondrial 
genome in the regulation of the intracellular epigenetic 
landscape being itself object of epigenetic modifications. 
Indeed, in vitro and population studies strongly suggest 
that, similarly to nuclear DNA, also mtDNA is subject 
to methylation and hydroxymethylation. It follows that 
the mitochondrial-nucleus cross talk and mitochondrial 
retrograde signaling in cellular properties require a 
concerted functional cooperation between genetic and 
epigenetic changes. The present paper aims to review 
the current advances in mitochondrial epigenetics studies 
and the increasing indication of mtDNA methylation 
status as an attractive biomarker for peculiar pathological 
phenotypes and environmental exposure.

2. INTRODUCTION

Mitochondria are the only animal organelles 
to have their own genome. They comprise a circular, 
histone-  and intron-free ‘chromosome’ of 16.6. kb of 
DNA, present in one or more copies, which encodes 
tRNAs, rRNAs, and a few subunits of the oxidative 
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phosphorylation (OXPHOS) system (1,2). Traditionally 
the high mutation rate made the mtDNA an excellent 
tool for the reconstruction of human population history, 
similarly to what was described for other organelles (3). 
Lately, impressive evidence has expanded research in 
considering it as regulator of a wide variety of phenotypic 
physiological and pathological outcomes. This regulation 
takes place either directly by influencing the efficiency in 
energy metabolism or indirectly by interacting with nuclear 
genes and by increasing the penetrance of the nuclear 
mutations (4,5). Being semiautonomous organelles, 
mitochondrial functionality requires a coordinated 
expression of genes encoded by both the nuclear and 
mitochondrial genome, and this is accomplished through 
a close network of bidirectional signals between the two 
genomes balancing the mitochondrial status, in terms of 
biogenesis and function, and the energetic needs (6). In 
this context, it has also come to light that mitochondria 
and mitochondrial genomes impact the establishment 
and maintenance of the whole cellular epigenome by 
both controlling the availability of the co-substrates 
of epigenetics enzymes and being itself target of 
methylation changes (7-10). Indeed, the availability of 
high-throughput sequencing technology significantly 
improved the sensitivity of methods applied to mtDNA to 
detect methylated cytosines (5-mC), definitively clarifying 
the forty-year dispute about the possible existence of 
epigenetic modifications at mtDNA level (11). Not only 
methylated and hydroxymethylated (5-hmC) cytosines 
were noted at both CpG and non-CpG sites of mtDNA 
but also the intra-mitochondrial traslocation of DNMT and 
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TET enzymes and their dynamic regulation according to 
specific physiological (or pathological) conditions and 
in response to peculiar environmental changes were 
recently attested (12-19).

In this review, we summarize the most salient 
aspects relative to mitochondrial DNA genetics and 
epigenetics, giving special attention to those significant 
correlations between mtDNA methylation changes and 
peculiar phenotypes, diseases as well as environmental 
exposure.

3. mtDNA FEATURES

3.1. The mitochondrial genome: structure, 
replication and transcription

Mitochondria contain many copies (1000-5000) 
of their own genome, the mitochondrial DNA (mtDNA), 
documented for the first time in 1955 and indicated as 
non-chromosomal genetic element rho (20). These 
organelle share many features with prokaryotes and 
are commonly thought to originate by endosymbionts in 
the ancestral eukaryote. The historical “endosymbiosis 
theory” has been modified over the years and the revised 
theory has been labeled as the “hydrogen hypothesis” 
that postulates that the eukaryotic nucleus and the 
mitochondria were created simultaneously through 
the fusion of a hydrogen-requiring methanogenic 
Archaebacterium and a hydrogen-producing alpha-
proteobacterium (the symbiont). A  recent phylogenomic 
study suggests a common origin of mitochondria and the 
SAR11 clade of Alphaproteobacteria as a sister group to 
the Rickettsiales (21-23).

Human mtDNA is a covalently double-stranded 
closed circular molecule that is ≈5  µm long, has a 
molecular mass of 107 daltons and it is approximately 
16.6. kb in size (2, 24). It was completely sequenced 
in 1981 and a revision of this sequence was later 
carried out by Andrews et al. (1, 25). Similar to bacterial 
chromosomes, mtDNA is organized into nucleoprotein 
structures called nucleoides, firstly reported in 
Saccharomyces cerevisiae and then observed in human 
cells. Nucleoids carry 1-2 molecules of mtDNA and 
are dynamic structures which can be associated with 
the inner mitochondrial membrane or also distributed 
through the mitochondrial network, as demonstrated by 
Garrido et  al. by time-lapse fluorescence microscopy 
in cells lacking mtDNA (rho0  cells) (26-30). Wang and 
Bogenhagen have identified a series of proteins forming 
nucleoids, including mitochondrial single-stranded 
binding proteins (mtSSB), TWINKLE, mtDNA polymerase 
(POLG), mitochondrial RNA polymerase (POLRMT) 
and mitochondrial transcription factor A (TFAM), 
which are directly involved in mtDNA replication and 
transcription, as well as ANT1 and prohibitin, which are 
proteins associated with mitochondrial membranes (31). 

