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1. ABSTRACT

Mitochondria are the cell’s power plant to 
satisfy the energy demands. However, dysfunctional 
mitochondria can cause overproduction of reactive 
oxygen species (ROS), oxidative stress, and alteration 
of calcium homeostasis, which are the hallmarks 
of mitochondrial diseases. Under prolong oxidative 
stress, repeated cytosolic calcium elevations even only 
transiently, can lead to activation of some enzymes. 
One calcium-activated enzyme with demonstrated 
pathophysiological important in mitochondrial disease 
is tissue transglutaminase (TG2). TG2 is known as 
a post-translational modification (PTM) enzyme that 
is induced by oxidative stress. Compared to other 
types of PTMs, the physiological significance of TG2 
mediated PTM is just beginning to be understood. 
Once activated, TG2 can modulate transcription, 
inactivate metabolic enzymes, and cause aggregation 
of critical proteins. Recent data indicate that TG2’s 
activity not only can modulate the assembly of 
respiratory chain complexes but can also modulate 
the transcription of critical genes including PGC-1a 
and cytochrome C that are important for function and 
biogenesis of mitochondria. Here, we summarize 
dysfunctional mitochondria in diseases such as in 
neurodegenerative disorders can modulate TG2’s 
activity and function. TG2 is also important for normal 
function of mitochondria. 

2. INTRODUCTION

Mitochondria are the power plants of the cell 
and produce ATP to satisfy the cell’s energy demands. 
The leakage of electrons from the mitochondria’s 
electron respiratory chain and the generation of 
reactive oxygen species (ROS) were long referred to 
as a byproduct of oxidative phosphorylation and is one 
of the major sources of’ intracellular ROS. Superoxide 
anion (.O2

-), hydrogen peroxide (H2O2), and hydroxyl 
radical (.OH) are the representative ROS in living cells. 
ROS are highly reactive oxygen-containing molecules 
that can oxidize and thus damage biologically important 
molecules such as proteins, fatty acids, and genomic 
DNA. Under normal conditions, ROS are removed 
by cellular antioxidant systems such as superoxide 
dismutase (SOD), catalase, glutathione, and 
thioredoxin. However, under pathological conditions 
with abnormal mitochondrial function, when the rate 
of ROS generation exceeds the limit of the cellular 
antioxidant system, oxidative stress occurs. Increased 
in oxidative stress is common in the development of 

diseases including cancer, cardiovascular, diabetes, 
autoimmune and neurodegenerative diseases (1). 
Damage from free radicals is also common in brains 
from patients with age-related neurodegenerative 
disorders. Also, a dysfunctional mitochondria is 
associated with abnormal cellular calcium levels, which 
could activate the intracellular calcium-dependent 
enzyme and cause further cellular injury (2). 

Mitochondria play a critical role in the 
maintenance of intracellular calcium homeostasis and 
transmission of calcium signals. Under physiological 
condition, intracellular calcium level is tightly regulated 
by mitochondria via uptake and efflux of Ca2+ ions in 
cooperation with the endoplasmic reticulum (ER). 
In response to stimuli, Ca2+ ions released from ER 
induce a series of signal cascades, and this Ca2+ 

signals need to be interrupted by mitochondrial 
uptake and sequestration of Ca2+ ions in due course 
(3). Depending on the mitochondrial membrane 
potential and calcium transporters, the influx of Ca2+ 

ions into mitochondria boosts energy metabolism via 
directly activating several key metabolic enzymes 
and indirectly regulating metabolites transporters (4). 
On top of that, calcium buffering capacity enables 
mitochondria to modulate Ca2+ signaling that controls 
fundamental cellular processes (3, 5). However, 
excessive accumulation of mitochondrial Ca2+ is 
thought to cause mitochondrial depolarization and 
consequently trigger cell death (6). Massive Ca2+ influx 
attenuates the mitochondrial membrane potential 
leading to the neuron death that was demonstrated to 
be the primary event in glutamate neurotoxicity (7). 

A large number of evidence manifests that 
mitochondrial calcium overload and subsequent 
dysfunction are involved in the pathogenesis of 
neurodegenerative disorders, mitochondrial diseases, 
and diabetes (5, 8). Excessive influx of Ca2+-elicited 
mitochondrial dysfunction has been implicated in 
excitotoxic neuronal death in neurodegeneration and 
brain injury (8). Abnormal intracellular calcium also 
occurs in different models with mitochondrial electron 
transport chain defects (9, 10). Aberrant handling of 
mitochondrial Ca2+ ions was observed in primary skin 
fibroblasts from Myoclonus Epilepsy with Ragged-
Red Fibers (MERRF) and Leigh’s syndrome (11, 
12). Abnormal calcium buffering of mitochondria and 
elevation of cytosolic Ca2+ ions has been reported in 
human cells harboring mitochondrial DNA (mtDNA) 
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mutation associated with MERRF and Mitochondrial 
myopathy, Encephalopathy, Lactic Acidosis, and 
Stroke (MELAS) syndrome (13, 14). A study showed 
that increased Ca2+ release from ER and consequent 
overload of cytosolic and mitochondrial Ca2+ occurs 
on respiratory enzyme Complex II-deficient fibroblasts 
caused by genetic mutation or inhibitor treatment (12). 
A similar phenomenon is observed in cells treated 
with mitochondrial ATP synthase inhibitor, oligomycin 
A. Not only that mitochondrial respiratory defects-
evoked calcium dyshomeostasis could enhance the 
susceptibility to excitotoxicity in neuron via abnormal 
activation of Ca2+-dependent protein kinase (15, 16). 
The aspects mentioned above indicate mitochondrial 
calcium homeostasis as a potential target for 
mitochondria-based pharmacological strategies. 

Other examples of “mitochondrial diseases” 
are age-related diseases including Alzheimer’s disease 
(AD) Parkinson’s disease (PD) and Huntington’s 
disease (HD) (1). In these disorders, distinct 
mitochondrial abnormalities culminate in oxidative 
stress, energy dysfunction, and aberrant homeostasis 
of cytosolic calcium (1). Under prolong oxidative 
stress, repeated cytosolic calcium elevations even only 
transiently, can lead to activation of some enzymes 
(1). One calcium-activated enzyme with demonstrated 
pathophysiological important in HD and AD is tissue 
transglutaminase (EC 2.3.2.1.3.; protein-glutamine 
γ-glutamyltransferase; designated as TG2). TG2 is 
known as a cross-linking enzyme that can modulate 
transcription, inactivate metabolic enzymes, and 
cause aggregation of critical proteins (17). Recently, 
TG2 was also found to display other functions (17, 18). 
These data indicate that TG2 can silence expression 
of genes involved in compensating for metabolic stress 
(1). Here, we summarize the role of mitochondria in 
modulating TG2’s function in “mitochondrial diseases” 
such as neurodegenerative disorders and the role of 
TG2 in regulating mitochondrial function. TG2 is known 
as a post-translational modification (PTM) enzyme 
with transamidation and other activities (see below) 
(17, 18). Compared to phosphorylation, acetylation, 
and glycosylation in cell biology, the PTM mediated 
by TG2 is just beginning to be understood. Oxidative 
stress induces TG2 and TG2 is localized in many 
intracellular compartments including mitochondria. 
Abnormal of TG2 expression and activity is implicated 
in the development of various diseases related to 
aging (1, 17). 

