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1. ABSTRACT

This review begins with a comprehensive 
history of opioid dependence and treatment in the United 
States. The focus is an evidence-based treatment 

model for opioid/opiate dependent individuals. The role 
of reward genetic polymorphisms and the epigenetic 
modifications that lead to vulnerability to use and 



Opiate/opioid abstinence: Treating the symptoms and cause    

1248 © 1996-2017

misuse of opiates/opioid to treat pain are reviewed. 
The neurochemical mechanisms of acute opiate 
withdrawal and opiate/opioid reward mechanisms are 
explored with a goal of identifying specific treatment 
targets. Alterations in functional brain connectivity 
based on neurobiological mechanisms in heroin 
dependence and abstinence are also reviewed. A 
new clinical model an alternative to merely blocking 
acute withdrawal symptoms as identified in the DSM 
–5 is proposed. Genetic diagnosis at the onset of 
detoxification, to determine risk stratification, and 
identify polymorphic gene targets for pharmaceutical 
and nutraceutical interventions, followed by the 
simultaneous initiation of Medication Assisted Therapy 
(MAT), to enable psychological extinction, and steady 
pro-dopaminergic therapy with the goal of developing 
“dopamine homeostasis” is recommended. The 
objective of these interventions is to prevent future 
relapse by treating all “Reward Deficiency Syndrome” 
(RDS) behaviors and eventually make an addiction-
free life possible.

2. INTRODUCTION

This manuscript begins with the history of 
the hardships caused by America’s affliction with 
opioid use. This review offers a brief examination of 
the past and current opioid epidemic in America. In 
2014, data showed that more than 16,000 lives are 
lost each year due to opioid-related overdoses. An 
estimated two million people used prescription opioids 
non-medically for the first time - nearly 5,500 people a 
day - in 2010 alone (1). However, the primary goal is to 
underscore the need to understand the neurobiological 
underpinnings of acute opiate/opioid abstinence. So 
that rather than treating withdrawal symptoms alone, 
a new model has been developed that focuses on 
addressing the lingering and long-term effects of these 
potent, dangerous substances that kill many of our 
young people every day. This model is the “Anti-Opiate 
Dopamine Restoration” (AODR).

2.1. A discussion of the opioid epidemic in  
America: past and present 

America’s first opioid epidemic resulted from 
the opium smoking habits of Chinese immigrants’ that 
spread beyond their culture, aided by the extensive 
use of morphine in the civil war. In 1898, the German 
drug company, Bayer, introduced heroin into the United 
States as non-habit-forming medicine that would cure 
opium and morphine addiction (2). Over a hundred years 
ago, America’s first drug czar, Dr. Hamilton Wright, was 
the subject of an op-ed in the New York Times. Wright 
revealed that per capita, Americans were the biggest 
consumers of raw opium and opium-based products, in 
the world. These products included morphine, heroin, 
laudanum, over-the-counter medicines, and patented 
drugs. His efforts lead to a series of Federal laws that 

restricted the importation, distribution, and prescription 
of opiates and opioids; effectively ending the first 
American opiate/opioid epidemic. In the 1960’s, many 
of our military returning from Vietnam brought their 
heroin addiction home with them. The growing number 
of heroin addicts caused President Nixon to pass 
legislation (The Narcotic Addict Treatment Act of 1974) 
allowing Methadone Clinics to open across the country 
to combat heroin abuse (2). 

The birth of America’s current opiate/opioid 
epidemic coincides with a pharmaceutical company’s 
launch of a powerful new and highly addictive 
painkiller in the late 1990’s. The concept that pain 
should be considered a vital sign (3) was initiated in 
the mid-1990s by the leadership of the American Pain 
Society (4, 5) and mandated in January of 2001, by 
the Joint Commission on Accreditation of Health Care 
Organizations (JCAHO). An extensive educational 
campaign required health care professionals to 
assess pain level in all patients and provide treatment 
(6). Physicians were encouraged by pharmaceutical 
companies to prescribe narcotics – and they did - 
enough to keep every single adult in America high for a 
month. Opioid prescriptions nearly quadrupled in less 
than fifteen years. Physicians prescribed responsible, 
hard-working, non-drug abusing Americans opioids for 
pain resulting from sports injuries and minor and major 
surgeries. As they became addicted to Oxycodone; pain 
clinics and infamous “pill mills” eventuated (7). Today 
we find ourselves in a full blown opiate/opioid epidemic 
that, if not addressed, will continue to expand. It is 
imperative that this concern is structured appropriately. 
To imply America has a heroin epidemic is insincere 
and misrepresentative. We have included evidence 
that portrays a nation hooked on opioid painkillers – 
the most prescribed medication in America. 

An opioid is defined as an artificial narcotic 
that is not derivative of opium. Opiates are analgesic 
alkaloid compounds found naturally in the opium 
poppy plant; Papaver somniferum. One main source 
fueling America’s opiate/opioid epidemic that continues 
to expand its boundaries is the overprescribing of 
addictive opioid painkillers. The number of newborns 
in the US in neonatal intensive care units who are 
addicted to opiates and opioids (prescription and illicit) 
nearly quadrupled from 2004 through 2013 and still 
continues to rise (8). Every day in America, 2,500 youth 
(ages 12 to 17 years) abuse an opioid prescription 
painkiller for the first time and 46 people die from an 
overdose. Twice as many people die from prescription 
painkillers than from heroin (9). There were 47,055 
lethal drug overdoses in 2014 making drug overdose 
as the leading cause of accidental death in the US. 
In 2014, opioid addiction was already an epidemic, 
with 18,893 deaths from overdose of prescription pain 
relievers, and 10,574 deaths from heroin addiction 
(6). Almost 50% of chronic opioid users took only 
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short-acting – rather than longer-acting medications 
– hence, increasing their risk for addiction. Anywhere 
from 45-75% of heroin addicts surveyed said they were 
first addicted to opiate/opioid painkillers then moved 
on to heroin (6). Quoting from the Journal of American 
Medical Association Psychiatry (JAMA Psychiatry), 
2014; “Although the “high” produced by heroin was 
described as a significant factor in its selection, it was 
often used because it was more readily accessible and 
much less expensive than prescription opioids” (6). 
Although Americans make up only 4.6. % of the world’s 
population, they consume over 80% of the global opioid 
supply, 99% of the global hydrocodone supply, as well 
as two-thirds of the world’s illegal drugs (6). 