According to some hypothesis, nucleoids replicate as 
discrete units, giving rise to daughter nucleoids identical 
to the parental, which can themselves segregate freely. 
Alternatively, nucleoids can reorganize, under nuclear 
genetic control, and dynamically exchange with each 
other mtDNA molecules (32, 33). It is likely that both 
the two models occur in cell and tissues in alternative 
conditions.

Human mtDNA has a compact structure 
characterized by very few intergenic spacers, except 
for one regulatory region, lacking of introns, overlapping 
genes and part of the termination codons are generated 
post-transcriptionally by polyadenylation of the mRNAs. 
It consists of two strands, a guanine-rich heavy (H) and a 
cytosine-rich light (L) strand, historically so named on the 
basis of the nucleotide composition and the separation 
in denaturing cesium chloride gradient. mtDNA contains 
37 genes encoding for 13 essential subunits of the 
oxidative phosphorylation (OXPHOS) system, including 
seven subunits of complex I (ND1-6 and ND4L), one 
subunit of complex III (Cytb), three subunits of complex 
IV (COI-III) and two subunits of complex V (ATP6-8), 
2 rRNAs (12S and 16S) and 22 tRNAs. The remaining 
mitochondrial OXPHOS proteins, metabolic enzymes, 
DNA and RNA polymerases, ribosomal proteins and 
mtDNA regulatory factors are encoded by nuclear genes, 
synthesized on cytosolic ribosomes, usually with a 
N-terminal mitochondrial targeting sequence, and then 
imported into the organelle by translocases located in the 
mitochondrial compartments (34-37). The genetic code 
of human mtDNA differs from that of nuclear DNA. More 
specifically, in mitochondria TGA is not a termination 
codon but codes for tryptofan, ATA codes for methionine 
rather than for isoleucine and, finally, AGG or AGA code 
for a stop codon instead of arginine. Within mtDNA there 
is only one non-coding region, the displacement loop 
(D-loop), a region of about 1.1. kb, spanning between the 
phenylalanine and proline tRNA genes, that contains the 
origin of the H-strand replication (OH) and the promoters 
of L-  and H-strand transcription (LSP and HSP) as 
well as regulatory elements for both mitochondrial 
replication and transcription (38). The D-loop contains 
two hypervariable regions, HVRI (16024-16383 nt) and 
HVRII (57-372 nt), used especially in human population 
genetic and ancestry studies, and three highly conserved 
regions, CSBI-III, mainly involved in mtDNA replication. 
The loop is a stable triple-stranded structure that 
originated from the incorporation of a linear third DNA 
strand of approximately 650 nt, named 7S DNA, based 
upon its sedimentation properties, and originates from a 
premature termination of mtDNA replication from OH (39). 
Beyond the historically recognized function to maintain 
an open structure that facilitates mtDNA replication, 
an involvement of the D-loop in maintenance of DNA 
topology, DNA recombination and structural association 
with membrane has been proposed (40).
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MtDNA replicates independently of the 
cell cycle. To date, several models of replication 
have been proposed (41-43). Regarding the firstly 
characterized model, known as strand-displacement 
model (SDM), mammalian mtDNA molecules replicate 
unidirectionally from two distinct strand-specific 
origins, which are OH and OL, located in the D-loop 
region and in a cluster of five tRNAs, respectively. 
A round of replication begins at OH and continues along 
the parental L-strand to produce a full H-strand circle. 
Only after the replication fork has passed the second 
replication origin, OL,the synthesis of the L-strand 
initiates proceeding in the opposite direction (44-49). 
More recently, a second model, known as RITOLS 
(RNA incorporated throughout the lagging strand), has 
suggested a strand-coupled replication with a leading-
strand synthesis proceeding with the simultaneous 
incorporation of RNA  on the lagging strand and its 
following conversion to DNA when lagging-strand 
synthesis is started (50, 51).

MtDNA transcription occurs in opposite 
directions around the entire genome starting from the 
two strand-specific promoters, HSP and LSP, which are 
functionally independent, and generate poly-cistronic 
transcripts, subsequently processed to give mature 
mRNAs, rRNAs and tRNAs through a maturation process 
involving different enzymatic activities (38, 52-54). The 
H-strand encodes the majority of the genes through 
two transcription starting sites. The first is located 16 bp 
upstream of the tRNA phenylalanine gene and produces 
a transcript which terminates at the 3’ end of the 16S 
rRNA gene, while the second is close to the 5’ end of the 
12S rRNA gene and produces a polycistronic molecule 
corresponding to most of the H strand. The L-strand, 
whose transcription start site is located within the L-strand 
promoter, encodes only eight genes including tRNAs and 
the ND6 subunit. Different cis- and trans- acting sequences 
and factors, respectively, involved in the replication and 
transcription processes, have now been identified and 
characterized (39, 55, 56). These factors include DNA 
polymerase gamma, mitochondrial RNA polymerase, 
mitochondrial SSB, TFAM, mitochondrial DNA ligase, 
RNA processing enzymes and different helicases and 
topoisomerases, TFB1M, TFB2M and mTERF. Some 
of these carry out their activity in both replication and 
transcription processes, such as the TFAM factor, that 
plays an overlapping role since it appears crucial for the 
regulation of genome copy number, although it is not a 
component of the basic replication machinery, and for 
mtDNA transcription, by unwinding the mtDNA helix and 
thus exposing the promoter region to the transcription 
machinery (57, 58). Other factors act as transcription 
regulators which can modulate the transcription of 
nuclear-encoded genes involved in various mitochondrial 
functions and biogenesis, such as nuclear respiratory 
factors 1 and 2 (NRF-1, NRF-2). Alternatively, they can 
be imported into mitochondria and alter transcription 

of the mitochondrial genome, for example the PPARγ 
coactivator 1α factor (PGC-1 gamma) (55, 59).

