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1. ABSTRACT

The accurate maintenance of mitochondrial 
DNA (mtDNA) is required in order for eukaryotic cells 
to assemble a functional electron transport chain. This 
independently-maintained genome relies on nuclear-
encoded proteins that are imported into the mitochondria 
to carry out replication and repair processes. Decades 
of research has made clear that mitochondria employ 
robust and varied mtDNA repair and damage tolerance 
mechanisms in order to ensure the proper maintenance 
of the mitochondrial genome. This review focuses 
on our current understanding of mtDNA repair and 
damage tolerance pathways including base excision 
repair, mismatch repair, homologous recombination, 
non-homologous end joining, translesion synthesis 
and mtDNA degradation in both yeast and mammalian 
systems.

2. INTRODUCTION

Mitochondria are essential organelles in 
eukaryotic cells, and the cellular energy produced 
by mitochondria is required for the survival of most 
eukaryotes. In addition to the obvious role in energy 
production, mitochondria perform a central role in amino 
acid, heme, lipid, and iron-sulfur cluster biosynthesis. 
These organelles contain an independently-maintained, 
multi-copy genome that must be correctly replicated and 
repaired for the proper function of the electron transport 
chain.

The size of the mitochondrial genome varies 
significantly between species. In human cells, it is a 
compact 16,500 bp, while in Saccharomyces cerevisiae 
it is much larger, ranging from 75,000 to 85,000  bp in 
size (1, 2). Unlike the nuclear genome, the mitochondrial 
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genome is present in many copies per cell, and the 
copy number varies dependent on tissue type, and the 
energetic demands of the cell (3). Despite the significant 
difference in the size of these genomes in different 
species, the number and type of genes encoded is 
remarkably similar. The human and yeast mitochondrial 
genomes encode 13 and 8 polypeptides, respectively, 
in addition to the tRNAs and rRNAs required for their 
synthesis. The proteins encoded by the mitochondrial 
genome are some of the components of electron transport 
chain (ETC) complexes, therefore, the coordination of 
products of both the nuclear and mitochondrial genome 
are critical for the production of ATP, and thus for cellular 
function. Considering the requirement for the ETC in 
eukaryotic cells, proper replication and maintenance of 
the mitochondrial genome with high fidelity is essential to 
the survival of an organism.

Mitochondrial DNA (mtDNA) is packaged 
into nucleoprotein structures, called nucleoids, that 
are closely associated with the inner mitochondrial 
membrane (4-6). The most abundant yeast nucleoid 
protein is Abf2p, (TFAM, mammalian homolog) a high 
mobility group (HMG) protein family member that can 
facilitate the compaction of the mitochondrial genome 
by introducing sharp bends into the DNA (7). Abf2p 
binds mtDNA in a sequence-independent fashion and 
is present at high enough concentrations to coat the 
entire mitochondrial genome (8, 9). It is often stated in 
the literature that mtDNA has a greater susceptibility 
to damaging agents because it is “naked”. However, 
although the mitochondrial genome is not associated with 
histones, it has been well established that it is complexed 
with proteins that organize and stabilize the genome 
(reviewed in 10).
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Mutations in mtDNA are directly linked to many 
heritable diseases, such as Kearns-Sayre Syndrome 
(KSS) and progressive external opthalmoplegia 
(PEO) (11). Additionally, an increase in mutational load 
has been detected in many neurological disorders 
such as Alzheimer’s and Parkinson’s diseases (12), 
but whether these mutations are causative or arise 
as a result of the disease pathology remains to be 
determined. The importance of a properly maintained 
mitochondrial genome was underscored in a mouse 
model that expressed proofreading deficient polymerase 
γ (POLG), the mitochondrial replicative polymerase. 
These mice have a shortened lifespan and an early onset 
of aging phenotypes (13). Taken together, it is clear that 
the accurate maintenance of the mitochondrial genome 
is vital for the health and survival of an organism.

MtDNA is exposed to the same chemical 
assaults as nuclear DNA, which generate various types 
of damage, including alkylation, abasic site formation, 
adduct formation, mismatched bases, single-  and 
double-strand breaks, and oxidative lesions. Initially 
it was believed that DNA repair mechanisms might not 
be required in mitochondria, due to multi-copy nature 
of the genome. For many years, this led to models in 
which damaged mtDNA was simply degraded, rather 
than repaired. The mechanism by which these damaged 
genomes would be recognized and targeted for removal 
was not clear. In any case, there is now evidence for 
several DNA repair pathways in mitochondria, including 
base excision repair (BER), mismatch repair (MMR), 
homologous recombination (HR), and non-homologous 
end joining (NHEJ). This review will focus on our current 
mechanistic understanding of these repair pathways in 
both yeast and mammalian systems, where they have 
been the best studied.

Many of the mitochondrial repair pathways 
make use of proteins with dual nuclear and mitochondrial 
localization. As a result, many of the mitochondrial repair 
pathways are reminiscent of those found in the nucleus, 
however, the identified mitochondrial DNA repair pathways 
appear to operate with fewer proteins than the nuclear 
counterparts. While the known repair proteins are likely 
to maintain their recognized biochemical functions, such 
as DNA binding, it appears that at least some proteins 
may have been co-opted for use in mitochondrial specific 
pathways. These differences are perhaps not entirely 
surprising, as it is known that interactions with chromatin, 
and other nuclear-specific players impact nuclear repair. 
Distinct features of the mitochondrial milieu must impact 
repair pathways as well, so that simply extrapolating 
known nuclear repair pathways to the mitochondrial 
compartment will not allow us to generate a clear 
understanding of mtDNA metabolism.

This more limited repertoire of proteins used 
in mtDNA metabolism confounds our efforts to define 

specific repair mechanisms, in part, because there 
appears to be much overlap in the proteins utilized in 
various repair pathways and the replication machinery. 
For example, mtDNA polymerase, Pol γ is thought to 
perform both replicative and repair DNA synthesis, 
as additional processive polymerases have not been 
localized to mitochondria (reviewed in 14), and while 
multiple nuclear ligases are available in the nucleus, 
mitochondrial ligation is carried out by LIG3 in mammalian 
cells and Cdc9p in yeast (15, 16). In mitochondria, it is 
often difficult to elucidate whether a protein primarily 
functions in repair or replication. This is especially true 
of the putative HR proteins localized to mitochondria. For 
example, we know that stimulating damage can often 
lead to a transient increase in mtDNA copy number, and 
in mammalian cells this is dependent on the HR protein 
Rad51 (17).