2.2. Facts from the Centers for Disease Control 
and Prevention (CDC) about the Opioid Epidemic 

¾¾ Starting in 1999, the amount of prescription 
painkillers prescribed and sold in the U.S. 
has almost quadrupled (an estimated 272%) 
to nearly 207 million in 2013 (10).

¾¾ These staggering numbers reveal that enough 
prescription painkillers were prescribed to 
medicate each American adult every four 
hours for an entire month (11).

¾¾ The CDC also found that there has NOT been 
a drastic change in the magnitude of pain that 
Americans report within this particular time 
frame (11).

¾¾ Several states report issues with for-profit, 
high-volume pain management clinics 
(so-called “pill mills”) that overprescribe 
painkillers to those who do not require them 
medically to the CDC (12). 

¾¾ The CDC has observed that overprescribing 
increases abuse and overdose fatalities (10).

¾¾ The CDC estimates that 43,982 drug-
poisoning deaths occurred in 2013; 16,235 
(45 people daily) drug-poisoning deaths 
involved opioids (prescription painkillers) 
alone; 8,257 (23 people daily) drug-poisoning 
deaths involved heroin alone, and 1,342 
deaths involved both opioid analgesics and 
heroin (13). 

In short, Americans, who have not reported 
additional pain during the 14-year period beginning 
in 1999 and ending in 2013, were prescribed by their 
physicians approximately 300% more prescription 
opiate/opioid painkillers than required. Recent studies 
have observed a trend of moving from the opiate/
opioid painkillers that initiated the addiction, to more 
available and less costly heroin –, a detail that evidently 
designates prescription opiate/opioid painkillers as a 
gateway drug to heroin use (13).

Indeed, to believe we can end America’s 
opiate/opioid epidemic by prescribing more opioids, 

specifically methadone, buprenorphine, and 
combinations with narcotic antagonists like Naloxone 
(Suboxone, and Zubsolv), seems counterintuitive. 
Based on the amassed and unbiased empirical data, 
it seems parsimonious that guidelines regarding 
addiction treatment will not stop this epidemic if we 
do not initially turn off the running tap. Wright’s work 
played a major role in terminating America’s first 
opiate/opioid epidemic. However, fragmentation of 
vital parts of the Harrison Narcotics Act (HNA) of 1914 
as recommended by recent drug/addiction treatment 
policy plans can have major negative results that 
cannot be overlooked. To be clear, measures required 
to bring this opiate/opioid epidemic to its end entail 
more than satisfying short term treatment goals while 
the serious and avoidable long-term consequences of 
addiction are ignored.

The policy proposals for drug addiction 
treatment feature federal financial assistance to 
states that provide plans that recommend Medication-
Assisted Treatment (MAT). MAT is the use of U.S. Food 
and Drug Administration (FDA) approved medications 
– most of which are opioids – for the treatment of 
opiate/opioid addiction. The two primary opioids used 
to treat opiate/opioid addiction are methadone and 
buprenorphine. Buprenorphine is approximately 50 
times more potent than morphine. Through media 
reports, the published drug/addiction policy plans 
include a component allowing for greater availability 
and use of buprenorphine/naloxone combinations 
(Suboxone/Zubsolve) in addiction treatment. This plan 
lacks detail and can have unintended consequences 
that in practice, are likely to fail to have the desired 
effect.

Some of the narcotics mentioned above that 
have FDA approval for use in opiate/opioid addiction 
treatment are habit-forming, addictive just like any 
other opiate or opioid, potentially just as deadly and 
subject to the same abuse as any other prescription 
or illicit narcotic (14, 15). While the effects of MAT 
may not be optimal, they are very useful in the short-
term to reduce harm but must be utilized with care. 
In 2010, Methadone was responsible for 31.4.% of 
overdose fatalities reported in thirteen states (16). 
Methadone has a longer half-life than heroin and can 
stay in the system up to 59 hours compared to heroin 
up to 6 hours. Users are tempted to take another 
dose if they cannot feel the previous dose, and the 
methadone accumulates to toxic levels. According 
to the CDC, in the United States, there were 41,502 
mortalities in 2012 due to drug poisoning, which 
included 16,007 opioid deaths and 5,925 heroin 
deaths (17). The difference between the number 
who died from an accidental overdose of methadone, 
and the number who died from heroin is 643 people. 
Despite the empirical data that clearly shows a pattern 
of increased deaths directly attributed to methadone 
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and the slim margin between methadone deaths and 
heroin deaths, –deaths, we were told methadone 
would prevent – the FDA-approved MAT narcotic is 
still prescribed. Methadone is widely available and 
considered safe by the FDA for treating opiate/opioid 
addicts with opiates/opioids (16). 

Deaths attributed to Buprenorphine/Subutex/
Suboxone/Zubsolve are harder to track. According to 
the Drug Abuse Warning Network (DAWN), 21,483 
emergency department visits were estimated to be 
were associated with nonmedical use of buprenorphine 
in 2011.The American Association of Poison Control 
Centers Annual Report indicated that 3,625 case 
and three deaths involving toxic exposure from 
buprenorphine were recorded in U.S. poison centers 
2011 (18).

In America’s first MAT program, albeit it 
was not called that in late 1800’s and early 1900’s, 
physicians prescribed heroin from their offices – 
promoted by the German manufacturer, Bayer, as a 
“cure for opium and morphine addictions” (2). From 
this history the lesson is that adding more opiates/
opioids into an already over-served market with lax 
oversight mechanisms in place, no matter how well 
intended, has the potential to extend America’s second 
opiate/opioid epidemic into perpetuity. 

The FDA approved pharmaceutical agents 
either reduce cravings or suppress the pleasurable 
effects of drugs. While these agents have helped 
many patients over the years, they have not 
adequately prevented cravings and relapse. This 
fact is highlighted by the recent findings that used 
data from the sophisticated Comprehensive Analysis 
of Reported Drugs (CARD). The study revealed a 
significant lack; of “compliance” with many treatment 
medications and “abstinence” from psychoactive 
drug use, in both inpatient and outpatient treatment 
settings (19). 