3. TG2: A MULTIFUNCTIONAL ENZYME

TG2 belongs to a family of closely related 
thiol enzymes called transglutaminases (TGs) that 
are derived from a common ancestral gene (17, 
19, 20). At least eight enzymatically active TGs 
include blood coagulation factor XIII A-chains, TG1-
7 and one inactive protein band 4.2. (17). Except for 

TG2, other TGs are expressed as zymogens and 
requires protease cleavage to become an active 
transglutaminase (17, 21, 22). Unlike other TGs, TG2 
is unique in that it is ubiquitous and a multifunctional 
enzyme with Ca+2-dependent transamidation activity 
(TGase), Mg+2-dependent GTP/ATP binding and 
hydrolysis, and protein disulfide isomerase (PDI) 
activities with distinct substrate binding and enzyme 
catalytic domains (17, 19, 23, 24). Moreover, there 
are non-enzymatic functions of TG2 including to 
functioning as a cell-surface adhesion molecule, to 
bind NO, and to serve as a co-receptor for integrins 
and the G-protein coupled receptors (GPCR) including 
ab-adrenergic receptor (aAR) and GPR56. 

TG2 is also implicated in diverse biological 
functions including cell death, cytoskeleton 
rearrangement, gene regulation, and signaling 
function (25-28). TG2 is implicated in promoting 
programmed cell death, regulation inflammation, 
serving as a therapeutic target in neurodegeneration, 
fibrosis, autoimmunity, hypertension, Celiac disease 
and cardiovascular disorders (17). 

3.1. Transamidation reaction (TGase function)

Depending on the pH and availability of the 
substrates, TG2 displays three types of transamidation 
reactions which can alter the solubility of the 
crosslinked protein substrates (18). We will describe 
these reactions in the following sections. 

3.1.1. Inter- or intra-molecular crosslinking

TG2 catalyzes a Ca+2-dependent crosslinking 
reaction between a peptide-bound g-glutamyl 
(Q-substrate) residue (the acyl-donor) and a primary 
amine (the acyl-acceptor, K substrate). The most 
common primary amine acyl acceptors are the 
e-amino groups of peptide-bound lysine (peptide-
bound K-substrate) residues or primary amino groups 
of natural occurring biogenic amines or polyamines 
(free K-substrate)(Figure 1). The end product of the 
crosslinking reaction is the formation of a g-glutamyl-e-
lysine (called isopeptide, a biomarker of crosslinking) 
bond between two proteins or between a protein and 
an amine. The isopeptide bonds can be either in the 
same protein (intra-) or between two proteins (inter-) 
(Figure 1A). At low substrate concentrations, the intra-
molecular crosslinking reaction is preferred (29). The 
inter-molecular cross-linking reaction is kinetically 
favored at pH > 7 and higher substrate concentrations. 
The crosslinking reactions result in post-translational 
modifications of proteins that can alter their solubility, 
structure, and function (17, 21, 22). 

Many Intra- and extracellular proteins have 
been identified as TG2 substrates (17). To date, there 
are at least 150 substrates reported on TRANSDAB 
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database (http://genomics.dote.hu/wiki/index.php/
Category:Tissue_transglutaminase). There are 
considerably much more TG2’s substrates identified 
in the database than other TGs, due either to more 
research on TG2 or ubiquitous nature of the enzyme. 
The intracellular protein substrates include K rich 
nuclear core histones, huntingtin, NFkB inhibitor 
alpha (IkBa) and mitochondria’s key enzymes in 
glycolysis and TCA cycle including glyceraldehyde-3-
phosphate dehydrogenase (G3PDH), a-ketoglutarate 
dehydrogenase (KGDHC) and aconitase (30-34). 
Cytoskeletal proteins including actin, tubulin, myosin 
and ROCK2 with roles in cell motility and adhesion 
are well defined TG2 substrates (21, 35). The G3PDH 
molecule was shown to be covalently bound to several 
proteins involved in neurodegeneration caused by 
polyQ expansion diseases (30, 36). Extracellular 
crosslinking is an important PTM of extracellular matrix 
(ECM) molecules for their mechanical and enzymatic 
stabilization. There are some ECM proteins including 
fibronectin (FN), collagens, osteopontin, nidogen/
entactin, laminin, vitronectin and osteonectin that 
modulate matrix’s structure and function (17, 19, 37). 

3.1.2. Aminylation

Aminylation refers to the process by which 
primary amines (free K-substrate) including either 
biogenic/polyamines are covalently coupled to a 

peptide-bound glutamine residue(s) by TGs (18, 
38-41). When TG2 is in the vicinity of a peptide-
bound Q residue, and there are abundant primary 
amine substrates available (i.e., biogenic amines/
polyamines), the enzyme catalyzes the incorporation 
of the primary amino group to glutamine resulting in 
the formation of a g-glutamyl-amine bond (Figure 1B)
(17, 18). If multiple glutamines are modified within the 
protein, this type of PTM is called polyaminylation, 
while modification of only one glutamine residue is 
called monoaminylation. The term, “serotonylation” 
or “histaminylation”, are used to refer to when 
serotonin or histamine, respectively, are crosslinked 
to target proteins by a TG-mediated reaction (42-45). 
Comparing to Q substrates, TG2 shows less specificity 
toward K-substrates (46-48). TG2 prefers aliphatic 
amines with a chain equal in length to the side chain 
of a lysine residue (7.2.-7.6. Å) (48, 49). As synthetic 
primary amine inhibitors are relatively non-toxic to 
cells, they are widely used as intracellular inhibitors of 
TG by competing with natural intracellular amines (48). 
Cystamine is a non-specific and unique primary amine 
inhibitor known to inactivate the enzyme, probably by 
forming mixed disulfide bonds with TG2 (48).

Both biogenic amines and polyamines are highly 
charged low molecular weight aliphatic polycations. 
They are ubiquitously present in all living cells and 
implicated to play a role in a large number of cellular 

Figure 1. The Transamidation Reactions Catalyzed by TGase/TG2. In the presence of calcium, TG2 can catalyze three different types of transamidation 
reactions and the reaction products release ammonia (NH3). (A). Inter- or intra-molecular crosslinking between Q- and K-containing peptides and 
forming a isopeptide bond; (B), Aminytion reaction between Q-peptide and primary amines (polyamines or biogenic amines). If a monmoamine (such 
as histamine) is involved, the reaction will form an -glutamylamine bond between protein and amine. If a diamine (such as putrescine) is involved in 
the crosslinking, the reaction will form a bis-e-glutamylamine bond between proteins. (C). Deamidation reaction to convert peptide bound glutamine (Q) 
residue to glutamic acid (E) residue. The reversed reaction of A or B is catalyzed by the isopeptidase activity of TG2.