Examination of mtDNA repair pathways has 
lagged significantly behind similar studies of nuclear 
repair. There are several factors that have contributed to 
this delay. Perhaps most significant was the erroneous 
assumption, made early on, that mtDNA was simply not 
repaired, and thus similar studies were not initiated. In 
addition, the yeast model system, which played a critical 
role in the identification and characterization of nuclear 
repair pathways has been less amenable to mitochondrial 
studies than nuclear studies until recently.

Dissection of nuclear repair pathways has 
relied on reporters of mutagenesis that read out different 
types of genomic changes. This is because different 
types of damage lead to different mutations. In addition, 
different lesions are recognized and repaired by different 
pathways, with some redundancy. In the mitochondria, 
however, all changes to mtDNA, including complete loss 
of the genome, lead to the same phenotypic output, which 
is the failure to grow on a non-fermentable carbon source, 
so the different mutations can’t easily be distinguished.

In addition, under normal laboratory conditions, 
budding yeast spontaneously lose mitochondrial function 
at high frequencies. Because non-respiring yeast cells 
give rise to smaller colonies on solid growth media, 
these have been termed petites. The vast majority of 
the spontaneously non-respiring colonies are termed 
cytoplasmic petites, in which the defect causing respiration 
loss is a mutation of the mitochondrial genome. When 
the mitochondrial genome in these cells are examined, 
they show large deletions of mtDNA, followed by an 
amplification of the sequence that remains. This type of 
petite genome is designated r-, the wild-type genome is 
referred to as r+, and cells lacking mtDNA entirely are r0.

The mechanism by which the deletions 
in r-  genomes arise is not known, however, these 
variants arise at frequencies many orders of magnitude 
greater than other types of mutations. Against this 
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high background of spontaneous petites, one cannot 
score increases in the other types of mutations, such 
as base substitutions that result in non-respiratory 
phenotypes. In addition, depending on the sequences 
present in the r- genome, the mutant genome may have 
a replication advantage over the wild-type genome, or 
other r- genomes. Due to their preferential replication or 
inheritance in mating experiments, such r- genomes are 
known as “hypersuppressive” petites (reviewed in 18).

Prior to 2000, therefore, a researcher interested 
in studying mitochondrial mutagenesis in yeast would 
be able to measure the frequency of spontaneous 
petites, or a somewhat limited spectrum of point 
mutations via selection for resistance to mitochondrial 
ribosome-inhibiting antibiotics, such as erythromycin 
and spiramycin (19). In measuring point mutations, 
erythromycin appears to be the only drug that specifically 
selects for resistant mutations in the mitochondrial 
genome, without confounding nuclear mutations (19, 20). 
Because yeast are facultative anaerobes, this selection 
must be carried out on medium with a non-fermentable 
carbon source, as all yeast without active mitochondrial 
protein synthesis are resistant to the drug, limiting the 
conditions under which these experiments may be 
performed.

While the spectrum of gain-of-function 
mutations giving rise to EryR is somewhat limited, 
these assays provided a more accurate estimation 
of point mutation rates overall than the sequencing 
methods available to researchers working at that time 
in vertebrate systems. Many of these methods required 
an amplification step prior to sequencing. Reported 
frequencies of mitochondrial mutations were extremely 
variable, and such disparities have been attributed to 
artifacts introduced during the amplification step, as 
methods requiring PCR amplification resulted in the 
highest frequencies (21-23). Methods that allow more 
accurate quantitation of random mutations and deletions 
at specific locations in the mitochondrial genome were 
subsequently developed (24, 25).

Yeast remain a powerful and attractive model 
system for studies of mtDNA repair, because of the 
relative ease with which genetic analysis of proteins that 
impact mitochondrial mutation rates can be performed. 
This is particularly true in view of new reporters that have 
become available in recent years, following the successful 
introduction of a selectable, recoded nuclear gene into 
the mitochondrial genome of yeast. Arg8p, acetylornithine 
aminotransferase, is encoded in the nuclear genome, 
translated on cytoplasmic ribosomes, and imported into 
the mitochondrial matrix, where it performs its catalytic 
function in the biosynthesis of arginine. Steele, et al. 
generated the synthetic ARG8m gene, to reflect the codon 
usage and bias of a mitochondrial gene, and introduced it 
into the mitochondrial genome by biolistic transformation, 
followed by recombination (26). Expression of ARG8m 

within the mitochondrial matrix successfully complements 
a nuclear ARG8 deletion, and allows the yeast cells to 
grow on medium lacking arginine. Researchers in yeast 
now have a series of reporters available that utilize 
the ARG8m selectable marker, including reporters to 
measure frameshift mutations, microsatellite instability, 
spontaneous recombination at direct repeats, and 
double-strand break repair in mitochondria (27-32). 
These reporters have revealed proteins involved in 
mitochondrial genome mutagenesis and repair that do 
not significantly impact respiration loss or point mutation 
frequencies, and thus could not have been identified 
previously (27, 28, 31).

3. BASE EXCISION REPAIR

Base excision repair (BER) was the first 
identified repair pathway in mitochondria, in yeast and 
humans, and remains the best characterized (33-38). 
Mitochondrial BER has recently been extensively 
reviewed (39-43), therefore, we will only provide a brief 
summary here. The base excision repair pathways are 
primarily responsible for the removal of non-bulky base 
lesions that arise due to oxidation, alkylation, deamination, 
and methylation (44-46). This type of damage originates 
from both exogenous sources (radiation, environmental 
mutagens, chemotherapeutic drugs) and endogenous 
sources (reactive oxygen species ROS, spontaneous 
decay). The close proximity of mtDNA to the electron 
transport chain (ETC) may increase its susceptibility to 
ROS damage, and thus the need for an efficient BER 
pathway. The impact increased ROS exposure has on 
the mtDNA, in terms of frequency of base lesions, has 
been debated in the literature, but a general consensus 
is that mtDNA contains significantly higher proportion 
of oxidized bases when compared to the nucleus, 
ranging from 4X-40X more depending on the type of 
lesion (47-50).

BER is a highly conserved repair pathway, 
from bacteria to humans, consisting of four main 
steps: (1) base lesion recognition and removal by DNA 
glycosylases, resulting in an abasic (AP) site, (2) DNA 
end-processing, (3) gap-filling, and (4) ligation (Figure 1). 
There are two types of BER, short-patch (SP) or long-
patch (LP), both of which occur in mitochondria. SP-BER 
is when a single nucleotide gap is formed, and repaired, 
while LP-BER generates a gap between 2-12 nucleotides 
and that is then subsequently filled and ligated restoring 
the DNA strand (44).