The short-term use of MAT, possibly, from 
detoxification to less than 12 months, especially, 
opiate substitution therapy like Methadone or 
Buprenorphine/Naloxone (Suboxone/Zubsolve) may 
have substantial benefits regarding harm reduction 
and preventing unwanted opiate/opioid withdrawal. 
Moreover, these potent narcotics can contribute to 
patient stability, provide an opportunity to initiate 
treatment, and for workforce reinstatement, and 
productivity. The neuropharmacology of MAT relies on 
the action of blocking dopamine and leads to acute 
prevention of use of the individuals’ drug of choice 
due to “psychological extinction.” Why use if the thrill 
is gone? This mechanism of action involving reduced 
dopamine function alone is not an efficient or cost-
effective way to combat America’s second opiate/
opioid epidemic. 

Recently, in the states of Massachusetts 
and Ohio, members of Congress from both the 
Democratic and Republican parties have developed 
very comprehensive bills to assist in the reduction of 
harm including opiate/opioid overdoses, especially 
to minors. These bills seem to be on the right track 
and should help. However, more in-depth knowledge 
must be provided to lawmakers by the scientific 
community, regarding the neuroscience of addiction 
medicine to create change in the current landscape. 
With this detailed summary of the current opiate/opioid 
epidemic in the United Sates in mind, and given the 
need to curtail the current loss of lives, this article will 
focus on the neurobiological mechanisms involved in 
acute opiate/opioid abstinence and long-term relapse 
prevention. 

A new “anti-opiate dopamine restoration 
model” (AODR), is proposed. Instead of merely 
blocking withdrawal symptoms, for example, with 
clonidine in combination with buprenorphine/naloxone, 
the preferred modality would be, a gentile non-opioid 
dopaminergic agonist-like therapy initiated early in 
recovery (at detoxification). Our proposed AODR 
model is based on known mechanisms involved in 
both glutaminergic and dopaminergic pharmacology, 
that could lead to the development of “dopamine 
homeostasis” in the long-term to treat opiate/opioid 
use or misuse and to reduce future relapse.

2.3. Importance of preclinical models of addiction 

The pathophysiology and etiology of addiction 
or Reward Deficiency Syndrome (RDS) despite a 
plethora of well-researched studies, especially in the 
pre-clinical arena, remains only partially understood. 
According to a recent review by Aude Belin-Rauscent 
and associates (20), one particular reason has to 
do with the gap between these pre-clinical models 
of addiction and the clinical criteria for the disorder 
as espoused by DSM-5. These authors provide an 
interesting and clear understanding of how after 50 
years of research, the newest models may scientifically 
reduce the gap and provide the field with a better 
window into the fascinating function of the brain. While 
this is true, we must point out that some research, 
early on, did indeed help frame our understanding of 
acute opiate withdrawal mechanisms and, in fact, the 
science is still utilized as a valid treatment modality. 
With due respect for many others, the preclinical work 
of Blum’s group coupled with the clinical work of Gold’s 
group reveals how pre-clinical neuroscience can meet 
clinical science to assist those in recovery. 

In earlier reviews, Gold et al. (21) encouraged 
the continued use of “magic bullets,” including clonidine 
and possibly buprenorphine, to offset the “opiate drive 
state,” incorporated into a continuing recovery model. 
The goals were to recover the brain’s homeostasis in a 
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sober state and to maintain concurrently the necessary 
drive for novel methods to accomplish and support a 
pleasurable existence. Along these lines, early work of 
Blum and in collaboration with others (22-24), proposed 
the “endorphin deficiency theory” for both alcohol and 
opiates. Accordingly, Gold et al. (25-27) suggested 
that in addicts, endorphin deficiency (possibly genetic) 
could exist prior to opiate use. They also proposed 
that the abuse of potent exogenous endorphinomentic 
compounds may cause an endorphin-abnormality 
and that dopamine is involved in withdrawal from 
opiates(28). Moreover, Gold et al. (29) suggested the 
idea that endogenous peptides physiologically provided 
normal inhibitory tone at the locus coeruleus and during 
opiate withdrawal and that attenuation of this inhibitory 
mechanism, due to reduced endogenous peptides, 
leads to norepinephrine-induced hyperactivity. 
Other earlier work by Blum and associates revealed 
shared mechanisms between alcohol and opiate 
withdrawal (30-35), potentially through the opiate-like 
effects of isoquinolines, which provided the basis for 
understanding the role of dopamine in acute opiate 
abstinence (36).

Most importantly, there is protracted 
withdrawal during abstinence following chronic 
morphine dependence, which may be persistent. 
Kaufling and Aston–Jones (37) have provided clear 
evidence to reveal these adaptations involving Ventral 
Tegmental Area (VTA) dopamine neurons in rodent 
models. The adaptations involved in opiate withdrawal 
are linked to an altered responsiveness of mesolimbic 
dopaminergic neurons, a loss of dopamine cell 
responsively and subsequent behavioral changes. 
Also, Kaufling and Aston–Jones (37) ) point out that 
GABAergic neurons in the tail of the VTA (tVTA), called 
the Rostromedial Tegmental Nucleus, are central to 
behavioral responses to opiates. They found that VTA 
dopamine neurons, but not tVTA GABAergic neurons, 
are tolerant to morphine after two weeks of withdrawal. 
Moreover, optogenetic stimulation of tVTA neurons 
inhibited VTA dopamine neurons similarly in opiate-
naive and long-term withdrawn rats. Interestingly, tVTA 
inactivation increased VTA dopamine activity in opiate-
naive rats, but not in withdrawn rats, resembling the 
opiate tolerance effect in dopamine cells. This work 
suggests that although inhibitory control of dopamine 
neurons by tVTA is maintained during protracted 
withdrawal, the capacity for disinhibitory control is 
impaired. Furthermore, they found that morphine 
withdrawal is reduced both in tVTA neural activity and 
tonic glutamatergic input to VTA dopamine neurons 
(37). This latter finding suggests that alterations in 
glutamate and GABA feedback motivate the evident 
tolerance of VTA dopamine neurons to opiates 
following long-lasting contact. It is important to realize 
that protracted abstinence from morphine, for example, 
leads to inhibition by tVTA, but not disinhibition. 
Dopamine cells following chronic opiate exposure 

may add to continuous negative affective states during 
withdrawal. Simply put, there will be less dopamine in 
the long-term, less well-being, and the need to induce 
“dopamine homeostasis.” 