Mitochondrial DNA replication and transcription 
are constantly regulated by coordinated nuclear and 
mitochondrial pathways, during development and at both 
physiological and patho-physiological conditions, in order 
to ensure efficient biogenesis process, cell’s energy 
demand, mitochondrial oxidative metabolism and proper 
cellular function (55, 59-62).

3.2. Genetics of mtDNA
Distinctive features of mtDNA make it 

particularly interesting for genetic studies as well as 
for the understanding of the aetiology of mitochondrial 
diseases. With rare exceptions reported in diverse 
eukaryotic taxa, it is inherited only maternally, through 
the oocyte cytoplasm, meanwhile mtDNA molecules in 
mammalian sperm, modified by ubiquitin labelling during 
spermatogenesis and degraded by the proteasomes 
and/or lysosomes after fertilization, are never transmitted 
to offspring, likely because they are highly damaged 
by ROS (Reactive Oxidative Species) produced during 
the spermatogenesis and the sperm swimming (63-68). 
For this reason, it has long been believed that mtDNA 
did not undergo recombination. However, over the 
last five years, some direct evidence concerning the 
existence of this process progressively emerging, 
taking into consideration that, in some cases, human 
paternal mtDNA may enter the egg and that mammalian 
mitochondria contain the enzymes necessary to promote 
homologous recombination (69-73).

Another form of mtDNA inheritance concerns the 
transfer of a large fraction of the mitochondrial genomic 
information to the nuclear genome, representing an 
important mechanism of genetic variation that helped to 
forge the prokaryote-to-eukaryote transition (74, 75). This 
transfer, that involves repair of double-stranded breaks by 
non-homologous end-joining, generates nuclear copies 
of mitochondrial DNA (NUMTs) which or are re-imported 
or, mostly, acquire novel functions. NUMTs account for a 
noticeable fraction of the nuclear genome. In the human 
genome at least 400 kb, in Nasonia 43 kb and in Apis 
over 230 kb of the nuclear DNA consists of NUMTs (76). 
In contrast, some genomes such as that of Drosophila 
melanogaster are nearly devoid of mitochondrial 
DNA (77). NUMTs appear to preferentially integrate into 
repetitive DNA sequences as well as into DNA regions with 
different GC content, thus suggesting that chromosomal 
structure might influence integration of NUMTs (78). 
Some NUMTs have accumulated many changes, and 
thus have resided in the nucleus for a long time, while 
others are similar to the reference human mtDNA, and 
thus must be recent. In humans, a dozen human loci are 
polymorphic for the presence of NUMTs, underscoring the 
rapid rate at which mitochondrial sequences reach the 
nucleus over evolutionary time. Overall, it is believed that 
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about a third of human-specific NUMTs is variable. In this 
context, NUMTs have been suggested as an interesting 
tool in primate phylogeny (79). Integration of NUMTs not 
only appears as neutral polymorphism but, more rarely, 
is also associated with human diseases, including severe 
plasma factor VII deficiency (bleeding disease), Pallister-
Hall syndrome, mucolipidosis IV (80).

mtDNA has an evolutionary rate higher than 
that of the nuclear DNA, attributable to a high mutation 
rate due to both the lack of effective mitochondrial repair 
mechanisms and constant exposure of this DNA to oxygen 
free radicals which mostly derive from the mitochondrial 
oxidative phosphorylation system (OXPHOS). The 
accumulation of damages in mtDNA and the subsequent 
OXPHOS impairment over the course of life are at the 
basis of several aging and diseases models, in which 
mitochondria and mitochondrial genome play a central 
role (81-85).

Given the presence of multiple copies of mtDNA 
within each cell (polyplasmy), when a mutation occurs, 
both normal and mutated mtDNA can coexist in varying 
proportion, a condition known as heteroplasmy. The level 
of heteroplasmy can vary among cells, tissues, organs 
within the same individual, and among individuals in 
the same family as the result of a random distribution 
of both normal and mutant mtDNA molecules to the 
daughter cells (mitotic segregation). In human, many 
heteroplasmic mutations are associated to pathologies, 
in which biochemical defects in the respiratory chain 
can be detected only if the levels of mutations exceed 
a threshold value (about 60-80%), that is correlated to 
mutation type and to tissue’s energy demand (86, 87). The 
occurrence of mutant and germinal mtDNAs in different 
organelles in the same cells may cause complementation, 
a process in which mitochondria fuse and mix their 
mtDNAs, so malfunctioning mitochondria can retrieve 
a wild-type mtDNA copy. This exchange should allow 
either the removal of the defective copy of the mtDNA 
or its repair by using a series of enzymes involved in this 
process. The mechanisms governing complementation, 
segregation and transmission of heteroplasmic mtDNA 
mutations depend on the dynamics of the mitochondrial 
compartment, the intra-mitochondrial organization and 
the mobility of mtDNA (33, 88, 89).