There are a plethora of base lesions that 
can occur including, but not limited to, oxidation, lipid 
peroxidation, deamination, alkylation, and spontaneous 
loss of the base (41, 43). The different types of lesions 
are recognized and removed by a specific enzyme or one 
of a group of DNA glycosylases. For example, 8–oxo-7,8-
dihydroguanine (8-oxoG) is primarily removed by OGG1 
(Ogg1p-S. cerevisiae) but can also be excised by NTH1 
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(Ntg1p-S. cerevisiae). This redundancy in the recognition 
step allows for efficient repair of these common lesions in 
both the nucleus and mitochondria.

Currently there are seven glycosylases known 
to localize to mammalian mitochondria and three in 
yeast mitochondria (39, 41). These, and the other 
proteins discussed in this review, are summarized in 
Table 1. A thorough biochemical and structural review of 
these glycosylases can be found elsewhere (42). This 
comprehensive collection of BER glycosylases supports 
the hypothesis that efficient repair of the base lesions, at 

least in part, caused by ROS is vital for the maintenance 
of intact mtDNA and mitochondria.

There are two main classes of DNA 
N-glycosylases, monofunctional and bifunctional. 
Monofunctional DNA glycosylases are capable of 
cleaving the N-glycosidic bond, removing the damaged 
base and thus producing an AP site. AP endonuclease 
I (mammalian: APE1; S. cerevisiae: Apn1p) will then 
incise the DNA backbone 5’ to the AP site, generating a 3’ 
hydroxyl and 5’ deoxyribosephosphate (5’dRP) flanking 
the single nucleotide gap. Bifunctional N-glycosylases can 

Figure 1. Mitochondrial BER. Mammalian and yeast homologs are indicated in purple and blue boxes, respectively. A base lesion (orange diamond) is 
recognized by either a monofunctional or bifunctional DNA glycosylase. Depending on the initial glycosylase the ends can be tailored by APE1 (Apn1p), 
PNKP, or POLG (Mip1p). POLG can then fill the remaining single nucleotide gap (SP-BER) or perform displacement synthesis (LP-BER). In LP-BER the 
resulting flap will be cleaved by an endonuclease. The remaining nick is sealed by LIGIII in both SP- and LP-BER.
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Table 1. Mitochondrial DNA repair, replication, and damage tolerance proteins
Protein Name Species Mitochondrial

localization
confirmed

Known activity Suggested Repair/
Tolerance pathway(s)

UNG1 H. sapiens Yes Monofunctional uracil DNA glycosylase BER

Ung1P S. cerevisiae Yes

MYH H. sapiens Yes Monofunctional DNA glycosylase BER

AAG H. sapiens Yes Monofunctinoal alkyladenine DNA glycolsylase BER

Mag1p S. cerevisiae No

NTH1 H. sapiens Yes Bifunctional DNA glycosylase BER

Ntg1p S. cerevisiae Yes

OGG1 H. sapiens Yes Bifunctional 8-oxo guanine DNA glycosylase BER

Ogg1p S. cerevisiae Yes

NEIL1 H. sapiens Yes Endonuclease VIII-like bifunctional DNA glycosylase BER

NEIL2 H. sapiens Yes Endonuclease VIII-like bifunctional DNA glycosylase BER

PNKP H. sapiens Yes Polynucleotide kinase and 3’ phosphatase BER, NHEJ

APE1 H. sapiens Yes AP endonuclease BER

Apn1p S. cerevisiae Yes

POLG H. sapiens Yes DNA polymerase Replicative/repair 
polymerase

Mip1p S. cerevisiae Yes

FEN1 H. sapiens Yes Flap endonuclease LP-BER, HR, MMEJ

Rad27p S. cerevisiae Yes

EXOG H. sapiens Yes Endo- and exonuclease LP-BER, HR

Nuc1p S. cerevisiae Yes

DNA2 H. sapiens Yes Flap endonuclease and ATP-dependent helicase LP-BER, HR,

Dna2p S. cerevisiae No

LIGIII H. sapiens Yes DNA Ligase Replication, BER, HR, 
NHEJ, MMEJ, MMR

Cdc9p S. cerevisiae Yes

YB-1 H. sapiens Yes Y-box binding protein MMR, BER

Msh1p S. cerevisiae Yes MutS homolog HR, BER, MMR(?)

Mhr1p S. cerevisiae Yes ATP independent strand exchange HR, Replication

Cce1p S. cerevisiae Yes cruciform cutting endonuclease HR, Replication

Mgm101p S. cerevisiae Yes Rad52-like protein HR

RAD51 H. sapiens Yes RecA homolog; strand exchange HR

Rad51p S. cerevisiae Yes

RAD51C H. sapiens Yes RAD51 paralog, Holliday junction resolution HR

XRCC3 H. sapiens Yes RAD51 paralog; strand exchange HR

Rad59p S. cerevisiae Yes Rad52 homolog HR

MRE11 H. sapiens Yes Binds dsDNA ends, part of MRN(X) complex HR, NHEJ, MMEJ

Mre11p S. cerevisiae Yes

(Contd...)
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cleave the N-glycosidic bond and nick the DNA strand 3’ 
of the lesion. This intrinsic lyase activity can process the 
lesion by one of two mechanisms. First, β-elimination will 
leave a 3’ phospho-α,β-unsaturated aldehyde (3’PUA) 
and a 5’ phosphate on either side of the gap. APE1 
(Apn1p) can remove the replication blocking 3’PUA and 
convert it to a 3’OH with its phosphodiesterase activity. 
Second, a β-δ elimination reaction will cleave the DNA 
backbone resulting in 3’-phospate and 5’-phosphate (51). 
The 3’-phosphate is processed, generating a 3’-OH, 
potentially by polynucleotide kinase 3’ phosphatase 
(PNKP), which has been recently localized to the 
mitochondria (52-54). These nicked repair intermediates 
are then processed via one of two pathways.

In short patch BER, polymerase γ (mammalian: 
Pol γ; S. cerevisiae: Mip1p) will convert the 5’dRP 
residues to a 5’ phosphate and fill the single nucleotide 
gap (55). The mitochondrial ligase (mammalian: LigIII; 
S. cerevisiae: Cdc9p) then seals the nick (56, 57). 
Alternatively, in long patch BER, the 3’ end at the nick is 
extended by Pol γ, which displaces a 5’ flap containing 
the dRP, which is subsequently cleaved. The 5’ flap is 
potentially cleaved by FEN1 (S. cerevisiae: Rad27p), 
DNA2 (S. cerevisiae: Dna2p, mitochondrial localization 
not demonstrated), EXOG (S. cerevisiae: Nuc1p) or a 
combination of these enzymes (27, 58-61). Once the flap 
has been removed LigIII (Cdc9p) will seal the remaining 
nick.