To further comprehend the neurobiological 
mechanisms that predispose people to addictive 
behaviors, a brief review of existing pre-clinical 
models of addiction seems warranted. Interestingly, 
when scientists initiated their study of addiction during 
the 1930s, drug addicted persons were considered 
morally weak and unable to control their will, but today, 
with the advent of new techniques that help explore 
the addicted brain, and psychiatric genetics including 
epigenetic adaptations, these views have drastically 
changed. In fact, the initial finding of the association 
of the dopamine D2 receptor gene (DRD2) Taq A1 
allele and severe alcoholism reversed the opinion of 
Americans in 1990 (38). A Gallup poll showed that 
before the finding, less than half of the Americans 
polled still believed that alcoholism was due to a lack 
of moral fabric, but after the genetic finding, over 56% 
of Americans believed that alcoholism and possibly 
other addictions were biologically-based. 

It is well-known that abusable substances 
exert their reinforcing effects through activation of 
the mesolimbic dopamine system (39), where they 
“hijack” synaptic plasticity processes (40, 41) such 
as long-term potentiation or long-term depression 
(42, 43). They also trigger various between-systems, 
neuroadaptations (44, 45), and changes in gene 
transcription and function, partly mediated by 
epigenetic adaptations (46-52). These adaptations 
occur in some brain systems, including the Nucleus 
Accumbens (NAc) (53), amygdala (54), dorsal striatum 
(55-59), and prefrontal cortex (60-63), with effects 
on inhibitory control through glutaminergic/GABA 
mechanisms and stress reaction (64, 65).

Understanding relapse and drug 
reinstatement have been the subject of investigation 
since the late 1960s and early 1970’s. A basic 
tenet is that it is believed one approach involving 
“psychological extinction” is indeed useful and 
significant in reducing relapse. This idea is based on 
the removal of the very thing that induces motivation to 
reuse and causes the reinforcing effects of the drug. 
It is very well accepted that by attenuating the acute 
impact of dopamine via some biological mechanisms, 
motivation to use will be reduced. These mechanisms 
include, but are not limited to, biosynthesis, storage, 
catabolism, and neuronal release, receptor blockade, 
blocking reabsorption through transporters, low blood–
brain barrier penetration, and altering gene expression 
through epigenetic adaptations, among others. It is 
noteworthy that over many years, some relevant pre-
clinical models that have attempted to understand 
relapse to “reward deficiency” (66), emerged and 
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have been reviewed in the literature (61, 64, 65, 67-
79). In fact, the current FDA-approved MATs favor this 
approach that, although not optimal, has success in 
many patients (80-82).

Over the last decade, much effort has been 
devoted globally to the development of preclinical models 
that independently address psychological constructs 
and related clinical criteria of addiction, as defined in the 
Diagnostic and Statistical Manual (DSM)-5 and older 
versions. The following aspects of the addiction process 
should be considered as the focus of research. The 
protracted seeking responses, as observed in heroin 
addicts (83, 84), these impulses are controlled by stimuli 
in the environment (possibly epigenetic) and eventually 
become compulsive. After prolonged exposure to the 
drug (certainly beyond early withdrawal symptoms) and 
especially in some vulnerable individuals, addiction may 
be a life-long issue, due to genetic polymorphisms of 
reward genes (85). 

Along these lines, Zou et al. (84) using 
functional Magnetic Resonance Imaging (fMRI), 
showed that 30 heroin-addicted subjects with three 
years of abstinence compared to healthy controls had 
weaker connections between reward processing parts 
of the brain and the areas associated with motor skills. 
Moreover, some of the subjects showed potential for 
healing thereby reducing the risk for relapse. This work 
demonstrates that the brain might heal following heroin 
insult, and indicates that treatment should be continued 
for at least three years. However, Zou et al. (84) did not 
test for genetic reward gene polymorphisms. Certainly 
formal genetic testing will help the clinician decide 
the length of potential treatments. Needless to say, 
treatment of heroin addiction should go beyond the 
typical detoxification period whereby only withdrawal 
symptoms are addressed. In America today, many 
of our adolescents, as well as adults, are sent to 
recovery for self-help programs with increased risk 
for relapse due to undiagnosed genetic polymorphism 
but without any further long –term neuroscience-
based treatment (83). 

Importantly, the next generation of pre-
clinical models must focus on uncovering the 
pathophysiological substrates of addiction and its 
associated endophenotypes of vulnerability. Utilizing 
modern neuroimaging techniques as well as a 
better analysis of genetic risk including epigenetic 
adaptations, the opiate/opioid dependent individual 
will be better served by the clinical community. A 
coherent translational approach is required to identify 
the functional significance of the specific behavioral, 
cognitive, or genetic correlates of the vulnerability to 
switch from volitional drug use to compulsive drug-
seeking behaviors. An approach, which integrates 
cognitive neuroscience and employs both animal 
studies and correlational approaches in humans; 

such as, genome-wide and candidate polymorphism 
analysis, is needed to help refine the unraveling of 
the complex etiology of addiction. If this could be 
accomplished, the next generation of preclinical 
models of all RDS behaviors will provide evidence-
based support for clinical criteria and treatment. 