A substantial number of inherited mutations 
accumulate over time along radiating female lineages, 
that give rise to many types of mtDNA. These lineages 
differ with respect to mutations present in their 
ancestor and evolve independently. According to the 
presence/absence of specific variants at evolutionarily 
conserved positions, mtDNA types were categorized 
into haplogroups, which define a cluster of different 
mtDNA molecules sharing a common origin (90-93). 
The haplogroups have been identified by searching for 
population polymorphic sites, initially through the use 

of RFLP analysis and then by direct sequencing of both 
mtDNA coding and non coding regions. More recently, 
complete mtDNA sequencing allowed the subdivision 
of haplogroups into smaller groups, known as sub-
haplogroups (94). The uniparental inheritance of mtDNA 
and associated lack of intermolecular recombination 
mean that these variants have remained restricted to 
specific ethnic groups and have been used by population 
geneticists to define the migration and colonization 
of the planet, supporting the ‘out of Africa’ hypothesis, 
which proposes that the human mtDNA had its origins in 
Africa before migrating out and populating the globe (87).
The mtDNA variations were initially looked at as nearly 
neutral and used only for the reconstruction of human 
population history (95). The finding that these variations 
can have functional consequences and some of them 
are able to produce a spectrum of clinical symptoms in 
several mitochondrial diseases changed the view of their 
neutrality. In particular, such a view arose when it was 
shown that the different mtDNA lineages are qualitatively 
different from each other. The first evidence for this was 
provided by Ruiz-Pesini and co-workers, who reported 
that mtDNA molecules of H and T haplogroups displayed 
significant differences in the activity of OXPHOS Complex 
I and IV (96). More recently, significant associations 
have been found between mtDNA haplogroups and 
physiological phenotypes, including higher mitochondrial 
copy number, decreased reactive oxygen species 
production, mitochondrial metabolism, body fat mass, 
hearing loss, general cognitive ability, aging as well 
as with pathological traits, such as Parkinson and 
Alzheimer disease, diabetes, cardiovascular disease, 
schizophrenia, Leber’s hereditary optic neuropathy 
and cancer, in which they were found to contribute to 
oncogenesis and metastatic spread (95, 97-103). In 
addition, specific mtDNA variants seem to contribute to 
climatic adaptation in human populations by regulating 
bio-energy processes (104-107). The above associations 
have been also explained considering that, although 
physically distinct, nucleus and mitochondria interact with 
each other through a bi-directional flow of information 
involving several signal transduction pathways (108, 109).

A significant improvement in understanding 
the influence of specific mtDNA variants on cellular 
phenotypes and, therefore, the relationship between 
these variants and complex traits has come from in vitro 
studies using cybrid cell lines, made by the repopulation 
of rho0  cells lacking of mtDNA with mitochondria 
derived from enucleated cells harbouring particular 
types of mtDNA molecules, i.e.  mutated DNAs, on a 
common nuclear genetic background (110-112). More 
specifically, mtDNA and mtRNA levels, mitochondrial 
protein synthesis, cytochrome oxidase levels and activity, 
normalized oxygen consumption, mitochondrial inner-
membrane potential and growth capacity were found to be 
different in cybrids with mtDNA molecules harbouring the 
H haplogroup, representing about 41% of mtDNA types 
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in our continent, when compared with those from the UK 
haplogroup, found in about 25% of Europeans (113). 
In addition, changes in expression levels of stress-
responder genes as well as in intracellular ROS levels 
were ascribed to specific mtDNA sequences (114-116). 
It was also reported that mtDNA variants influence 
global DNA methylation most likely through a differential 
oxidative phosphorylation efficiency. In addition, Smiraglia 
et al. provided the first direct evidence that the absence/
presence of mtDNA modulates the nuclear epigenetic 
modifications by influencing DNA methylation of several 
nuclear genes (7).

4. MITOCHONDRIAL DNA EPIGENETICS

4.1. Mitochondrial DNA methylation and 
hydroxymethylation

The possibility that the mitochondrial DNA can 
be the site of epigenetic modifications has long been the 
subject of intense discussion and controversies (Figure 1). 
The multicopy genome, the absence of canonical CpG 
islands as well as the lack of histones and their relative 
modifying enzymes prompted researchers to consider 

with skepticism the possibility that mitochondrial DNA 
could be a target of epigenetic modifications. Despite this, 
the under-representation of CpG dinucleotides within the 
mtDNA, with most of these co-locating with polymorphic 
variants, has suggested a susceptibility to mutation of 
these dinucleotides in the mitochondrial genome and, 
consequently, to methylation (117). The first attempt to 
identify traces of mtDNA methylation dates back to the 
early 1970s in loach embryos, beef heart and several 
mammalian mitochondria, that also showed the presence 
of DNA methylating enzymes within mitochondrial 
compartments (118-122). By contrast, roughly in the 
same period, there was no trace of cytosine methylation 
on mtDNA detected in yeast, Ascomycete fungi, rat, calf, 
frog, HeLa cells (123-125). A few years later, Shmookler 
Reis and Goldstein as well as Pollack et  al. estimated 
a rate of mtDNA methylation equal to 3-5% in both 
human and mouse fibroblast (126, 127). Except for the 
failed attempt to find traces of mtDNA methylation in 
samples from gastric and colorectal cancer deployed 
by Maekawa et  al. aimed at searching a mitochondrial 
epigenetic biomarker for cancer prediction and detection, 
the research in this field lapsed (128).