In humans, there are 3 monofunctional DNA 
glycosylases known to localize to mitochondria, uracil-
DNA glycosylase 1 (UNG1), Escherichia coli MutY 
homolog (MYH) and N-methylpurine DNA glycosylase 
(AAG/MPG). In S. cerevisiae mitochondria, the only 

monofunctional glycosylase is Ung1p. Given the 
conservation of mitochondrial BER among diverse 
species, and the high levels of oxidative damage 
predicted, one might expect loss of BER proteins to 
result in significant cellular defects. However, analysis of 
mutants lacking specific BER enzymes typically results 
in subtle, and sometimes contradictory phenotypes. In 
some cases, redundancy in the repair network to remove 
the most frequent base lesions may obscure phenotypes 
in single mutants. In addition, the glycosylases in this 
pathway can convert potentially miscoding errors, for 
example, uracil in DNA, into potentially cytotoxic lesions, 
like abasic sites or single-strand breaks. Several studies 
have indicated that imbalanced expression of factors in 
the BER pathway can be mutagenic when the generation 
of intermediates outpaces later processing. These 
observations suggest that a careful balance must be 
struck between factors in BER that allows repair of lesions 
without generating mutations (62-65). The reported 
mitochondrial phenotypes of glycosylase mutants in 
yeast and mice are described more fully below.

Human UNG1 is encoded by the UNG locus 
but uses an alternative promoter as well as alternative 
splicing to generate the mitochondrial form of UNG1, 
which contains a N-terminal mitochondrial targeting 
sequence (MTS) (66). In vitro assays indicate that purified 
human Ung1 recognizes and removes misincorporated 
uracil and 5-fluorouracil (67, 68). UNG1 knockout 
mice exhibit increased levels of incorporated uracil as 
expected, but overall resulted in no major pathologies 
in young mice (69). In contrast, older mice exhibited a 
reduction in lifespan and had a predisposition for B-cell 
lymphomas (70). There were no mitochondrial-specific 
phenotypes reported. In yeast, both the deletion and 

Table 1. Continued...
Protein Name Species Mitochondrial

localization
confirmed

Known activity Suggested Repair/
Tolerance pathway(s)

RAD50 H. sapiens No Binds dsDNA ends, part of MRN(X) complex HR, NHEJ, MMEJ

Rad50p S. cerevisiae Yes

NBS1 H. sapiens No Binds dsDNA ends, part of MRN(X) complex HR, NHEJ, MMEJ

Xrs2p S. cerevisiae No

KU70 H. sapiens No Binds dsDNA ends, forms heterodimer with Ku80 NHEJ

Ku70p S. cerevisiae No

KU80 H. sapiens Yes Binds dsDNA ends, forms heterodimer with Ku70 NHEJ

Ku80p S. cerevisiae No

REV3 H. sapiens Yes Catalytic subunit of pol zeta TLS

Rev3p S. cerevisiae Yes

Primpol H. Sapiens Yes DNA polymerase and DNA primase TLS

BER : Base excision repair; HR: Homologous recombination; LP-BER: Long patch base excistion repair; MMEJ: Microhomology mediated 
nonhomologous end joining; MMR: Mismatch repair; NHEJ: Nonhomologous end joining; TLS: Translesion synthesis
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overexpression of Ung1p led to an increase in petite 
colonies suggesting that an optimal balance is needed 
in this repair pathway to maintain a stable mitochondrial 
genome (71). The mitochondrial point mutation frequency 
appears to be unaffected in the ung1-Δ strain (71, 72).

Unlike other glycosylases, MYH will remove 
the undamaged base in a pair instead of the damaged 
base. MYH excises adenine when it is paired with 
8-oxoG, guanine or cytosine (42, 67, 73-75). The nuclear 
and mitochondrial isoforms of MYH are the result of 
alternative splicing, with the mitochondrial isoform 
containing a 14-amino acid N-terminal MTS (42, 74, 75). 
Double knockout mice lacking both MYH and OGG1 did 
not exhibit any detectable increase in mtDNA mutations, 
instability or incidence of cancer (76).

AAG recognizes and excises a variety of 
alkylated bases in both single and double-stranded 
DNA (77). Recently, mitochondrial localization of AAG 
has been confirmed, where it was shown to interact 
with the mitochondrial single-stranded binding protein 
(mtSSB) (78). This interaction with mtSSB inhibited 
AAG’s ability to excise alkylated bases on ssDNA, 
thus preventing the formation of ssDNA breaks (78). 
Mitochondrial mutagenesis in mammals lacking AAG has 
not yet been assessed.

In yeast and mammalian mitochondria, there 
are two and four bifunctional glycosylases, respectively. 
The two mammalian specific mitochondrial bifunctional 
glycosylases are Endonuclease VIII-like glycosylase 1 
and 2 (NEIL1 and NEIL2) (54, 79). These glycosylases 
facilitate the repair of several types of base lesions 
including various oxidized pyrimidines, ring-opened 
formamidopyrimidines (FaPy) lesions, and thymine 
glycol (51, 80). Unlike other DNA glycosylase mutants, 
NEIL1 knockout mice exhibit a strong a mitochondrial 
phenotype, with an increase in steady state damage and 
mtDNA deletions, and these mice display symptoms of 
metabolic syndrome (81).

The 8-oxoguanine DNA glycosylase 
(mammalian:  OGG1; S. cerevisiae: Ogg1p) recognizes 
8-oxoG and FaPy lesions. In humans, alternative splicing 
generates a mitochondrial-specific isoform of OGG1, while 
in yeast there is a N-terminal MTS (34, 82). Interestingly, 
OGG1 knockout mice do not exhibit any identifiable 
mitochondrial mutator phenotype but overexpression of 
the mitochondrial isoform of OGG1, in a mouse model of 
mammary tumorigenesis, resulted in a decrease in tumor 
size and reduction in metastasis (83-85).

The loss of Ogg1p in yeast causes an increase 
in mitochondrial point mutations. Consistent with the 
prediction that both Ogg1p and Ntg1p can recognize 
some of the same substrates, a number of studies 
consistently show a reduction in point mutants in ntg1-∆ 
ogg1-∆ double mutants (34, 86, 87). However, this result 

suggests that although Ogg1p and Ntg1p compete for 
the same lesion, the Ntg1p-dependent pathway is more 
mutagenic (39).

NTH1 (S. cerevisiae: Ntg1p), a homolog of 
Escherichia coli endonuclease III, repairs oxidized 
pyrimidines (5-hydroxycytosine and 5-hydroxyuracil), 
thymine glycol, 8-oxoG, and FaPy lesions. Human NTH1 
predominantly localizes to the nucleus while mouse 
NTH1 predominantly localizes to the mitochondria. 
Deletion of the nuclear localization signal in the human 
NTH1 results in mitochondrial localization, suggesting 
that a cryptic mitochondrial targeting sequence may 
exist (88). Although NTH1 knockout mice display no 
obvious phenotypes (89), mitochondria from mouse liver 
extracts from NTH1 knockout lines lack the ability to 
incise thymine glycol containing substrates (90).