http://genomics.dote.hu/wiki/index.php/Category:Tissue_transglutaminase
http://genomics.dote.hu/wiki/index.php/Category:Tissue_transglutaminase
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processes (39, 42). Serotonin (5-hydroxytryptamine; 
5-HT), histamine, catecholamines, noradrenaline, and 
dopamine are best studied biogenic amines (39, 42) 
that can function as TG2 substrates. Biogenic amines 
were demonstrated to be covalently incorporated into 
proteins involved cell signaling, inflammation and 
other vascular biological processes (38-42). Common 
polyamines include putrescine (a diamine), spermidine 
(a triamine) and spermine (a tetramine). Intracellular 
polyamines play an important role in regulating different 
cellular processes including cell growth, apoptosis, and 
differentiation and their levels are tightly controlled (50). 
Diamines such as putrescine, the other free amine 
group can be further crosslinked to another glutaminyl 
moiety, forming a bis-g-glutamylpolyamine bond 
(Figure 1B) thereby catalyzing inter or intra-molecular 
covalent bonds. When covalently modified by biogenic 
amines/polyamines, the surface charge of the target 
proteins can be altered and potentially alter protein-
protein interactions. In addition, proteins’ solubility can 
be altered by aminylation. Expanded polyQ containing 
proteins (such as Huntingtin in Huntingtin’s disease; 
HD) and tubulins (in neuron’s neurite formation) 
crosslinking either through protein-protein or protein-
amine can dramatically change these protein’s solubility 
and function (51, 52). 

Histamine was found to be the most effective 
biogenic amine inhibitor in vitro with an IC50 value of 160 
mM followed by putrescine (IC50 ~ 600 mM), whereas > 
50 mM of dopamine and serotonin only inhibited < 10% 
of TGase/TG2 (40). Putrescine and histamine were also 
demonstrated to be better substrates than spermine, 
spermidine, and serotonin (5-hydroxytryptamine) (53). 
Although serotonin is not a good substrate of TG2, it 
is highly concentrated in platelet dense bodies and 
the concentration is reported to be up to 65 mM (38, 
42). Therefore, local environmental and cofactors may 
be needed for serotonin or other biogenic amines to 
become TG2 substrates. 

Aminylation of histone 3 (H3) N-terminal 
tail was shown to downregulate the transcription 
of target genes, peroxisome proliferator-activated 
receptor-g coactivator 1a (PGC-1α) and downstream 
cytochrome C, genes that are important for biogenesis 
of mitochondria (54), contributing to dysfunctional 
mitochondria in HD (55). Not only is H3 but H2A, H2B 
and H4 were all shown as TG2’s substrates (33). 

TG2 levels and free isopeptide (g-glutamyl-
e-lysine) levels isolated from patient’s cerebrospinal 
fluid (CSF) are significantly elevated in HD patients 
indicating that TG2 cross-linking is an active process 
in HD (56, 57). Detailed HPLC analysis of samples 
from human CSF demonstrated that g-glutamyl-e-
lysine, g-glutamylspermidine, g-glutamylputrescine, 
and bis-g-glutamylputrescine are all present and 
all are present at higher levels in HD brain (58, 59). 

These data indicate that TG-mediated aminylation 
reaction is an active process during HD. The elevated 
free isopeptide levels in samples derived from 
CSF represent the degradation products of soluble 
crosslinked aggregates in HD patients (56), which is 
consistent with the emerging hypothesis that soluble 
cross-linked aggregates are neurotoxic.

In summary, as the TG-mediated isopeptide 
peptide bonds are protease resistant, the above two 
crosslinking reactions may potentially contribute 
to several pathologic processes involved in 
neurodegeneration including neuroinflammation, 
accumulation of insoluble protein inclusions, and 
proteasome dysfunction (60). TG2 is also known to 
catalyze both inter- and intra-molecular crosslinking of 
tau protein, α-synuclein (SYN), and huntingtin forming 
soluble oligomers and insoluble aggregates (29, 61, 
62). There is an emerging hypothesis that soluble and 
diffusible high molecular weight oligomeric complexes 
(or micro-aggregates) are the neurotoxic intermediates 
in neurodegeneration, while the insoluble inclusions 
represent a non-toxic pool of insoluble proteins (63, 
64). TG2 mediated intermolecular crosslinking of 
polyQ containing proteins (i.e., mutant huntingtin in HD 
or other expanded polyQ diseases) may lead to the 
formation of soluble protein intermediates and slows 
the formation of insoluble protein aggregate (51). 

3.1.3. Deamidation

When the concentrations of peptide-bound K 
substrate and 1o amine are lower than the KM and the 
reaction pH < 7, water can act as the acyl-acceptor. 
The resultant hydrolysis reaction converts glutamine 
(Q) to a glutamic acid (E) residue (deamidation)
(Figure 1C)(17, 21, 22, 32). In Celiac disease patients, 
specific deamidation of a select glutamine residue 
in gluten peptides leads to the development of an 
autoantibody against TG2 (18, 21). Clinically, anti-TG2 
IgA autoantibody serves as a diagnostic marker for 
celiac disease and assist in monitoring celiac disease 
(17). Hsp20 was shown to be deamidated at a specific 
glutamine residue while distinct glutamines were 
substrates in other types of crosslinking reactions 
(65). G3PDH was found to be deamidated by TG2 at 
multiple glutamine residues and deamidated G3PDH 
promoted trophoblastic cell fusion (66). These results 
suggest deamidation may be a more widely occurring 
event than previously recognized.

3.2. Isopeptidase activity

Although isopeptide bonds are considered 
resistant to proteolytic digestion, TG2 can reverse 
the transamidation reaction and hydrolyze specific 
isopepeptide bonds (53, 67, 68). TG2’s isopeptidase 
activity is a calcium-dependent reaction (68). When 
putrescine and histamine were covalently crosslinked 
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to gluten-derived peptide, TG2 was more efficient in 
hydrolyzing histamine-gliadin than putrescine-gliadin 
peptides. These data suggest that there is a preference 
for primary amines in hydrolyzing the isopeptide bonds 
(53). Due to the difficulty in detecting the hydrolyzed 
product, the physiological importance of isopeptidase 
reactions remains poorly defined but demonstrates the 
dynamic nature of the TGase-catalyzed crosslinking 
reactions.

3.3. Protein Disulfide Isomerase (PDI) activity

PDI can catalyze the formation, breakup, and 
exchange of disulfide bonds using reactive cysteine 
residues (23). The PDI activity is typically localized in 
the ER and on the surface of eukaryotic cells. TG2’s 
PDI activity requires free thiol cysteines and therefore 
is sensitive to cellular levels of oxidants/antioxidants. 
TG2 was found to have relatively low but detectable 
PDI activity. Unlike TGase activity, the PDI activity 
is independent of Ca+2 and GTP (23). The activity is 
increased by oxidized glutathione but inhibited by 
reduced glutathione (23). Interestingly, PDI-related 
protein in filarial parasite also possesses TGase activity 
(69). Several PDIs and related thioredoxins were found 
to display TGase activity and have the same conserved 
Cys-His–Asp triad residues as TGase active site 
center found in all TGs (70). These data suggest that 
PDIs, thioredoxins and TGs share some overlapping 
function in cell and tissue. TG2’s PDI is important in the 
assembly of ADP/ATP transporter in mitochondria and 
will be discussed in the following section (71, 72). 