Figure 1. Timeline (years) of key discoveries supporting the existence of mitochondrial DNA methylation and hydroxymenthylation. 
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After nearly thirty years, the advent of more 
innovative and sensitive techniques, the discovery of 
DNA methyltransferase (DNMTs) family members in 
mitochondrial protein fractions and even more importantly 
the evidence proving the influence of mtDNA in nuclear 
epigenetics brought back the interest for mitochondrial 
epigenetics (7, 8, 13, 129-133). Initially, a mitochondrial 
isoform of DNMT1 was discovered in both human and 
mouse (13, 130, 134). Afterwards, also DNMT3A and 
DNMT3B were found localized within mitochondria, in 
a tissue-specific fashion (13, 131, 135). However, the 
persistence of methylated cytosines in the D-loop region 
of mouse ES cells that lacked for DNMT1, DNMT3A, 
and DNMT3B, although less marked than that of the wild 
type sample, suggested that a nonexclusive involvement 
of DNMTs in the establishment and maintenance of the 
mtDNA methylation patterns have to be regarded (13).

The 5-mC appeared to have a strand-specific 
role within the mitochondrial genome. Indeed, strand-
specific bisulfite sequencing revealed that methylation 
is limited to the L-strand, with a prevalence in non-
CpG sites (13). Moreover, asymmetrical effects on 
the transcripts expression from the heavy and light 
strands of mtDNA in mtDNMT1 overexpressed cells 
was observed, with increased levels of ND1, encoded 
by the H-strand and decreased levels of ND6, encoded 
by the L-strand (130). An inverse correlation between 
mt-ND2 and mt-ND6 expression was also independently 
observed in pathological phenotypes (14, 136).

An attractive hypothesis formulated to explain 
the functional relationship between methylation and 
gene expression of the mitochondrial genome has been 
detailed by Van der Wijst and Rots (137). These authors, 
indeed, suggested that mtDNA methylation regulates the 
affinity of TFAM binding and, thus, its action on mtDNA. 
This may result in an increased DNA compaction and 
in a reduced accessibility for POLRMT and TFB2B that 
may induce mitochondrial biogenesis rather that electron 
transport subunit transcription.

In addition, mtDNA methylation could be involved 
in the processing of mitochondrial polycistronic primary 
transcript (11,138-140). By alternative experimental 
approaches, such as 5-mC immunoprecipitation 
(Me-DIP), bisulfite sequencing, bisulfite pyrosequencing, 
bisulfite-next generation sequencing (NGS), Illumina 
MiSeq sequencing platform and liquid chromatography-
electrospray ionization tandem mass spectrometry 
(LC-ESI-MS), the presence of methylated cytosines 
within the mitochondrial D-loop as well as in genes 
encoding for ND6, Cytb, COI, 12S rRNA, 16S rRNA, 
phenylalanine tRNA was evaluated (12-14, 134, 141-144). 
More recently, Ghosh et al., despite mitochondrial DNA 
polyploidy and its tissue-  and developmental stage 
specific variable number, described a comprehensive 
mitochondrial methyl cytosine map. The authors pointing 

out that, except for some regions, such as mt-ND6 and 
mt-ATP6 that show methylation changes according to 
brain development, the pattern and the distribution of 
5-mC across this genome appears quite constant (15). 
By contrast, only Hong et al. and Liu et al. have denied 
the existence of methylation within the mitochondrial 
genome, arguing this claim on the grounds that cytosine 
methylation within mtDNA is a very rare event and that 
such low levels cannot have any functional biological 
relevance (145, 146).

Next to cytosine methylation, cytosine 
hydroxymethylation (5-hmC) also recently raises 
significant interest and is regarded as a new mark. 
Although first discovered in 1972 in mouse and frog brain 
by Penn et al., a substantial boost in 5-hmC in evaluating 
this modified base has be provided the last 15 years, by 
experimental evidence reporting its presence in different 
tissues and cells and the occurrence of genome-wide 
changes during lineage commitment (147-152). In 
particular, the highest levels of 5-hmC has been detected 
in the central nervous system, comprising 0.6.% of the 
total nucleotides in Purkinje cells and 0.2.% in granule 
cells, while significantly variable levels were observed in 
other tissues as well as in cancer cells (149,153, 154). 
5-hmC was initially considered as an intermediate of 
the oxidation of 5mC by the Ten-eleven traslocation 
(TET)-  family of methylcytosine dioxygenases, in the 
active DNA demethylation pathway (148, 149, 155). 
However, considering its localization across the genome, 
mostly upstream of gene start site (GSS) regions and 
in gene body, its tissue-specific pattern as well as the 
deregulation of its levels, the 5-hmC appears to be 
closely implicated in the regulation of gene expression 
in both physiological and pathological conditions and in 
embryonic development (154, 156-159).