Yeast Ntg1p contains an N-terminal 
mitochondrial targeting sequence, and has been shown 
to localize to both the nucleus and mitochondria (38, 91). 
Loss of Ntg1p has been reported to result in a range of 
phenotypes, from no effect on mtDNA point mutants, to 
subtle increases, and finally decreases in point mutations, 
frameshifts, spontaneous direct repeat mediated 
deletions, and mtDNA copy number (34, 63, 92, 93). 
This reason for this variation is still unclear, but it has 
been proposed that yeast strain-specific differences in 
gene expression, or in experimental design may play a 
role (63).

Despite the fact that BER is the best characterized 
pathway in mitochondria, in both yeast and mammals, 
significant questions remain. For example, while it is 
known that a number of BER components are shared 
between the nucleus and mitochondria in both systems, 
the signals and regulatory factors involved in sorting the 
proteins into the appropriate cellular compartment, under 
the appropriate conditions are not well understood. The 
dynamic localization of yeast Ntg1p is perhaps the best 
characterized. A  single isoform contains an N-terminal 
mitochondrial targeting sequence, as well as nuclear 
localization signals that must be regulated to target the 
protein to either compartment (38, 91). Griffiths, et al. 
have demonstrated that localization of Ntg1p changes 
in response to damage concentrated in the different 
organelles. Exposure of yeast cells to H2O2 results 
in enrichment of Ntg1p-GFP fusion in the nucleus. 
Treatment of cells with antimycin, in addition to H2O2, 
results in increased mitochondrial oxidative stress. 
Following this treatment, increased mitochondrial reactive 
oxygen species (ROS) and GFP fluorescence were 
observed, indicating that the increased mitochondrial 
damage triggered a relocalization of the glycosylases 
enzyme to mitochondria. This localization was dependent 
on the presence of mtDNA, suggesting that there is a 
mechanism for sensing the damaged genomes, and 
not simply elevated ROS (94). A clear understanding of 
the signals required for the cell to recognize damage in 
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the different subcellular compartments and respond to 
by sorting Ntg1p to the appropriate compartment will 
require additional studies, however, sumoylated Ntg1p is 
found in the nucleus, suggesting that post-translational 
modification of the protein may be important (94, 95).

4. MISMATCH REPAIR

Our current understanding of mismatch repair 
(MMR) remains limited compared to our knowledge of 
mitochondrial BER. Mason et al. first reported MMR activity 
in rat liver mitochondrial extracts (96). In contrast to BER, 
in which shared nuclear and mitochondrial isoforms of 
proteins are prevalent, vertebrate mitochondrial MMR is 
not dependent on known nuclear MMR proteins. Instead, 
mitochondrial MMR in vertebrates is dependent on the 
Y box binding protein, YB-1 (97). YB-1 is multifunctional 
protein, implicated in a wide variety of nuclear processes 
ranging from transcriptional regulation to mRNA 
splicing (98-101). YB-1 had previously been shown 
to preferentially separate DNA duplexes containing 
mismatches or cisplatin induced crosslinks (102). 
The depletion of YB-1 led to the decreased ability of 
mitochondrial extracts to perform MMR in vitro, and the 
cells displayed an increase in mtDNA mutagenesis (97). 
These observations support the model that YB-1 functions 
in a mitochondrial MMR pathway that appears to be 
unique from the MSH2-dependent MMR that occurs in 
the nucleus.

In yeast, MMR activity has not been clearly 
demonstrated despite the localization of the bacterial 
MutS homolog, Msh1p, to mitochondria (103, 104). 
Purified Msh1p binds DNA mismatches in vitro, and early 
models placed Msh1 in a mitochondrial mismatch repair 
pathway (105). However, the catastrophic loss of mtDNA 
integrity in an msh1-∆ strain was not entirely consistent 
with a primary function in MMR. Pol γ proofreading 
mutants show mutation rates orders of magnitude 
above wild-type rates, yet retain the ability to maintain 
mtDNA (106). In addition, substitutions in Msh1p residues, 
conserved among the MutS homologs required for MMR, 
do not display phenotypes analogous to the nuclear 
counterparts (107, 108). Genetic studies suggest a more 
complicated view, in which Msh1p is involved in multiple 
pathways of mtDNA maintenance (87, 103, 105, 107, 108). 
The MutS homologs in the nucleus of eukaryotes are 
involved in a diverse set of DNA transactions including, 
mismatch repair, oxidative damage repair, mitotic and 
meiotic recombination (109-115). It is perhaps not 
surprising then, that in vivo evidence supports a role 
of Msh1p in mitochondrial BER and recombination in 
yeast (87, 93, 107, 108, 116). Whether Msh1p participates 
in additional pathways required for the maintenance 
or repair of the mitochondrial genome remains to be 
determined. Interestingly, YB-1 also has been shown to 
function in BER by stimulating the glycosylase activity 
of NEIL2 and NTHL1 in nuclear BER (117, 118). Due to 

the limited, albeit increasing, repertoire of repair proteins 
in the mitochondria compared to the nucleus it is not 
surprising that multifunctional proteins, such as YB-1 and 
Msh1p, have been co-opted to perform in multiple, and 
perhaps novel, mitochondrial repair pathways.

5. HOMOLOGOUS RECOMBINATION, NON-
HOMOLOGOUS END JOINING AND DOUBLE-
STRAND BREAK REPAIR

Homologous recombination (HR) activity has 
been well documented in S. cerevisiae mitochondria. 
HR in yeast is particularly easy to detect due to the 
biparental inheritance of mtDNA in this organism. As 
such, recombination between differentially marked 
mitochondrial genomes can be easily measured. 
The frequency of recombination is quite high in yeast 
mitochondria, as genetic markers on yeast mtDNA 
separated by 1kb or more behave as unlinked genes in 
crosses (18).

Due to the inheritance of only maternal mtDNA 
in mammalian systems, HR is more difficult to detect. It 
has been demonstrated that human mitochondrial protein 
extracts are capable of catalyzing the HR of plasmid 
DNA substrates in vitro (119). The in vivo relevance was 
demonstrated in patients that inherited both paternal 
and maternal mtDNA, in which recombinant mtDNA 
molecules were readily detected (120, 121). Despite this 
support for HR pathways in both mammalian and yeast 
mitochondria, our knowledge of the proteins involved 
and the molecular mechanisms that underlie these 
events is lacking in comparison to the nuclear models. 
Below we will begin with an overview proteins implicated 
in mitochondrial HR in yeast and/or mammals and then 
explore DSB repair specifically.