3.4. GTP/ATP hydrolysis activity

In the presence of Mg+2, TG2 can hydrolyze 
Mg-GTP and Mg-ATP at a similar rate. TG2 interacts 
with Mg-ATP (KM = 38 +/- 10 microM) at a 3-fold greater 
steady-state affinity than with Mg-GTP (KM = 130 +/- 35 
microM). Also, Mg-ATP inhibited GTP hydrolysis (IC50 
= 24 microM), whereas 1 mM Mg-GTP reduced ATP 
hydrolysis by only 20% (73). G protein (Gah) function 
of TG2 can control b-adrenergic-receptor-mediated 
signaling transduction pathways that lead to PLCd1 
activation (17, 22, 27). PLCd1 activation results in 
an increase in intracellular calcium which activates 
the transamidation reaction (17). GTP induces a 
conformational change that inhibits TGase/TG2’s 
activity by narrowing the active site pocket, a process 
that can be reversed by high concentration of Ca+2 
(17, 22). The ATP hydrolysis function of TG2 remains 
poorly understood.

4. Structure and function of TG2

4.1 TGase active site.

TG2 is a protein with 687 amino acid 
residues. X-ray crystallography reveals that TG2 

is composed of an N-terminal b-sandwich (residue 
#1-139; Domain I), a a/b catalytic core (residue # 
140-454; Domain II), a b-barrel 1 (residue # 479-
585; Domain III) and a b-barrel 2 (residue # 586-687; 
Domain IV)(74, 75). The TGase/TG2 active site is 
composed of a catalytic triad of C277-H335-D358 (74), 
and the rate-limiting step in catalysis involves the 
formation of a transitional thioester bond between 
C277 and the Q substrate. Based on the recent 
inhibitor-bound crystal structure studies, there are 
open catalytic active conformation, and open catalytic 
inactive conformation (21, 75). 

4.2 GTP and ATP binding site

Based on the 3-D structure of GDP-bound 
TG2 (PDB: 1kv3), GTP binding involves the amino 
acid side chains from domains II, III and IV (74). The 
3-D structure of ATP-bound TG2 also demonstrates 
that ATP and GDP bind to the same nucleotide binding 
pocket (82). However, S482 and R580 were found 
to be involved only in guanine, not adenine binding 
(80). Mutation at R580 to adenine resulted in almost 
complete loss of GTP/GDP activity as demonstrated 
by GTP binding assay but remained active in TGase 
function (21) and GTP hydrolysis (unpublished 
observation). 

5. REGULATION OF IN VIVO TGase ACTIVITY 
BY GTP, REDOX, AND NITRIC OXIDE (NO)

5.1 Regulation of in vivo TGase activity by GTP. 

The intracellular free Ca+2 (sub-microM) 
and GTP (~ 100-150 mM) are sufficient to keep 
the TGase/TG2 in a latent state (17, 21, 32). The 
activation of intracellular TGase/TG2 activity is a 
tightly controlled but poorly understood process that 
can be either beneficial or detrimental to cells. When 
cells are exposed to biotinylated pentylamine (BP, a 
synthetic 1o amine) or spermine, several intracellular 
proteins were biotinylated and this method has been 
used to identify TGase/TG2 substrates (76, 77). 
Using biotinylated 1o amines as probes, physiological 
levels of histamine, or serotonin were also found to 
be incorporated into cellular proteins under normal 
cell culture growth conditions (41, 53, 78). These 
data suggested that changes in intracellular Ca+2 
concentrations or other cofactors are sufficient 
to activate intracellular TGase/TG2’s activity. In 
diseases such as HD, it is possible that, TG2 becomes 
activated by repeated, oxidative stress mediated by 
expanded polyQ proteins and small transient rises 
of Ca2+ concentration (79), allowing for the gradual 
accumulation of soluble and/or insoluble cross-linked 

products over a long time period which would provide 
further neurotoxic crosslinked products. This finding 
may further explain why these diseases manifest so 
late in life. 
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5.2. Regulation of in vivo TGase activity by redox

The Intra- and extracellular redox state also 
regulate the activation of TGase/TG2. Because of 
high levels of calcium ions (~ mM) in the extracellular 
space, it is believed that TGase/TG2 is constitutively 
active (17, 19). However, it was reported that TGase/
TG2 is not active due to oxidation and thioredoxin is 
involved in the formation of an intra-chain disulfide 
bond (80, 81). Three cysteine residues including 
C230, C370 and C371, were found to have high redox 
potential (81). Mutation analysis identified C230 as the 
key redox sensor (81). Due to extracellular oxidizing 
environments, the formation of intramolecular disulfide 
bonds (between C370-C371 and between C230-C370) 
are found to inactivate the TGase/TG2 (80). In the 
ATP-bound form of TG2, disulfide bond was formed 
between C230-C370 and may also contribute to 
its conformation under oxidizing conditions (82). 
Therefore, the activation of extracellular TG2’s activity 
is also controlled by the redox potential of the local 
environment and availability of thioredoxin. 

5.3. Regulation of in vivo TGase/TG2 by NO

Under reducing environment, TG2 has 18 
free sulfhydryls (-SH), several of which are contained 
within S-nitrosylation motifs (25, 83). S-nitrosylation 
of TG2 by NO was also found to inhibit TGase/TG2 
activity in vitro (25, 84). TG2 was found S-nitrosylated 
in a young aorta but not in an aged aorta indicating 
there was more TGase/TG2 activity in aged aorta 
suggesting NO can modulate TG2 activity in vivo (84).

In summary, local Ca+2, GTP and redox 
potential are important factors in modulating the in 
vivo TGase/TG2. Under reducing environments, 
physiological levels of GTP inhibit TGase, while 
sufficient Ca+2 can reverse the GTP inhibition (73). In 
the oxidizing environments, thiol reductases such as 
thioredoxin might be the additional factor in controlling 
in vivo TGase activity of TG2 (81). 

6. REGULATION OF TG2 EXPRESSION

The promoter of TG2 gene contains important 
response elements including retinoic acid (RA) 
(retinoic acid response element; RRE-1 and RRE-
2), glucocorticoid (GRE), NFkB (85). In addition, the 
response elements for IL-6, TGFb1, activator protein-2 
(AP-2), hypoxia (HRE), and activator protein-1 (AP-1) 
are also present(17, 21, 32). Many of these molecules 
play a role in cellular responses to tissue injury. Among 
these inducers, the cell differentiation agent RA was the 
first agent identified to induce TG2 (86). Within 6 hours 
after the addition of RA, TG2 was found to increase by 
at least 50-fold (86). Soon after RA treatment, there is 
a redistribution of TG2 from cytoplasm to the plasma 
membrane (87). The significance of redistribution of 

TG2 after RA treatment remains to be investigated. We 
will summarize some of the major regulators of TG2 in 
the following section. Among these regulators, NFkB 
and HIF1 are two of the ROS-sensitive transcription 
factors that regulate the expression of TG2.