Recently, both mtDNA immunoprecipitation 
using antibodies directed against 5-hmC (hMe-
DIP) and DNA-modification-dependent restriction 
endonuclease AbaSI coupled with sequencing (Aba-seq) 
showed a high density of 5-hmC within mitochondrial 
genome, indiscriminately at CpG and non-CpG 
sites (13, 130, 160, 161). These observations were 
supported by the finding of TET enzymes within the 
mitochondrial compartment (13, 160, 162). Very recently, 
Ghosh et al., through the use of genome scale datasets 
from 23 different cell lines and tissue types, designed 
a mitochondrial genome 5-hmC map. Interestingly, 
the mitochondrial hydroxymethylation profiles showed 
significant differences compared to the methylation once 
previously obtained by the same authors (15, 17). In 
particular, the 5-hmC density was lacking of conserved 
patterns across the mitochondrial genome, but they 
appeared mainly associated to cell and tissue-type, hinting 
towards a tissue-type specific role for 5-hmC. Moreover, 
similar to earlier reports, the regions comprising the 
gene start site (GSS) were characterized by a consistent 
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5-hmC density, with the highest levels in the GSS of 
tRNA genes of embryonic cell lines. Even though the 
latter observation suggests a possible involvement for 
this modified base during the developmental stages, the 
high density around the GSS did not show a significant 
correlation with the associate gene expression. Lastly, 
the presence of hydroxymethylation was evaluated 
in mtDNA control region (D-loop). In agreement with 
previous reports, this region is characterized by 5-hmC 
density, whose density appears to be closely linked to 
the cell and tissue type as well as to the developmental 
stage, with the embryonic cells displaying the highest 
density of 5-hmC (17). All the above described dynamic 
features of 5-hmC suggest that this mark may have a 
functional relevance, potentially regulating mitochondrial 
gene expression, but studies are still in infancy and many 
aspects have still to be elucidated.

5. mtDNA METHYLATION AS BIOMARKER 
OF AGING AND DISEASES

Once the existence of methylation/
hydroxymethylation in the mitochondrial genome was 
confirmed, a significant number of reports have quickly 
provided that these two mitochondrial epigenetic 
marks exhibit significant correlation with environmental 
exposure, peculiar phenotypes and diseases, similar to 
what was observed for the methylation of the nuclear 
genome (Table 1).

5.1. mtDNA methylation and environmental 
exposures

A wide variety of environmental ubiquitous 
factors have been shown to influence epigenetic patterns 
in human and model organisms, resulting in both 
hypo and hypermethylation changes  in utero, juvenile 
and adult life stages (11, 163-165). With regard to 
environmental-induced mitochondrial DNA methylation 
changes, interesting information has emerged from Byun 
et  al. (12, 16) who analyzed the association between 
exposure to airborne pollutants and metal-rich particulates 
and blood mtDNA methylation. Authors observed that 
steel workers exposed to metal-rich particulate matter 
(measured as PM1) showed higher methylation levels of 
genes encoding for transfer RNA phenylalanine (MT-TF) 
and 12S ribosomal RNA (MT-RNR1) than low-exposed 
controls, while no significant differences were observed 
concerning the D-loop methylation. Conversely, the 
exposure to fine metal-rich particulates resulted in a 
significant reduction of the D-loop methylation levels 
and was significantly associated with markers of heart 
rate variability, but did not influence the MT-TF and 
MT-RNR1 methylation. In addition, air benzene and 
traffic-derived EC exposure did not induce any effect on 
mtDNA methylation (12, 16). The analysis of chromate 
plating workers, displaying high concentration of Cr ions 
in their blood, were characterized by lower methylation 
levels in MT-TF and MT-RNR1 genes (19). The apparent 

discrepancy between the two results was ascribed to the 
different exposure conditions, that might have different 
effects on mtDNA methylation.

It has been widely documented that the 
gestational environment stimuli received during prenatal 
life alter the global epigenome of placenta. Such stimuli 
could have both long-lasting effects on health span 
of an individual and transgenerational effects on fetal 
epigenomics reprogramming, according to still unclear 
mechanisms (166-169). In this context, a positive 
correlation has been demonstrated between placental 
mtDNA methylation of both MT-RNR1 and D-loop, 
associated to a decrease in mtDNA content, and the 
pregnancy exposure to airborne particulate matter 
(PM) (170). Moreover, a reduction in the 5-mC levels of 
MT-COII was observed following the perinatal exposure 
of rats to Polybrominated diphenyl ethers (PBDEs), an 
organic chemical used as flame retardants in a variety of 
materials (171).

Beside the environmental pollutants, 
pharmacological agents were also found to have off-
target effects on epigenetic signature (9, 172). Currently, 
the sole direct involvement of a mitochondrial epigenetics 
drug is represented by the anticonvulsant mood stabilizer 
sodium valproate (VPA), able to decrease the 5mC, but 
not the 5-hmC levels in mouse cultured cells (168). The 
potential role in mitochondrial epigenetics for a variety 
of drugs which regulate the intracellular epigenetic 
mechanisms and/or mitochondrial activity still needs to 
be clarified. A  good candidate might be, for example, 
cocaine, which was associated on the one hand to the 
increase of both DNMT3A and DNMT3B gene expression, 
on the other to the d nuclear encoded mitochondrial 
genes (173-176).