3. POTENTIAL THERAPEUTIC TARGETS

Many potential therapeutic targets are 
emerging, and a brief review of some neurochemical 
pathways seems parsimonious. These pathways 
include the serotonergic, endorphinergic, 
glutaminergic, and dopaminergic. However, based 
on current knowledge, we are proposing that a gentle 
induction of “dopamine homeostasis,” instead of 
blocking dopamine, is tantamount to successful long-
term treatment as well as relapse prevention in the 
heroin or opiate/opioid dependent person (85-87). 
According to Li et al. (87), compared with heroin non-
relapsers, those who do relapse exhibit considerably 
higher cue-induced craving, and this brain reaction 
was seen mainly on fMRI of the bilateral nucleus 
accumbens/subcallosal cortex and cerebellum. 
Moreover, the difference in desire positively correlated 
with the initiation of cue-induced craving, as seen in 
the nucleus accumbens/subcallosal cortex of patients. 
These results indicate that in heroin-dependent 
persons seeking treatment, higher cue-induced 
cravings, and increased activation in those particular 
areas may be linked to reward/craving and memory 
recovery functions. Most importantly, these responses 
may predict relapse and represent important targets for 
the development of new treatment for heroin addiction, 
possibly via regulation of brain dopaminergic function, 
which we refer to here as the AODR model. 

For the distinct role of any individual neuro-
pathway to be fully appreciated, it is important to 
evoke the concept of the “Brain Reward Cascade” first 
developed by Blum & Kozlowski (88) as previously 
indicated by Bozarth & Wise (89). In the Bozarth 
and Wise article, they correctly suggest that heroin 
reward is dependent on a dopaminergic substrate, 
and the cascade intimates the various interactions 
of some neurotransmitters leading to NAc dopamine 
release. Over the years following these discoveries 
many reiterations have been developed and recently 
supported by the outstanding work of Morales’ group 
at the National Institute on Drug Abuse (NIDA) (90) 
(see Figure 1). 

This review presents a snapshot of the 
neurogenetic and epigenetic adaptations that 
change neurotransmitter pathways in Opiate/Opioid 
Dependence. Although limited, the evidence presented 
here has been selected for consideration due to its 
relevance to the development of potential Opiate/
Opioid therapeutic targets.
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3.1. Serotonergic system

Most recently, Müller & Homberg (91) 
reviewed the role of the serotonergic system, in the 
establishment of drug use-associated behaviors 
and the transition and maintenance of addiction. 
Their study examined the following drugs: alcohol, 
amphetamine, cannabis, cocaine, MDMA (ecstasy), 
methamphetamine, morphine/heroin, and nicotine. 
Interestingly, they found distinct involvement of the 
5-hydroxytryptamine (5-HT), system in both the 
establishment of drug use behaviors and transition 
to addiction with considerable overlap between 
psychostimulant, opioidergic drugs, and alcohol. This 
overlap seems to be in agreement with the role of 
drugs of abuse in RDS and potential for genetic testing 
(86). Their review suggests that specific adaptations 
of the serotonergic system render the nervous system 
susceptible to the transition to compulsive drug use 
behaviors and often overlap with genetic risk factors 
for addiction. Müller & Homberg (91) highlight the fact 
that serotonergic neuroadaptations induced by first 
drug exposure pave the way for the establishment 
of addiction. Certainly, repeated administration of 
heroin intake results in both cellular sensitization and 
withdrawal, which can be long-lasting and devastating 
(92). In a recent study Wu et al. (93), found that of 
a selective 5-HT2CR agonist Lorcaserin administered 
during the development, the withdrawal or expression 
stage; suppressed heroin-induced behavioral 
sensitization on day nine. Moreover, the same drug 

also suppressed naloxone-precipitated withdrawal 
symptoms in heroin–treated mice. 

A plethora of studies are showing that 
the brain neurotransmitter, serotonin (5-HT), plays 
a central role in the regulation of reward-related 
processing (94, 95). Emerging evidence suggests 
that there is deregulation of the serotonin system 
after long-term exposure to drugs of abuse (96). 
Dysregulated serotonin transmission has been 
thought to increase susceptibility to a broad range of 
substance abuse disorders (97). Obviously, a review 
of genetic polymorphisms of the serotonin system 
reveals a unique genetic architecture that contributes 
to not only the risk for addiction but also to treatment 
effectiveness and the potential for full recovery (98). 
Gao et al. (99) and others (100, 101) established 
the noteworthy link between heroin addiction and 
the four Single Nucleotide Polymorphisms (SNPs) 
of the 5-HT receptor (HTR) genes in a group of 
Han Chinese individuals. Also, Tan and colleagues 
(102) provided evidence of an association between 
heroin dependence and a VNTR polymorphism at 
the serotonin transporter (5-HTT) gene. Hungarian 
scientists found an association between the -521 CC 
vs. CT or TT genotypes (DRD4) and heroin dependence 
that was enhanced in the presence of a short (s or 
14-repeat low activity) 5-HTTLPR allele (103). Other 
work from Yang et al. (104) showed that 5-HTTVNTR 
has a predictive effect on co-morbid Borderline 
Personality Disorder in female heroin-dependent 

Figure 1. This is an illustration of the Brain Reward Cascade. The cascade begins with the release of serotonin, at the hypothalamus, which stimulates 
enkephalin. The enkephalin, then, inhibits GABA at the substantia nigra, which, in turn, regulates the amount of dopamine released at the nucleus 
accumbens (or “reward site”). The dopamine originates in the VTA. Various receptors (including 5HT2a receptors, μ-opiate receptors, GABAA receptors, 
GABAB receptors, and dopamine receptors) are utilized in the reward cascade. Recent evidence demonstrates the role of the dorsal raphe nuclei in this 
cascade (91). Reproduced with permission from (86).
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patients. Also, Cao & Hudziak (105), through a meta-
analysis, showed that across multi-cultures, albeit 
at different risk frequencies, there is an association 
between 5-HTTLPR and heroin dependence. In a 
neuroimaging study by Lin et al. (106), observed that 
“the time to heroin relapse” is significantly higher when 
serotonin transporter availability is low, revealing a 
negative association pattern. It is established that 
the human 5-hydroxytryptamine (serotonin) receptor 
1B, encoded by the HTR1B (5-HT1B) gene, is a 
presynaptic serotonin autoreceptor that is important in 
regulating serotonin synthesis and release. Cao and 
LaRocque (107), through a meta–analysis, reported 
an association between the functional SNP-161A>T 
(rs130058) and heroin dependence. Specifically,  a 
study by Gau et al. (99) also clearly supports an 
association between the HTR1B (5-HT1B) gene 
polymorphism (G861C) and heroin dependence. 