6.1. NFkB regulates the expression of TG2

Increased expression of TG2 and its TGase 
activity is a common feature of increased ROS and 
several inflammatory disorders (17, 22). An important 
transcription factor that is induced by ROS and 
inflammation is NFkB. TG2 is involved in enhanced 
inflammation by participating in an inflammatory loop 
with the “master switch” for inflammation involving 
NFkB. The TG2 gene promoter contains a NFkB 
response element (85). TG2 can also activate NFkB 
by cross-linking and polymerize IkBa, the inhibitor of 
NFkB. Intracellular TG2 crosslinking events promote 
inflammation by activating the noncanonical pathway 
of NFkB (88, 89). Under normal condition, NFkB is 
inactive due to tight association with IkBa. However, 
in inflammatory conditions, IkBa is phosphorylated 
by IkB kinase (IKK), causing proteasome-dependent 
degradation of IkBa and releasing of its inhibition on 
NFkappaB. Free NFkB is then translocated to the 
nucleus to activate transcription of several important 
downstream inflammatory genes. In IKK independent 
pathway, IkBa is polymerized by TGase/TG2 results 
in its degradation by proteasome leading to NFkB 
activation (34). In another mechanism, TG2 can 
interact directly with IkBa leading to its degradation 
via a proteasome-independent pathway (90, 91). 
These data indicate that targeting TG2 may block IKK-
independent pathway for the activation of NFkB. 

6.2. Hypoxia regulates the expression of TG2

There are six putative hypoxia response 
elements in the promoter region of the TG2 gene (92). 
TG2 is the transcription target of HIF1, a heterodimeric 
transcription factor consisting of inducible HIF1a and 
constitutively expressed HIF1b, during the survival of 
neurons exposed to oxygen and glucose deprivation 
(93). During oxygen and glucose deprivation, TG2 
protects against hypoxia by interacting with HIF1b and 
attenuates the HIF1 signaling (93). Under ischemia and 
stroke, TG2 may play an important role in protecting 
against the delayed neuronal cell death (93).

6.3. TGFb regulates the expression of TG2

There is a TGFb response element upstream 
of the transcription start site of TG2 gene (92). Bone 
morphogenetic factor 2 (BMP2) and 4 (BMP4) also 
regulate the TG2 expression by binding to the TGFb 
response element (92). The up-regulation of TG2 by 
TGFb1 leads to another positive feedback loop. TG2 
is also involved in the conversion of latent to active 
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TGF-b1 and the TG2 itself are induced by TGF-b1 (94). 
TGFb expression downregulates inflammatory and 
autoimmune responses (95) demonstrating that TG2 
is involved in these complex biologic and pathologic 
processes. TG2-/- mice fail to activate TGFb, have 
delayed clearance of apoptotic cells and had evidence 
of tissue inflammation and autoimmunity (96). The 
co-expression of the TG2 and active TGF-b1 at sites 
within wounded regions and sites of inflammation 
suggested a role in the wound healing response (97-
99). Using a dorsal skin flap window chamber in vivo 
animal model, the direct application of recombinant 
TG2 to a mammary adenocarcinoma resulted in an 
increased level of collagen around the tumor and a 
fibrotic response (97). These data demonstrate a role 
of TG2 in the wound healing response and abnormal 
TG2’s activity could lead to tissue fibrosis. 

6.4. Oxidative stress and EGF regulate the expres-
sion of TG2

Oxidative stress appears important in 
glutamate-evoked TG2 upregulation in astrocyte 
culture (100). It is known glutamate causes a dose-
dependent increase in ROS production. However, pre-
incubation with a TG2 inhibitor, cysteamine, recovers 
oxidative stress and reduces glutamate-increased 
TG2 (100). Thus, TG2 up-regulation may be part of 
the biochemical responses to oxidative stress (100). 
TG2 is also induced by epidermal growth factor (EGF), 
inflammatory cytokines (IL-6, TNFa, IFNg) and by 
various stimuli such as UV light, and viral infection 
(17, 101-103). Alterations in TG2 activity and function 
have been linked to cancer and other chronic diseases 
including atherosclerosis (17, 22). Thus, the induction 
of the TG2 expression and activation of its activity are 
associated with tissues response to various stimuli 
that lead to cell differentiation, inflammation, fibrosis 
and immune defense. 

7. TG2 is LOCALIZED in MITOCHONDRIA and 
SEVERAL OTHER LOCATIONS

TG2 is a nuclear-encoded protein. The 
expression of TG2 is considered ubiquitous, but the 
distribution and expression levels vary significantly 
among different cell types. TG2 is expressed in cells 
involved in immunity and inflammation including 
lymphocytes, PMNs and monocytes (104, 105). Upon 
differentiation into macrophage, TG2 is up-regulated 
dramatically (106). The highest TG2 expression is 
found in vascular endothelial and smooth muscle 
cells (VSMC) (101, 105). TG2 is localized at the 
extracellular space, membrane-associated, cytoplasm, 
mitochondria and nucleus of the cell (17, 21). In human 
neuroblastoma cells, 7% of the total TG2 is found 
in the nucleus in association with chromatin (107). 
The significance of TG2 induction associated with 
intracellular translocation to the nucleus and change 

in intracellular TGase activity is poorly understood 
(107, 108). The cell surface TG2 can function as a 
cell adhesion molecule that interacts with leukocytes 
(109), a wide variety of extracellular matrix (ECM) 
adhesion proteins including integrins fibronectin, and 
GPR56 to increase the adhesive property of cells 
(110). The membrane-associated TG2 is reported 
to interact with GPR56 and IGFBP-3 (insulin growth 
factor binding protein) kinase in breast cancer cells 
and involved in G-protein and ATP kinase signaling 
function (111-113). 

Although there is no classical mitochondrial 
targeting signal, TG2 is found in mitochondria in 
various cell types; in neuroblastoma cells, it constitutes 
up to 50% of the total TG2 cellular pool (114, 115). 
Using cellular fractionation and electron microscopy to 
investigate the localization, the majority of TG2 was 
found to localize to the mitochondrial outer membrane 
and the inner membrane space, while 5-10% of 
the protein is localized in the inner mitochondrial 
membrane and the mitochondrial matrix (114, 116). 
The mechanism of how TG2 is localized to specific 
cellular compartments is poorly understood as it does 
not have a secretion recognition signal, membrane 
anchor, or nuclear localization sequences. Through 
unknown mechanisms, TG2 mediates the expression 
of the gp91phos subunit of NADPH oxidase expression 
in PMNs, a gene product that is essential for oxidative 
killing through the generation of superoxide anions 
(117). 

8. TG2 AND MITOCHONDRIAL FUNCTION

The role of TG2 in mitochondrial function is 
emerging. Earlier evidence support that TG2 play a 
role in energy metabolism came from the observations 
that the heart of TG -/- mice appeared to be more 
sensitive to ischemia/reperfusion injury (118). TG2 was 
postulated to participate in mitochondria’s respiratory 
function, as TG -/- mice had a serious defect in ATP 
production (118). Also, the phenotype of TG-/- mice 
resembled that of maturity-onset diabetes of the young 
(MODY), suggesting a role of TG2 in mitochondrial 
functions outside cardiac muscle (119). Additional 
studies indicate that TGase/TG2 and PDI function are 
involved in mitochondrial functions as described below.