Lastly, an mtDNA methylation involvement in the 
field of nutritional epigenetics studies has emerged very 
recently. Studies carried out on large yellow croakers 
(Larimichthys crocea) revealed effects on mtDNA 
methylation in fish fed different lipid sources. Indeed, in 
the liver, the methylation levels of MT-TR and MT-ND4L 
genes were significantly higher in fish fed with Perilla and 
olive oils, whereas those of MT-RNR1 were lower in fish 
fed with olive oil with respect to the group fed with Fish 
and Sunflower oils. No changes in D-loop methylation 
were observed in all dietary treatments (177). In addition, 
with respect to the control group, fish fed a high- and a 
low-lipid diet were characterized by an increase of D-loop 
and MT-RNR1 methylation, respectively (178).

5.2. mtDNA methylation and aging
The first evidence for a susceptibility to aging 

of mitochondrial epigenetic mechanisms was provided 
in 1983, with the observation of a hypermethylation of 
mtDNA in elderly cultured fibroblasts compared to those 
from younger donors (126). More recently, Dzitoyeva 
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et  al. analyzed different regions samples of brain 
from differently-aged mice, and observed not only the 
presence of both mitochondrial 5-mC and 5-hmC, but 
more interestingly, that progressive changes in these 
mitochondrial epigenetic marks occurs during lifespan in 
a region-specific manner (160). Particularly, Dzitoyeva 
et  al. observed a decrease in 5-hmC but not in 5-mC 
levels and an increase in the expression of randomly 
selected mtDNA-encoded genes in the frontal cortex 

and in the cortex although no aging-associated changes 
in TET mRNAs, responsible for 5-hmC synthesis, were 
found. Conversely, no change in the levels of 5-hmc as 
well as in mRNA changes of mtDNA-encoded genes has 
been noted in the cerebellum, despite an increase of 
TET2 and TET3 expression. Furthermore, the expression 
of mtDNMT1 transcript in the brain and its modulation by 
aging was demonstrated (160). Moreover, D’Aquila et al., 
by analyzing human MT-RNR1 and MT-RNR2 genes, 

Table 1. List of regions located within mitochondrial DNA displaying methylation changes according to 
specific phenotypes

Gene Description Methylation Change Phenotype Reference

D-loop DNA control Region ↑ Pregnancy exposure to airborne particulate 
matter

159

↑ Low-lipid diet in fish 166

↑ AD-related pathology 17

↑ Insulin resistance 171

↑ High glucose 123

↑ Polycystic ovarian syndrome 172

↓ Parkinson Disease 17

↓ Colorectal cancer 175

↓ Exposure to fine metal-rich particulates 15

MT-RNR1 12S ribosomal RNA ↑ Exposure to high metal-rich PM1 exposure 11

↑ Pregnancy exposure to airborne particulate 
matter

159

↑ Low-lipid diet in fish 167

↑ Aging 9

↑ Polycystic ovarian syndrome 172

↓ Aging 133

↓ High Cr ion blood concentration 18

MT-RNR2 16S ribosomal RNA ↑ Polycystic ovarian syndrome 172

MT-TF tRNA Phenylalanine ↑ Exposure to high metal-rich PM1 exposure 11

↑ Perilla and olive oil diet in fish 166

↓ High Cr ion blood concentration 18

MT-TL1 tRNA leucine 1 ↑ Cardiovascular disease 173

MT-COI Cytochrome c oxidase subunit I ↑ Cardiovascular disease 173

MT-COII Cytochrome c oxidase subunit II ↓ Perinatal exposure to Polybrominated diphenyl 
ethers 

160

↑ Cardiovascular disease 173

MT-COIII Cytochrome c oxidase subunit III ↑ Cardiovascular disease 173

MT-ND1 NADH dehydrogenase subunit 1 ↓ AD-related pathology 17

MT-ND4 NADH dehydrogenase subunit 4 ↑ Polycystic ovarian syndrome 172

MT-ND4L NADH dehydrogenase subunit 4L ↑ Perilla and olive oil diet in fish 166

MT-ND6 NADH dehydrogenase subunit 6 ↑ Nonalcoholic fatty liver disease 13
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encoding for 12S and 16S ribosomal RNA, respectively, 
revealed the presence of methylation at a CpG site of 
MT-RNR1 (nucleotide position 932) as well as a positive 
increase of its methylation levels according to age and 
gender of analyzed samples (143). These findings, 
integrated by a survival analysis, reported that high 
methylation levels at the mtDNA 932 position significantly 
increase the mortality risk. This result suggested a still 
unclear functional role for MT-RNR1 methylation that, 
ultimately may hamper individual survival chance. 
A significant role of MT-RNR1 methylation in aging has also 
emerged from data obtained by Mawlood et al. which, by 
evaluating the methylation levels of 133 CpG sites in the 
mitochondrial genome by Illumina Sequencing, showed 
a stronger, negative correlation between two MT-RNR1 
CpG sites (nucleotide positions 1215 and 1313) and 
aging (144). The apparent discrepancy between the two 
previous results could be explained by the fact that the 
correlation between MT-RNR1 methylation and aging 
could be site-specific. In addition the discrepancy could 
be strongly influenced by gender, environmental factors, 
nutrition and drugs, as also demonstrated for age-related 
nuclear epigenetic changes (12, 162, 179, 180).