While a quick word search in PUBMED (12-25-
2016) for “epigenetics of serotonin genes and opiates” 
did not reveal any studies, certainly, some studies 
are showing epigenetic effects on serotonergic genes 
(108). The HTR2A promoter has been connected to 
many disorders in adults and infants, including bipolar 
disorder, borderline personality disorder, chronic 
fatigue syndrome, schizophrenia, suicidality, and 
other neurobehavioral conditions. Along these lines, 
epigenetic effects have been shown to exist in placenta 
tissue as a way of determining the role of environment 
in fetal brain development. Paquette and Marsit (109) 
did find evidence of placental epigenetic variation of 
HTR2A to be associated with infant neurobehavioral 
outcomes, which could be a possible link to adult 
mental health disorders. Specifically, hypermethylation 
of SLC6A4 (serotonin transporter) was observed in 
bipolar disorder (110-112). 

Certainly, opiate/opioid dependence or 
withdrawal symptoms are a polygenic inheritable 
phenomenon impacted by epigenetic communication 
and pleiotropy. Thus, it is improbable that this 
physiological state is due to any one single gene. With 
this stated, new gene research utilizing microarray 
analysis, coupled with candidate convergence 
including epigenetic effects, should be applied to 
serotonergic genes as they relate to the entire process 
of addiction and its recovery to enhance therapeutic 
targeting approaches. 

3.2. Endogenous opioid peptides 

In the early to mid-1970s, we learned about 
the presence of the opiate receptor (113) as well as 
the identification of brain opioid peptides (114). At 
that time, Blum’s laboratory proposed a common 
mechanism theory linking opiates with alcohol 
through the “genotype-concept” called “endorphin 
deficiency,” which set the stage for an enormous 

amount of neuroscience and genetic research (22, 
24, 115). Thirty years later, we know that G-protein-
coupled µ-, δ- and κ-opioid receptors, are activated 
by opioid peptides which have different response 
profiles and affinities. The endogenous neuropeptides 
β-endorphin, leu-enkephalin, met-enkephalin, and 
dynorphin physiologically activate opioid receptors. 
These peptides are not limited to binding with one 
type of opioid receptor. Individuals can be genetically 
predisposed to substance abuse due to defects in opioid 
peptide and receptor genes (116). Regarding support 
for the common mechanism theory, opioid receptors 
not only facilitate the pharmacological functions of 
opioids, but they also control in vivo outcomes of 
other abused drugs (117). While the human mu-
opioid receptor (MOR or OPRM1) represents the most 
important target for morphine, the Delta, and Kappa 
receptors are similarly significant in addiction, and the 
genetic variants of these receptors have been studied 
extensively (118). Genetic polymorphisms in OPRM1 
gene have been associated with heroin dependence in 
Chinese samples(119) and other ethnic groups (120). 
Analysis of a combined effect of OPRM1 (mu receptor) 
and OPRD1 (delta receptor) showed that rs510769 
and rs2236861 increase the risk of heroin addiction. 

However, numerous studies with negative 
outcomes have also been described (121-123). 
Independently, studies by Tan et al. (102) and by 
Shi et al. showed an addiction-like relationship at 
the time of first drug use and during drug-seeking 
behavior was modulated and confirmed by OPRM1 
polymorphisms (124). Using a postmortem brain 
analysis, others (125, 126) showed down-regulation 
of preproenkephalin and preprodynorphin genes in all 
heroin users. However, the effects were exaggerated 
in subjects with the 118G and were most prominent 
for preproenkephalin in the nucleus accumbens shell. 
Also, the same scientists revealed that alterations 
in opioid neuropeptide systems might underlie 
enhanced opiate abuse vulnerability apparent in 118G 
individuals. It is well-known that μ Opioid receptors are 
crucial for heroin dependence, and A118G SNP of the 
μ opioid receptor gene (OPRM1) has been linked to 
heroin abuse. In the post-mortem study population of 
European Caucasians (n = 118), ≈90% of 118G allelic 
carriers were heroin users. The OPRM1 genotype 
was shown to be associated with the processing of the 
human striatal opioid neuropeptide system including 
transcription, and translation. Exclusively in the 118G 
heroin subjects, increased dynorphin, and enkephalin 
peptide concentrations were observed together 
with reduced opioid neuropeptide transcription. 
Enhanced vulnerability to opiate abuse apparent in 
118G individuals may be the consequence of these 
alterations in peptide processing. Heroin users also 
had abnormal gene expression related to peptide 
convertase and ubiquitin/proteasome regulation 
(125).
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Preprodynorphin, the primary endogenous 
ligand for the κ-opioid receptor, is a natural derivative of 
prodynorphin. Kreek et al. (127) found an association 
between polymorphisms of the preprodynorphin 
gene and opiate addiction. Wei and associates 
(128) reported an association of three variants of the 
Preprodynorphin (PDYN) gene and heroin dependence 
in Chinese subjects. Clarke et al. (129) also found that 
PDYN was significantly related to the risk of developing 
opioid dependence, primarily in females. Interestingly, 
according to Nikoshkov et al. (126), the data suggests 
that the dysfunction of the opioid reward system is 
considerably related to opiate abuse susceptibility, and 
that heroin consumption modifies the evident impact 
of genetic dopamine tone on mesolimbic PENK and 
tyrosine hydroxylase function. 

Along similar lines, recent work from 
Navratilova et al. (130) provides interesting and 
relevant evidence that endogenous opioid activity in 
the anterior cingulate (AC) is necessary for pain relief. 
Understandably, aversive pain and its relief, require 
dopaminergic transmission in the NAc. Navratilova et 
al. (130) specifically found that the blockade of opioid 
signaling in the rostral AC Cortex (rACC) inhibited 
NAc dopamine release. In contrast, pharmacological 
activation of rACC opioid receptors of injured, but not 
pain-free, animals was sufficient to stimulate dopamine 
release in the NAc. Based on these and other related 
findings, the authors concluded that endogenous 
opioid signaling possibly via delta opioid receptor 
activation in the ACC seems to be both necessary and 
sufficient for the relief of pain aversiveness. Finally, 
the same group revealed the importance of having 
standard delta-opioid receptor expression in the VTA 
as a possibly protective mechanism against high 
alcohol intake in humans (131-133). 