Mhr1p was originally identified as a yeast 
mitochondrial protein that is required for gene 
conversion events, but has little effect on crossing over 
in mtDNA (122). The mhr1-1 mutants also exhibited a 
temperature sensitive loss of mtDNA (122). Subsequent 
studies revealed that Mhr1p promotes homologous 
pairing of DNA in an ATP independent manner (123). In 
mammalian cells, mitochondrial genomes are generally 
monomeric circular structures. However, in yeast, the 
mtDNA is found predominantly as long linear concatemers, 
with circular monomers being found primarily in the 
budding daughter cell (123). This led to the proposition of 
a rolling circle mechanism of replication and inheritance 
of the mitochondrial DNA that is dependent on Mhr1p in 
S. cerevisiae (reviewed in 124). In this recombination 
initiated rolling circle replication model, Mhr1p promotes 
the homologous base pairing of a 3’ single-stranded tail 
with an intact circular double-stranded mtDNA molecule. 
This leads to the formation of a concatemeric DNA that 
is then transmitted into the daughter cell during cell 
division. The amount of concatemeric DNA increases 
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when MHR1 is overexpressed and is reduced in cells 
expressing the mhr1-1 mutant allele, further supporting 
the role of Mhr1p in the generation of these concatemers 
of mtDNA (123). Furthermore, recent studies on 
hypersuppressive r-  genomes demonstrate that ROS-
induced Ntg1-dependent DSBs can stimulate mtDNA 
replication that is dependent on Mhr1p. The observation 
that cells stressed with ROS exhibit an increase in mtDNA 
copy number is consistent with this model. However, 
it is important to keep in mind that the mechanisms of 
replication and inheritance of r- genomes, and especially 
hypersuppressive r-  genomes are likely to be different 
than r+ genomes, as the protein requirements are not 
the same. For example, replication of the wild-type 
mitochondrial genome requires the mitochondrial RNA 
polymerase, Rpo41p (125). Fangman, et al. demonstrated 
that two petite genomes, one of them hypersuppressive, 
could be maintained independently of Rpo41p (126). All 
r- petite genomes do not share the same requirements, 
however, as Mgm101p is required for the maintenance 
of r+ and non-hypersuppressive r-  genomes, while 
hypersuppressive petites are maintained in its 
absence (127). In addition, recombination between r+ 

genomes is either unaffected, or only slightly affected in 
cce1-Δ and mhr1-1 backgrounds, while recombination 
between r- genomes or r+ and r- genomes is significantly 
altered (122, 128).

Cce1p is a mitochondrially-localized protein 
with cruciform cutting activity in vitro. This protein is 
associated with the inner membrane, and is proposed to 
resolve Holliday junctions that result from recombination 
events (129, 130). The loss of CCE1 has surprisingly little 
effect on mitochondrial genome stability, however, as 
CCE1 deletion does not result in a significant decrease 
in the mtDNA recombination rates, or a substantial 
increase in the generation of r- genomes. Loss of Cce1p 
results in aggregation of mtDNA molecules, linked by 
recombination junctions, that are organized into fewer 
nucleoids (108).

In wild-type yeast cells, during amino acid 
starvation, the mtDNA is divided into a large number of 
nucleoids. This parsing of mtDNA is dependent on Cce1p, 
thus suggesting that the resolution of recombination 
intermediates is required to disperse the mtDNA into new 
nucleoids. According to the mtDNA replication model 
proposed by Shibata and Ling, Cce1p also functions in 
a crossing over recombination pathway that generates 
concatamer intermediates independently from the Mhr1p 
dependent rolling circle replication and transmission 
model (124). In the absence of functional Mhr1p and 
Cce1p, yeast cells are devoid of mtDNA, possibly due 
to the cell’s inability form concatemers, and thus the 
prevention of mtDNA transmission from the mother cell 
to the budding daughter cell. It is remains unknown what 
initiating events or lesions generate the Holliday junctions 
that Cce1p may act upon.

Studies in yeast, using a reporter strain that 
allowed for the measurement of direct repeat mediated 
deletions (DRMD), have permitted a more direct 
interrogation of the possible HR mechanisms at work in 
mitochondria in mitotic cells. In addition, these reporters 
aid in the identification of the proteins involved (29). Initial 
studies concluded that in this context Cce1p had no 
effect on the generation of spontaneous deletions (29). 
This further supports a model in which there are several 
HR-like pathways that appear to be at least partially 
redundant.

Additional studies using the DRMD reporter 
system concluded that the generation of spontaneous 
DRMDs was synergistically dependent on the non-
homologous end joining (NHEJ) complexes, Mre11p, 
Rad50p and Xrs2p (MRX), and Ku70p, and Ku80p (Ku). 
This result suggests that end joining at spontaneously 
occurring double strand breaks may play a role in 
generating deletions (28). In vitro studies with mammalian 
mitochondrial extracts have demonstrated the capacity 
to catalyze DNA end-joining activities (131), but proteins 
responsible for this activity remain unknown. The repair 
of induced mitochondrial DSBs in mice did result in one 
detectable deletion event that occurred via NHEJ (132). 
This implies that in mammalian mitochondria, while 
NHEJ is possible, it may not be the predominant DSB 
repair mechanism. Nuclear NHEJ candidates have been 
localized to the mitochondria in both yeast (Rad50p and 
Mre11p) (133) and mammalian cells (Ku80 isoform, 
MRE11) where they may function in a mitochondrial 
NHEJ pathway. (134, 135)

Several other nuclear repair proteins have 
been shown to have dual mitochondrial localization as 
well. The RecA homolog, Rad51, which is important 
for nuclear homologous recombination (HR), has been 
localized to the mitochondria in both mammals and yeast 
where it was shown to bind directly to mtDNA (31, 136). 
In mammals, the recruitment to mitochondria of Rad51 
and its paralogs, Rad51C and Xrcc3, is stimulated after 
the cells have been exposed to oxidative stress (136). 
The specific enrichment of Rad51 after oxidative stress is 
dependent on active mtDNA replication (17). Previously 
it had been observed that both mammalian and yeast 
mtDNA copy number is temporarily elevated in response 
to oxidative stress (137, 138). In mammalian cells it 
was shown that stress induced increases in mtDNA 
copy number are dependent on Rad51  (136). One 
could postulate that that this temporary increase in 
copy number is due to a mechanism similar to the ROS-
induced MHR1-dependent replication model proposed 
above in yeast.