8.1. Activation of TGase/TG2 occurs under stress 
conditions

It is believed that TGase/TG2 mediated 
covalent crosslinking of mitochondrial proteins does not 
occur in normal tissues; however, TGase/TG2 is likely 
to be activated in “mitochondrial diseases” patients, 
including cardiovascular ischemia/reperfusion injury 
and neurodegenerative disorders (such as HD). That 
is due to abnormal calcium levels associated with 
mitochondrial dysfunction in these diseases. There 
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are consensus sequences 204LKNAGRDC211 in TG2 
which is 70% homologous to the BH3 domain of Bcl-2 
family proteins, suggesting that it is a novel apoptotic 
BH3 protein (115). When apoptosis was induced by 
staurosporin, the proapoptotic protein Bax was found 
to interact with TG2 and was the major TGase /TG2 
substrate during apoptosis (115). These data provide 
further support a role of TG2 in apoptosis.

A number of TGase/TG2’s substrates were 
identified upon induction of intrinsic apoptosis pathway 
with staurosporin. These include prohibitin, Hsp70, 
Hsp90, Hsp60, and ATP synthase b chain. The correct 
folding of the Hsp70 and Hsp90 respiratory chain 
components require prohibitin which is a membrane-
bound chaperone. In cooperating with prohibitin, the 
Hsp60 protein forms a membrane-tethered import 
motor complex involved in the unfolding of preprotein 
domains, whereas the ATP synthase b chain is a key 
component of complex V of the respiratory chain. Upon 
triggering mitochondria-dependent apoptosis in neural 
cells, these proteins were crosslinked by TGase/TG2 
(120, 121). A similar crosslinking reaction also occurred 
in vitro and in situ with the TG2-binding partner, the 
bifunctional adenine nucleotide translocator (ANT1), 
a protein involved in ADP/ATP exchange and a core 
component of the permeability transition pore complex 
in the internal mitochondrial membrane (72). These 
data indicate that TGase/TG2 can be activated under 
stress condition (such as in apoptosis) to crosslink 
important proteins that are involved in the assembly of 
the respiratory chain.

8.2. TG2 and energy metabolism

Activation of TGase/TG2 under stress 
condition may be a possible cause of the decline in 
energy metabolism in neurodegenerative disorders 
(1). Although TG2 is not directly involved in metabolic 
function, it can post-translationally modify critical 
metabolic enzymes (Table I). Previous studies 
have shown that several important metabolic 
enzymes including fructose-1,6-bisphosphate 
aldolase, aconitase, L-lactate dehydrogenase 
(LDH), G3PDH, alpha-ketoglutarate dehydrogenase 
(KGDHC), phospho-glycerate dehydrogenase, fatty 

acid synthase, and aldehyde dehydrogenase, are 
functioning as TGase/TG2 substrates (30, 121-
124)(Table I). Several of which are key enzymes of 
glycolysis and the TCA cycle, but the exact metabolic 
alteration of these enzymes after modification by TG2 
have not been investigated in details. Two enzymes, 
G3PDH and KGDHC, were previously shown to be 
crosslinked and inactivated by TG2 in a cellular model 
of HD (30). TG2 also interact with pyruvate kinase M2 
(PKM2). PKM2 is a rate limiting enzyme of glycolysis 
which is responsible for maintaining a glycolytic 
phenotype in malignant cells (122). Interaction of 
PKM2 and TG2 also plays an important role in the 
regulation of autophagy in particular under stressful 
conditions such as those displayed by cancer cells 
(122). All these findings suggest that modification 
by TG2 or interaction with TG2 may modulate and 
regulate the energy homeostasis and this warrants 
further investigation.

8.3. TG2 and calcium homeostasis

As calcium ions regulate an enormous 
number of cellular processes, the intracellular 
calcium levels are under very tight control. Both 
mitochondria and ER are intracellular stores for Ca+2 
and 5-20% of the mitochondrial membrane surfaces 
are connected to the ER membrane domains called 
mitochondria-associated membranes (125). Although 
TG2 is activated by calcium under stress conditions, 
it also plays a role in regulating intracellular calcium 
homeostasis (126). Inositol 1,4,5-triphosphate 
receptors (IP3Rs) are ligand-gated ion channels that 
regulate the release Ca+2 from the ER (127, 128). IP3Rs 
are allosteric proteins comprising four subunits that 
are assembled into a calcium channel, which normally 
opens by changing the spatial relationship between 
the four subunits (127, 128). In HD mice model, up-
regulation and activation of TGase/TG2 results in the 
crosslinking of Q2476 of IP3R to the adjacent subunit’s 
protein bound K-residue that lock the channel into an 
irreversible configuration (126). As reversible and 
repetitive structural changes are required for ligand-
gated ion channels to mediate biological signaling, TG2 
crosslinking chronically impaired calcium signaling and 
autophagy regulation in living cells (126). 

Table 1. Proteins interacting with TG2 important for mitochondrial functions 

Proteins Function TG2 activity involved References

G3PDH TCA Cycle TGase 30

KGDHC TCA Cycle TGase 30

Aconitase 2 TCA Cycle TGase 123

Bax Apoptosis TGase 115

Prohibitin Respiratory Chain PDI 120, 121

ATP Synthase b Respiratory Chain PDI 120, 121

ANT1 ADP/ATP exchange PDI 72
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Upon stimulation of rat insulinoma cell line 
(INS-1E) with glucose, many mitochondrial proteins 
involved in Ca+2 homeostasis including voltage-
dependent anion-selective channel (VDAC) protein, 
prohibitin, and different ATP synthase subunits were 
found to be the TGase substrates of TG2 (129). 
VDACs are part of a network which includes the IP3Rs, 
stress-70 protein, a mitochondrial chaperone that 
facilitate mitochondrial Ca+2 uptake, and calreticulin 
(129). 

In another study when overexpressed TG2 in 
Jurkat T cells, part of the TG2 was found to co-localize 
with mitochondria and enhanced mitochondrial Ca+2 
uptake (130). Increased mitochondrial Ca+2 uptake 
was associated with the initiation of apoptosis (130). 
Overexpressed TG2 was found to crosslink RAP1, 
GTP-GDP dissociation stimulator 1, an unusual 
guanine exchange factor acting on various GTPase 
(131), which appeared in the ER to induce a yet 
uncharacterized signaling pathway that was able to 
promote Ca+2 release from the ER (130). 

The above studies indicate a potential role of 
TG2 in regulating calcium homeostasis.

8.4. TG2 in modulating transcription of important 
mitochondrial genes

TGase/TG2 can also affect mitochondrial 
function by acting at the transcriptional level under 
pathological conditions such as in HD (54, 132). 
In HD mouse model which overexpress mutant 
huntingtin, activation of TGase/TG2 activity results in 
polyamination and adding positive charges to histones 
3 (H3) N-terminal tail and leads to tighter packing of 
DNA with histones (54). As a result of the PTM, the 
transcription of target genes, peroxisome proliferator-
activated receptor-g (PPARg), coactivator 1a (PGC-
1α) and downstream cytochrome C (Cyt C), genes 
that are important for biogenesis and function of 
mitochondria are downregulated (54). The resulting 
consequences were postulated to contribute to the 
observed dysfunctional mitochondria in HD (55). In 
contrast, TG2 -/- mice as well as pharmacological 
inhibition of TG2 induce cytochrome C promoter 
activity and increase mRNA levels of Cyt C and PGC-
1a. Citrate synthase activity, the first step of the TCA 
cycle, also increase after TG2 inhibition (54). These 
data suggest that TG2 may be a therapeutic target in 
mitochondrial diseases such as in HD and AD. Whether 
the activation of TGase/TG2 in regulating transcription 
factors is a physiological regulatory mechanism or only 
in the presence of mutant huntingtin warrant further 
investigation. 