We believe this suggestion involving 
endogenous opioid expression seems important 
in protecting against heavy heroin consumption. 
These findings align with earlier findings by Blum 
et al. (134, 135). Here, we suggest that targeting 
the endorphinergic system regarding treating acute 
opiate/opioid abstinence and its protracted clinical 
outcome, and neuro-adaptations seems parsimonious. 
Enhancing signaling in the AC is required to prevent 
poor decision making since the ACC is the seat of 
relapse and drug reinstatement. 

3.3. Cannabinoids and anandamide system

Since the discovery of endogenous 
Cannabinoids and their receptors, it has been 
researched and is now well established, that 
Cannabinoids functionally interact with opioid systems. 
The endogenous cannabinoid system is a signaling 
method comprised of the central cannabinoid (CB1) and 
the peripheral cannabinoid (CB2) receptors, as well as 

numerous lipid transmitters, like 2-arachidonoylglycerol 
and anandamide. The system is the target for natural 
cannabinoids: the psychoactive constituents of 
preparations of Cannabis Sativa like marijuana and 
hashish (136-139). Specifically, cannabinoid CB1 
receptors are present in dopamine brain areas in 
primates and certain rat strains. Cannabinoid CB1 
receptors are also located in dopamine cells of the 
A8, A9, and A10 mesencephalic cell groups and co-
localize with dopamine D1/D2 receptors in dopamine-
projecting neurons. Manipulation of dopaminergic 
transmission can alter the expression of CB1 
receptors, as well as, the synthesis and release of 
anandamide. Cannabinoid CB1 receptors can switch 
its transduction mechanism to oppose the ongoing 
dopamine signaling. 

Lopez-Moreno et al. (138, 139) have reported 
that the cannabinoid brain receptor type 1 (CB1) and 
mu-opioid receptor type 1 (MOR1) co-localize in the 
same presynaptic nerve terminals and signal through 
a common receptor-mediated G-protein neuronal 
system. In fact, Lopez-Moreno et al. (139) indicated 
that the cannabinoid receptor 1 (CNR1) gene is 
expressed in the central nervous system (CNS). 
Moreover, specific polymorphisms of the CNR1gene 
have repeatedly been found to be associated with drug 
addiction in general. It is known that a microsatellite 
polymorphism (AAT) at the cannabinoid CB1 (brain) 
receptor gene (CNR1) consists of 9 alleles. Comings et 
al. (140) studying CNR1 alleles found that the number 
of intravenous drugs consumed was considerably 
higher for those carrying the > or =/> or = 5 genotype, 
as opposed to other genotypes. These results are 
further support for a role for cannabinoid receptors in 
the modulation of dopamine and cannabinoid reward 
pathways. Benyamina et al. (140, 141) conducted a 
meta–analysis involving eleven articles supporting a 
minor implication for CNR1 AAT polymorphism in illicit 
substance dependence vulnerability. Unlike Comings 
et al. (140), others could not find an association with 
the same CNR1 polymorphism in German IV drug 
users (142). In 2006, Yale scientists (143) also failed 
to show an association with CNR1 AAT polymorphism 
in illicit substance dependence vulnerability following 
statistical correction (multiple testing errors). It is 
possible that with a more specific phenotype and 
better assessment of controls, the CNR1 AAT may 
associate with opiate/opioid dependence, but we must 
await these studies. 

3.4. Glutamatergic and GABAergic systems

It is well established that opiate reinforcement 
is mediated by the inhibition of GABA release, thus 
disinhibiting dopamine neurotransmission. Humans 
with a dysfunctional GABAergic system may release 
higher amounts of dopamine, which has been 
considered an important early target as represented 



Opiate/opioid abstinence: Treating the symptoms and cause    

1256 © 1996-2017

by FDA-approved MATs (144). A plethora of research 
indicates that GABA receptors play an essential role in 
the actions of benzodiazepines, barbiturates, alcohol 
and morphine abuse and dependence (145-148). 
Glutamate is among the most abundant excitatory 
neurotransmitters in the brain (149). Glutamate 
receptors, which function in many brain areas such as 
the mesocorticolimbic dopamine sections, play a part 
in addiction. The Dorsal Raphe Nucleus (DRN) ) and 
the VTA(150) are two of the more relevant brain reward 
areas where electrical stimulation produces responses, 
at the highest rates and lowest thresholds, meaning 
that they are very sensitive. For over 40 years, the 
DNR has been classified as a serotonergic structure 
and the VTA as a dopaminergic structure. Although 
multiple studies have examined both the DRN and VTA 
and their effects on reward, these studies have been 
focused on the serotonergic contribution to reward. As 
a result, these investigations have produced conflicting 
results, and the true role of DRN in the VTA circuitry 
regulation of motivated behaviors is still unknown. 
Contrary to the widespread idea that the major input 
from DRN to VTA is serotonergic, the Morales Group 
in Qi et al. (151) found that DRN neurons expressing 
the vesicular glutamate transporter-3 (GluT3) are 
the major input from DRN to VTA. Within the VTA, 
these DR-GlutT3 neurons mostly develop synapses 
on dopamine neurons. Importantly, some of these 
dopamine neurons as found by Qi et al. (152), 
specifically innervate the NAc. Via genetic approaches 
to specifically express rhodopsin in channel DR-
GlutT3 neurons, it was also found that intra-VTA light 
stimulation of the VGLUT3 -fibers elicit AMPA-mediated 
excitatory currents in the dopamine neurons that 
innervate the NAc. Such stimulation causes dopamine 
release in the NAc, reinforces instrumental behaviors, 
and establishes conditioned place preference. Qi et 
al.’s (151) discovery of a rewarding excitatory synaptic 
input to the meso-accumbens’ dopamine neurons by 
a glutamatergic projection arising selectively from 
neurons of the DRN that contain VGLUT3 suggested 
that new targets may be important to boost motivation 
in the RDS patient. Moreover, unpublished work from 
NIDA (the Morales Group) also found that GABA from 
the Substania Nigra, and possibly even co-localized in 
the same VGLUT3 neurons, induces regulation of the 
VGLUT3 neurons and as such, fine tunes the release 
of dopamine from the VTA to NAc.