5.3. mtDNA methylation and diseases
A mitochondrial involvement in the etio-

pathogenesis of several diseases has been widely 
described and, only recently a role for mtDNA epigenetics 
is emerging. The first association between mtDNA 
methylation and disease was reported by Infantino et al., 
which observed a hypomethylation of mtDNA despite 
the increase of mtDNA content in Down Syndrome 
(DS) mtDNA (181). Afterwards, evidence from several 
publications has revealed that mitochondrial methylation 
may be regarded as a biomarker of neurodegenerative 
diseases. High levels of global 5-mC levels and of both 
DNMT1 and DNMT3A were detected in the mitochondria 
of neurons of patients with amyotrophic lateral sclerosis 
(ALS) (131). In addition, a significant abnormality in 
MT-RNR2 methylation and a severe loss of mitochondrial 
DNMT3A in skeletal muscle and spinal cords of ALS 
mouse models at presymptomatic or early symptomatic 
stages of disease were demonstrated (132). Similarly, 
alterations in mtDNA methylation were observed in 
Alzheimer Disease-related (AD) pathologies and 
Parkinson disease (PD). Blanch et  al. observed, in 
both human samples and AD mouse models, increased 
methylation levels at both CpG and non-CpG sites in 
the D-loop region in AD-related pathology and a slight 
demethylation in the MT-ND1 gene, associated to an 
increase of ND1 expression. Conversely, a loss of D-loop 
methylation was observed in the substantia nigra of PD 
cases compared to the controls, whereas the 5-hmC 
levels in both AD-related pathology and PD remained 
unchanged (18).

It has also emerged that mtDNA methylation 
may be implicated in metabolic disorders. An MT-ND6 

hypermethylation, associated to a significant decrease 
in ND6 expression was observed in Nonalcoholic fatty 
liver disease (NASH) with respect to simple steatosis 
(SS) patients, thus suggesting an involvement of mtDNA 
methylation in the transformation from SS to NASH (14). 
A  significant increase in D-loop methylation was also 
detected in obese and insulin-resistant individuals (182). 
In addition, compared to the control samples, high 
glucose in bovine and human retinal endothelial cells 
significantly increase the intra-mitochondrial DNMT1 
levels and its binding to the mtDNA at both the D-loop 
and Cytb as well as the 5-hmC at the D-loop and Cytb 
regions of more than 3-  and 2-  fold, respectively. The 
increase in D-loop methylation was also associated to 
a decrease in mtDNA encoded gene expression, thus 
suggesting that in diabetes the mtDNA hypermethylation 
may result in dysfunctional mitochondria and promote 
capillary cell apoptosis (136). Lastly, by searching for the 
involvement of mtDNA epigenetics in the mitochondrial 
dysfunction occurring in Polycystic ovarian syndrome 
(PCOS), Jia et al. revealed that a hypermethylation in the 
D-loop, MT-RNR1, MT-RNR2 and MT-ND4 occurs in PCO 
oocytes in accordance with a down-regulated expression 
of mtDNA-encoded genes and impaired mitochondrial 
function (183).

The association between nuclear DNA 
methylation marks and cardiovascular disease (CVD) has 
been widely demonstrated. Analyses carried out in both 
CVD and healthy patients by bisulfite pyrosequencing 
demonstrated that cases displayed higher methylation 
levels than controls in MT-COI, MT-COII, MT-COIII and 
MT-TL1 genes, meanwhile no significant difference 
in methylation was observed for MT-ND6, MT-ATP6, 
MT-ATP8 and MT-ND5 (184).

Limited data about the potential association 
between mitochondrial DNA methylation and cancer 
are currently available. A very low occurrence of mtDNA 
methylation in gastric, colorectal and cervix cancer 
was reported (141). In addition, a negative association 
between DNA copy number with cytosine methylation 
and hydroxymethylation was found in hepatocellular 
carcinoma cells (185). On the other hand, increased 
mtDNA copy number and ND2 levels associated with a 
markedly reduced methylation status of the D-loop were 
observed in colorectal cancer and associate to the clinic-
pathological stages of the disease (136, 186).

6. CONCLUSIONS AND FUTURE 
PERSPECTIVES

The identification of epigenetic changes in the 
mitochondrial genome has led to extreme revision of 
previous knowledge on phenotypic implications of mtDNA 
genetic variations. Indeed, the association between 
mtDNA methylation and several phenotypes suggests 
an original scenario about the role of mitochondria in the 
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cell life and sheds light on the identification of a series of 
biomarkers implicated in the above phenotypes. However, 
understanding of the molecular mechanisms by which 
mtDNA methylation operates is still in its infancy. The 
predominance of methylated and/or hydroxymethylated 
cytosines within the D-loop and in the upstream of gene 
start sites suggest a possible regulatory role in mtDNA 
expression, that requires further investigation. Once the 
role of epigenetic marks in mtDNA have been clarified 
and the reversibility of epigenetic modifications are 
elucidated, we predict that exciting advances will prompt 
the search for mitochondrial-specific therapeutic agents 
able to restore the altered epigenetic equilibrium.
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