TG2 can also alter transcription through 
post-translational modification of histone proteins. Not 
only is H3 a substrate but H2A, H2B and H4 were all 

TG2 substrates (33). TG2 is involved in altering the 
proteins that play a role in regulating transcription and 
the specific genes and their impact on cells remains to 
be determined. 

8.5. TG2’s PDI activity is important in the assem-
bly of respiratory chain complexes

TG-/- mice had energy production impairment 
as evidenced by decreased ATP levels after physical 
challenge (71). PDI activity was postulated to 
contribute to the correct assembly of the respiratory 
chain complexes. TG2-/- mice were found to have 
dysfunctional disulfide bond formation in complex 
I (NADH-ubiquinone oxidoreductase), complex II 
(succinate–ubiquinone oxidoreductase), complex 
IV (cytochrome C oxidase), and complex V (ATP 
synthase) (71). 

Another target of TG2’s PDI activity is ADP/ATP 
transporter adenine nucleotide translocator 1 (ANT1). 
ANT1 is the most abundant mitochondrial protein and 
a bi-functional protein primarily involved in ADP/ATP 
exchange. ANT1 is essential for normal mitochondrial 
function and has also been proposed to be among the 
various components of the permeability transition pore 
(PTP) in the inner mitochondrial membrane (133). 
ANT1 oligomerization is essential for its activity and 
TG2’s PDI activity regulates the ADP/ATP transporter 
function by controlling the oligomerization of ANT1 
(72). Increased thiol-dependent ANT1 oligomer 
formation and elevated ANT1 ADP/ATP exchange 
activity in heart mitochondria were found in TG2−/− 
mice (72). Therefore, the PDI/TG2 activity reduces the 
level of oligomerized ANT1. The PDI/G2 also inhibit 
transporter activity by sequestering ANT1 monomers 
and preventing oligomer formation by direct binding 
to ANT1 (72). These data reveal an important role for 
PDI/TG2 activity in vivo and indicate that there is a 
novel pathway that links this activity with the regulation 
of mitochondrial physiology. 

8.6. TG2 and Warburg effect

Using embryonic fibroblasts (MEFs) derived 
from TG2 -/- mice, deletion of TG2 leads to mitophagy 
(clearance of defective mitochondria) impairment 
associated with a metabolic shift towards aerobic 
glycolysis (134). MEF cells (from TG2 -/-) showed 
increased oxygen consumption rate (OCR) (134). 
The function of mitophagy is to remove dysfunctional 
mitochondria to alleviate oxidative stress and prevent 
carcinogenesis (135). MEFs derived from TG2-/- 
mice display fragmented mitochondria with altered 
morphology and depolarization of the mitochondrial 
membrane (134). MEFs (from TG2-/- mice) also 
showed reduced ROS formation and down-regulation 
of the GP91phox (117). These studies indicated a role of 
TG2 in contributing to dysfunctional mitochondria.
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In breast cancer epithelial cells, TG2 was 
shown to be an important regulator of the Warburg 
effect (136). Normal differentiated cells rely primarily 
on mitochondrial oxidative phosphorylation to 
generate the energy needed for cellular processes, 
while most cancer cells instead rely on aerobic 
glycolysis, a phenomenon termed “the Warburg 
effect.” (137) High TG2 expressing breast cancer 
cells display a decrease in oxygen consumption rate 
(OCR) accompanied by an increase in extracellular 
acidification rate (ECAR) even under normoxic 
conditions (136). Knockdown TG2 by siRNA reverses 
the process. TG2/NFκB-induced increase in HIF-1α 
expression was associated with increased glucose 
uptake, increased lactate production and decreased 
oxygen consumption by mitochondria (136). In these 
tumor cells, low energy production by this glycolytic 
pathway is compensated by increased glucose uptake. 
Also, HIF-1α downregulates oxidative phosphorylation 
(91). The data is consistent with renal carcinoma 
cells (RCC) in that over-expression of TG2 increased 
glucose consumption and lactate production, while 
TG2 siRNA decreased lactate levels by 20-30% (124). 
These studies indicated overexpression of TG2 shifts 
tumor cells to more aerobic glycolysis pathway. 

9. TG2 IN VARIOUS DISEASES AND BIOLOG-
ICAL PROCESSES

Beside the role of TG2 in modulating 
mitochondrial function, TG2 is demonstrated to play 
a role in diseases and biological processes related 
to inflammation as described below. Among these, 
the role of TG2 in neurodegenerative diseases has 
been well studied (17, 21). In neurodegenerative 
diseases, impaired mitochondrial function is common 
and results in activation of TGase/TG2 (17, 21). It 
would be interested to examine the activation of 
TGase/TG2 in other mitochondrial diseases including 
MELAS, MERRF, and CPEO syndromes which are 
due to specific point mutations or large deletions of 
mitochondrial DNA (2, 138). 

9.1. Epithelial-Mesenchymal Transition (EMT)

EMT is a critical process in cancer progression 
(139). EMT is characterized by breakdown of cell 
junctions and loss of cell polarity, rendering epithelial 
cells motile and invasive (139). TG2 positively 
influences the development of EMT through at least 
two mechanisms. First, it cross-links the large latent 
form of TGFb to the extracellular matrix (140), this may 
concentrate or release bioactive TGFb, an inducer of 
EMT. TG2 and TGFb reciprocally induce each other 
as part of an auto-stimulatory loop, thus emphasizing 
the role of TG2 in the EMT process. Second, TG2 
activates NFkB, a recognized EMT inducer, by cross-
linking and polymerizing the inhibitor of NFkB, IkBa, 
leading to its proteasomal degradation (90). Inhibition 

of TG2 expression by siRNA blocks EMT induction 
(141). The role of TG2 during EMT process has also 
been studied in several other different cell types (21). 

9.2. Autoimmunity

Intracellularly, TGase/TG2 activity is important 
in forming apoptotic body preventing the release of 
intracellular proinflammatory substances. Apoptotic 
bodies also have an anti-inflammatory effects by 
inducing the anti-inflammation cytokine TGF-b (142). 
TG2-/- mice have abnormalities in clearing apoptotic 
cells and cause immune dysfunction and inflammation 
(143). TG2-/- mice fail to activate TGFb, have delayed 
clearance of apoptotic cells and have evidence of 
autoimmunity (96). 

9.3. Neurodegenerative diseases

TGase-mediated crosslinking are 
postulated to contribute to several pathologic 
hallmarks in neurodegenerative diseases including 
neuroinflammation, accumulation of insoluble protein 
inclusions, and proteasome dysfunction (60). Although 
intracellular TGase activity is tightly regulated, it is 
possible that, TGase/TG2 becomes activated by 
repeated responses from intracellular injuries including 
oxidative stress mediated by mis-folded proteins such 
as expanded polyQ proteins and results in small 
transient rises of Ca2+ concentration (79). 