Recent studies in yeast clearly demonstrated a 
role for the HR proteins Rad51p, Rad52p, and Rad59p 
in the generation of both spontaneous deletions and 
those initiated by an inducible double-strand break (31). 
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Interestingly Rad51p promotes the generation DRMDs 
in the mitochondria, whereas in the nucleus Rad51p 
inhibits the generation of similar deletion products (31). 
This suggests that there are unique mitochondrial HR 
pathways that have yet to be characterized and that 
these pathways may utilize nuclear HR proteins in novel 
ways.

Double-strand breaks (DSBs) are extremely 
problematic DNA lesions if not efficiently repaired. DSBs 
can occur spontaneously due to ROS-induced damage, 
replication stalling, or radiation. While it is not always 
clear what initiates spontaneous recombination events, 
they can be stimulated by DSBs. There are two primary 
DSB repair pathways in the nucleus, HR and NHEJ 
(reviewed in 139, 140, 141). HR is typically considered 
error-free repair due to the use of homologous sequences 
as template for the repair the DSB. However, there are 
sub-pathways of HR, such as single-strand annealing 
(SSA), that are quite mutagenic. SSA occurs when a 
DSB forms between repetitive elements. After 5’ end 
resection has occurred, these repetitive elements will 
anneal. The annealing of the repetitive elements with 
3’ non-homologous single stranded tails, generates flap 
structures that can be cleaved by endonucleases and 
ligated to generate a deletion that has lost of one of the 
repeats and the intervening sequences (142, 143).

NHEJ requires minimal end processing, 
followed by ligation of the processed ends. The end 
processing often will lead to small insertions or deletions 
at the site of the DSB thus making NHEJ more mutagenic 
than classical HR. There is also a sub pathway of 
NHEJ, microhomology-mediated end joining (MMEJ) 
that utilizes microhomologies that are revealed during 
end processing to facilitate the ligation of the broken 
ends (144, 145). This typically leads to larger deletions 
than classical NHEJ, but smaller deletions than SSA.

This type of mitochondrial mutation is important, 
because mtDNA deletions are a commonly associated 
with aging, cancer, Kearns-Sayre syndrome, myopathies, 
progressive external opthalmoplegia, diabetes and 
deafness (146, 147). The majority of mtDNA deletions 
(85%) are flanked by short direct repeats (148-150). It 
is plausible then that these deletions are generated due 
to mutagenic DSB repair pathways such as SSA, NHEJ, 
and MMEJ.

The study of DSB repair in mitochondria is an 
emerging area. Initial studies constitutively expressed 
mitochondrially targeted PstI (mitoPstI) in mice (132). 
These mice exhibited myopathy associated with mtDNA 
depletion and had mitochondrial deletions that closely 
resembled those in humans. The depletion of mtDNA 
suggested that the mouse mitochondrial DSB repair 
network was incapable of handling the continuous 
cleavage of the mtDNA, which led to degradation of a 
significant fraction of the population of mitochondrial 

genomes. This degradation could be due to a regulated 
pathway, or simply result from the generation of a large 
proportion of unstable linear mtDNA fragments (151, 152).

Later studies utilized a neuronal specific 
tetracycline inducible mitoPstI system, to study the effects 
of more transient DSBs on mouse mtDNA (153). These 
mice did not exhibit any mtDNA depletion after transient 
expression of mitoPstI suggesting that if mitochondrial DSB 
levels are below a threshold, the cell can effectively repair 
them (153). In mice that had undergone DSB induction 
the authors were able to detect mtDNA with deletions 
that were not present in control samples. Analysis of the 
deletion products, from this study and others, indicate that 
error prone pathways, likely HR and NHEJ, can generate 
mtDNA deletions after DSB induction (153, 154).

Recent in vitro studies demonstrated significant 
MMEJ activity in rat mitochondrial protein extracts (155). 
The MMEJ efficiency increased as homology length 
increased. In vitro MMEJ activity was dependent on 
known nuclear MMEJ proteins, CtIP, FEN1, MRE11, 
Ligase III, and PARP1, as the efficiency of MMEJ 
reactions was impaired in extracts immunodepleted for 
these proteins (155). This points to MMEJ as yet another 
mutagenic repair pathway that can lead to the generation 
of mtDNA deletions. Reminiscent of yeast petite 
genomes (18), these deleted genomes were present 
in much higher proportions in older mice relative to 
younger mice suggesting that the smaller genomes may 
have a replication or inheritance advantage (153). This 
phenomenon may explain why aging individuals typically 
have an accumulation of deleted mtDNA molecules (156).

In yeast, we have developed an inducible DSB 
system that generates a single mitochondrial DSB within 
the ARG8m reporter gene. Utilizing this system we were 
also able to detect deletion products after the induction 
of the DSB (28, 31), suggesting conserved mutagenic 
DSB repair pathways between yeast and mammalian 
systems. In addition to the deletion products, reciprocal 
products that are only generated during classical HR were 
also detected (28, 29). This would suggest that there at 
minimum two pathways acting at mitochondrial DSBs, 
those that generate reciprocal products (HR) and those 
that do not (SSA or MMEJ). Mutant analyses using this 
system have shown that the yeast mitochondrial DSB-
induced deletions are partially dependent on Rad51p, 
Rad59p and the Ku and MRX complexes (28, 31). The 
contribution of Rad51p to the generation of deletions in 
this context is in contrast to the nuclear SSA model as 
previously stated (157), since nuclear SSA is a Rad51p-
independent process.

6. LESION BYPASS

The conversion of DNA lesions to mutations is 
an active process in the cell. As described for DSBs, error 
prone repair pathways may generate mutations, however, 
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mutations may also be introduced during DNA replication. 
Bulky lesions block the progress of most replicative 
polymerases, as the stringent substrate requirements 
of the active sites, and the presence of exonuclease 
proofreading domains inhibit progress across from the 
damaged region (158-160). Specialized polymerases 
that have the ability to bypass lesions have been 
identified in diverse organisms from bacteria to humans. 
These translesion polymerases can allow replication to 
continue, albeit at the cost of decreased fidelity. These 
error-prone enzymes clearly play an important role in the 
replication of the genome after damage, as the majority 
of mutations induced by UV-light in the nucleus of yeast, 
for example, are dependent on the presence of the error-
prone polymerase, Pol zeta comprised of Rev3p and 
Rev7p (161-163). While these polymerases do not play a 
role in the repair of DNA, they would be more accurately 
considered a pathway of damage tolerance, they play an 
important role in the cellular response to lesions.