9.4. Huntington’s disease (HD)

TG2 is known to catalyze the inter- or intra-
molecular crosslinking of tau protein, α-synuclein 
(SYN), and huntingtin forming soluble oligomers, 
while unmodified or polyaminated disease proteins 
produced insoluble inclusions (29, 61, 62). In vivo data 
have validated TG2 as a target for inhibition in HD. 
Data from cross-breeding TG2 knock-out (TG2 KO) 
(TG2 -/-) and two different models of HD (R6/1 and 
R6/2) mice (see below)(144, 145) and pharmacological 
(cystamine) inhibition (146, 147) all show a beneficial 
effect of inhibiting TGase/TG2.

9.5. Parkinson’s disease (PD)

The following important findings demonstrate 
a role of TG2 in Parkinson’s disease (PD): 1) The 
discovery of synuclein (SYN) protein as an in vitro and 
in vivo TG2 substrate (148, 149); 2) the increased levels 
of TG2-catalyzed isopeptides co-localized with SYN in 
Lewy bodies and were correlated with the severity of 
PD patients (149). TG2 was found to interact directly 
with SYN both in vitro and in cell models (148, 150). 
Andringa et al. demonstrated that SYN is a TGase/
TG2’s substrate in vivo (149). Increased levels of TG2-
induced intra- and intermolecular cross-linked SYN 
were found in PD brains, suggesting that this cross-link 
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precedes further aggregation of SYN into Lewy bodies 
(149). Also, crosslinked products of ubiquitin, hsp27, 
and SYN were also demonstrated in Alzheimer’s 
brains (151). As the crosslinked products are protease 
resistant isopeptide bonds, they were postulated to 
interfere with ubiquitin-proteasome degradation of 
misfolded proteins (151). 

9.6. Alzheimers’ Disease (AD)

The hallmarks of AD are the formation 
of extracellular neurotoxic aggregates consisting 
of amyloid-beta protein, or intracellular neurotoxic 
aggregates consisting of hyperphosphorylated 
tau (152). Both amyloid-beta and tau have been 
demonstrated as good in vitro substrates of TGase/
TG2 (152). Phosphorylated tau accumulated in 
neurofibrillary tangles, as well as non-phosphorylated 
tau are substrates for TGase/TG2 (152). Also, 
a dysfunctional G-protein signaling caused by 
TGase/TG2’s crosslinking of angiotensin II AT2 
receptor was shown to enhance the development of 
neurodegenerative symptoms in a transgenic animal 
model of Alzheimers’ disease (153).

9.7. Wound healing and fibrosis

TG2 can be considered as a micromolecular 
suturing enzyme (biological glue) that enables tissues 
to resist proteolytic degradation and acquire enhanced 
mechanical strength (154). Both TG2 expression 
and activity were increased very early during wound 
healing demonstrated that the TG2 gene was induced 
and activated in cells that were migrating into the fibrin 
clot and/or remodeling the ECM. TG2 expression 
was found to associate with TGF-b, TNF-a, IL-6, 
and VEGF production in the wound. TG2 can also 
influence ECM biology by localizing cytokines and 
protease inhibitors (ECM stabilization phase) to the 
matrix (155-157). TG2 can crosslink elafin (a potent 
inhibitor for elastase) and alpha2-antiplasmin (a 
potent plasmin inhibitor) to ECM molecules (156, 158, 
159). TG2 binds to beta-1 and beta-3 integrins (28, 
160-163) and functions as a co-receptor to promote 
cell adhesion (28).

Under pathological conditions, TG2 exerts its 
effects at different phases of wound healing that lead 
to fibrosis. In the initial phase (trigger/inflammation), 
TG2 gene expression is induced by inflammatory 
cytokines (IL-1, IL-6, TNF-a and TGFb (164-168) as 
damaged tissues respond attract inflammatory cells 
(168). TG2 can also serve as a receptor to recruit T 
cells into tissues which would further amplify injury 
responses (109). It is also possible that tissue injuries 
produce excessive TGFb production resulting in TG2 
production and extensive ECM crosslinking which 
leads to a microenviroment in tissues that promotes 
fibrosis.

9.8. Cytoskeleton’s assembly and organization

Cytoskeletons are the backbone of cells 
that give rise to each cell’s unique intracellular 
structure. Cytoskeletons also are crucial for cell 
division, motility and differentiation. Microtubules are 
formed by ab-tubulin heterodimer building blocks that 
are post-translationally modified to give each cell’s 
unique function. Tubulins undergo complicated post-
translational modifications and TG2 is involved in 
these PTM (169). Tubulin is known to be a TGase/
TG2 substrate but the physiological function of 
such modification remains unestablished (170). 
Polyamination of tubulin was recently found to play 
an important role in the stabilization of microtubule 
essential for unique neuronal function. (52). It is well-
established that a fraction of neuronal tubulin is not 
soluble in cold and also resistant to calcium as well as 
drugs that depolymerize microtubules (171). Song et 
al. demonstrated that incorporation of spermine and 
spermidine into a-tubulin decreases the solubility of 
tubulins (52, 171). Polyamination by TG2 incorporates 
positive change into proteins and is known to make 
proteins more basic and insoluble. In the absence of 
polyamines, crosslinking of tubulins by guinea pig TG 
remains primarily in the soluble fraction (52). This is the 
first demonstration of modification of tubulins contribute 
the stability of microtubules (52). Polyamination by 
TGase/TG2 was postulated to contribute to the unique 
neurite formation in neuronal cells (52).

TGase/TG2-mediated PTM of actin has also 
been connected to insulin secretion (172), pollen 
tube growth (173), apoptosis (174), and neuronal 
cell form and function (175). Spermine was found to 
incorporate into actin derived from mouse tissues but 
the significance remains to be established (176). 

TGase/TG2 mediated serotonylation of the 
RhoA and Rab4A GTPase is required for cytoskeletal 
rearrangement that leads to exocytosis of platelet 
a-granules, platelet activation and adhesion and 
platelet aggregation (38). The activation of RhoA by 
TG2 has also been demonstrated in RA-induced 
cells that involve the activation of Rock-2 kinase 
and formation of stress fibers and focal adhesion 
complexes (112, 177).

10. SUMMARY/PERSPECTIVE

Diseases associated with mitochondrial 
diseases normally associate with calcium 
dysregulation. TG2 represents one of calcium-activated 
enzyme with demonstrated pathophysiological 
important in mitochondrial disease. After synthesis, 
TG2 is localized in different cellular compartments 
including mitochondria and involved in mitophagy 
and mitochondrial function. TG2 participates in 
mitochondria’s respiratory function, as TG -/- mice 
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had a serious defect in ATP production. Embryonic 
fibroblasts (MEFs) derived from TG2 -/- mice display 
mitophagy impairment associated with a metabolic 
shift towards aerobic glycolysis. High TG2 expressing 
breast cancer cells display a decrease in oxygen 
consumption rate (OCR) accompanied by an increase 
in extracellular acidification rate (ECAR) even under 
normoxic conditions. These data indicate a role of 
TG2 in metabolic reprogramming in normal and 
cancer cells. In a mitochondrial disease such in HD, 
activation of TGase/TG2 results in down regulation of 
the transcription of target genes, PPARg coactivator 
1a (PGC-1α) and downstream Cyt C, genes that are 
important for biogenesis of mitochondria. These data 
indicate a role of TG2 in mitochondrial biogenesis, 
degradation and metabolic reprogramming and 
warrant further investigation.
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