Early experiments with yeast indicated that EryR 
point mutations could be efficiently induced by exposure 
of cells to UV light (164), suggesting the presence of 
translesion synthesis in this organelle. Subsequent 
studies revealed that UV-induced cytoplasmic 
petites, both spontaneous and induced frameshifts, 
and microsatellite instability were dependent on Pol 
zeta (20, 165). Surprisingly, however, loss of Pol zeta 
resulted in increased point mutations as measured by 
EryR, suggesting that there is alternative pathway of 
error-prone damage tolerance in yeast mitochondria (20). 
Baruffini, et al. confirmed this observation, and further 
demonstrated that overexpression of a mitochondrial-
specific mutant of REV3, with its protein partners, can 
suppress the increased mutagenesis of Pol γ mutator 
alleles (166). This finding may implicate Pol γ or at least 
some of the pathogenic mutant forms of the enzyme, in 
the bypass of DNA lesions.

REV3, the catalytic subunit of Pol zeta has 
recently been localized to mitochondria in mammalian 
cells (167), and mutations, both deletions and base 
substitutions, have been shown to accumulate in human 
skin, in association with exposure to UV light, suggestive 
of error-prone bypass (168-170). In vitro experiments 
with purified human Pol γ indicate that this enzyme 
bypasses thymidine dimers with dramatically reduced 
efficiency relative to undamaged templates (171). In 
contrast, purified Pol γ can perform error-prone synthesis 
across from acrolein derived DNA adducts at relatively 
high efficiency. Acrolein is one of the products of lipid 
peroxidation, and a common environmental toxin. As 
such, the error-prone bypass of these adducts by Pol γ 
has been proposed to be a significant source of damage-
induced mutations in mammalian cells (172).

The recent identification of PrimPol, an enzyme 
active in both the nucleus and mitochondria, has begun 

to change the view of Pol γ as the “jack of all trades” in 
mtDNA synthesis in vertebrates. As its name suggests, 
the enzyme has DNA primase activity as well as DNA-
dependent DNA polymerase activity. Loss of PrimPol 
results in defects in mitochondrial synthesis (173). In 
addition, the purified enzyme is capable of synthesizing 
on templates with DNA lesions, including 8-oxo-G, 
pyrimidine photoproducts, and abasic sites, suggesting 
that, in mammals, this polymerase may be the source of 
significant mitochondrial lesion bypass (173, 174).

7. DEGRADATION

Bypass of pyrimidine dimers allows replication 
to proceed, but does not remove the lesion from the 
template strand. In the nucleus, damage of this type is 
removed by the nucleotide excision repair pathway. Early 
experiments failed to reveal evidence of mitochondrial 
DNA repair of pyrimidine dimers (175, 176). This led to 
the proposition that mtDNA was not repaired and instead 
the compromised genomes were simply degraded. 
Further support for this hypothesis was garnered 
when it was then determined that the mitochondrially-
localized endonuclease G preferentially cleaved DNA 
opposite SSBs generated after oxidative damage (177). 
Recent studies have provided more direct evidence that 
selective mtDNA degradation may function as a quality 
control measure in the mitochondria that removes 
highly mutagenized genomes from the replication 
cycle (132, 154, 178-186).

Treating both yeast and mammalian cells with 
ethanol led to an increase in oxidative stress to the 
cells. After ethanol treatment, these cells experienced 
a decrease in mtDNA copy number, followed by a 
rebound to wild-type copy number levels after the stress 
was removed (181-183). A  similar phenomenon was 
observed in a rat model for cerebral ischemia/reperfusion 
where a transient loss in mtDNA was followed by a 
full recovery of copy number to wild-type levels within 
24 hours (180). In order to more directly measure the 
effect of oxidative damage on mtDNA copy number, 
Shokolenko et al. induced oxidative stress by inhibiting 
complex I of the ETC (185). This treatment leads to an 
increase in superoxides in the matrix. After stimulation of 
mitochondrial ROS, they were able to detect an increase 
in SSBs and abasic sites as well as a decrease in mtDNA 
copy number. This loss of mtDNA was exacerbated when 
the BER repair pathway was inhibited, suggesting that 
there is a competition between repair and degradation of 
the mtDNA under oxidative stress (185).

Recently it has also been shown that 
inducing chronic mitochondrial DSBs, by expressing 
various mitochondrially-targeted restriction 
enzymes in mammalian cells, will lead to mtDNA 
depletion (132, 153, 154, 179). Yeast mitochondria 
appear to tolerate the induction of exogenous DSBs 
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better, as there is no detectable loss of mtDNA after DSB 
induction (31, 187). This may result from an increased 
capacity for DSB repair in yeast, as HR may be more 
robust (18), or it may simply be that the experimental 
system allows for the generation of more limited, and 
effectively repaired, DSBs.

Species-specific differences in DSB repair could 
also be due to the differences in the physical organization 
of yeast mtDNA and mammalian mtDNA. Mammalian 
mtDNA is estimated to be present at 1.45 copies per 
nucleoid, while yeast nucleoids can contain up to 10 
copies (6, 188, 189). In order for mammalian mtDNA to 
find a suitable partner for HR, it may need to interact with 
mtDNA from a separate nucleoid, which does not appear 
to occur frequently in mammalian cells (190, 191). It 
is worth noting such interactions have not been tested 
in cells that have undergone DSB induction, or other 
genotoxic stress. We currently have little understanding 
of nucleoid dynamics under stressed conditions. While 
this evidence clearly demonstrates that under extreme 
stress, cells struggle to maintain their mtDNA, it remains 
unclear when this loss of DNA is simply a result of the 
mitochondrial genome becoming extensively fragmented 
due to the mitochondrial repair networks being 
overwhelmed, or if there is an active pathway in place 
that recognizes highly damaged mtDNA and targets it 
for degradation. This can be clarified by identifying the 
protein(s) involved in sensing the damaged genomes 
and the endo/exonuclease(s) required for degradation, 
as well as garnering a better understanding of nucleoid/
mtDNA dynamics under stress.

8. CONCLUDING REMARKS

Eukaryotic cells clearly have a diverse suite 
of mtDNA repair and tolerance pathways that act in 
concert to maintain an error free mitochondrial genome. 
Developing additional, novel mtDNA reporters in yeast 
will continue to provide us with necessary tools to 
identify new proteins involved in repair. In addition, the 
powerful haploid genetics in yeast will allow us to better 
understand redundancy in overlapping repair pathways. 
While we continue to identify more DNA repair proteins 
that localize to both the nucleus and mitochondria, we 
are also identifying mitochondrial-specific players. 
A clear understanding of the integration of these factors 
will require studies to elucidate the signals that recognize 
mtDNA damage and modulate the dynamic localization 
of proteins shared between nuclei and mitochondria.

It is important to recognize that mitochondria 
themselves are dynamic structures, undergoing fission 
and fusion, and changes to distribution throughout the 
cell in response to environmental and metabolic signals. 
In this context, mitochondria often serve as the integration 
point for cellular inputs. In future studies, it will be vital 
to begin to integrate mtDNA metabolism and inheritance 
with these morphological changes.
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