De Azeredo et al. (152) correctly pointed out 
that glutamic acid decarboxylase (GAD) is the rate-
limiting enzyme in the transformation of glutamate to 
GABA. In 2009, Levran et al. (153) found a significant 
association of GAD1 with heroin dependence. Other 
work by Wu et al. (154) examining 15 SNPs of the 
GAD1 gene using the Mass-ARRAY system among 
Han Chinese, found significant associations of some 
novel SNP and haplotypes with heroin dependence. 
In 2003, Lin et al. (155) reported a female-specific 

contribution of the GABA (A) receptor subunit genes 
to non-psychotic methamphetamine use disorder. 
Moreover, Loh et al. (156) reported that the prevalence 
of the rs211014 SNP in the GABAAγ2 receptor subunit 
gene was significantly different between heroin-
dependent and the control Han Chinese group. Thus, 
scientists have helped to delineate the functioning 
of the glutaminergic system in addictive and reward 
deficiency behaviors RDS. Certainly, Glutaminergic 
input at the VTA impacts dopaminergic release in 
the NAc and other brain regions and is involved in 
protracted acute opiate abstinence adaptations and 
possibly neuroplasticity (157).

3.5. Dopaminergic system 

The dopamine system has a crucial role in 
reward mechanisms, control of locomotion, cognition, 
emotion, and even the neuroendocrine system. A word 
search in PUBMED reveals 147,833 articles as of 
12/25/2016. The genetic polymorphisms of numerous 
genes that encode dopamine receptors, dopamine 
transporters, and dopamine metabolic enzymes, 
influence the heritability of drug and many behavioral 
addictions (158-160). Work from many laboratories 
across the globe has been able to elucidate the role 
of this neurotransmitter in the CNS. It appears that 
there are nine dopamine receptors; however the most 
studied receptors, the D1, and D2 have been linked 
extensively to drug-seeking behavior (161-167). 

The actual role of dopaminergic genetics 
initiated with the first association of the dopamine D2 
receptor (DRD2) Taq A1 allele and severe alcoholism. 
This discovery by Blum et al. sparked the field of 
psychiatric genetics (38). Since that time, many 
candidate reward gene polymorphisms, especially in 
the dopamine system including dopamine receptors, 
dopamine transporter on addiction, and even obesity, 
have long been established (168). Particular studies 
maintained the hypothesis that genetic deviations in 
dopamine systems increase the addiction disorder risk 
by motivating diverse features of impulsivity or due to 
its capacity to impede the selection of less rewarding 
signals (158). In 1991, Bouthenet et al. (169) reported 
that the DRD2 Messenger Ribonucleic Acid (mRNA) 
was copiously expressed in all dopaminergic terminal-
enriched regions. Certainly, other work by Hou and Li 
(170) showed that DRD2 Taq A1 allele carriers were 
prone to heroin abuse. Additional work by Mehić-Basara 
and associates (171) revealed that polymorphisms of 
the DRD2 (rs1800497) were associated with some 
personality and environmental states as liability for 
subsequent heroin-seeking behavior. Along similar 
lines of investigation, Li et al. (85) observed that 
carriers of the DRD2 TaqI A1 allele presented with 
considerably stronger cue-elicited cravings. Other work 
from China by Du and colleagues (172) performed a 
meta-analysis and suggested a possible association 



Opiate/opioid abstinence: Treating the symptoms and cause    

1257 © 1996-2017

between the dopamine transporter gene (DAT) 
polymorphisms DAT1 and alcoholism. Regarding a 
common mechanism between numerous addictive 
substances, many studies have shown the association 
between DAT1 and alcohol, nicotine, and even 
cocaine abuse and dependence (173). Furthermore, 
Ling et al. (173) described that polymorphisms of the 
DAT gene may function in the start of smoking and 
that there is a potential interactive effect between 
DAT and early smoking onset that adds to the 
vulnerability to nicotine addiction. Li and associates 
(174), followed by Lai et al. (175), showed that the 
Dopamine D4 receptor (DRD4) polymorphisms were 
related to heroin dependence. Chen et al. (176) found 
that the DRD4 exon III variable number of tandem 
repeat (VNTR) polymorphisms may be important in 
the development of opiate abuse. Additionally, Shao 
et al. (177) reported stronger cue-elicited cravings in 
heroin addicts who carried the DRD4 VNTR long-type 
allele. Chen et al. (178) also found some evidence 
for an association between polymorphisms of the 
Catechol-O-methyltransferase (COMT) gene and 
opiate abuse. Vereczkei et al. (179) observed that 
TaqIA (rs1800497) and TaqIB (rs1079597) deviations 
were related to heroin addiction. Furthermore, -521 
C/T SNP (rs1800955) of the DRD4 gene presented 
no significant connection with a potential protective 
effect of the C allele. Following the application of the 
Bonferroni modification, TaqIB remained noteworthy, 
implying that the insignificant (A) allele of the TaqIB 
SNP is a genetic risk factor for heroin addiction. This 
finding is in agreement with the Blum et al. (38) finding 
of a significant association of TaqIB (rs1079597) with 
severe alcoholism. A literature review regarding the 
several associations of dopaminergic genes and many 
RDS behaviors, including opiate/opioid addiction, can 
be found in Blum et al. (180).

3.5.1. Dopamine catabolism genes 

There are some catabolizing enzymes such 
as COMT and Monoamine oxidase (MAO) known to 
catabolize biogenic amines that effect substance-
seeking behavior including opiates/opioids (181). 
Certainly, COMT plays a role that is essential for 
dopamine inactivation. The rs4860 (Val158Met) is a 
functional SNP on the COMT gene that brings about a 
three- to four-fold increase in enzyme activity and has 
been linked to drug dependence (182). 

One study by Cao et al. (183) found a weak, 
but significant difference in the genotype of -287 A/G 
polymorphism of COMT gene was observed among 
heroin-dependent subjects and controls. In an earlier 
study, Vandenbergh et al. (184) showed an association 
between the high-activity COMT polymorphism and 
polysubstance abuse in a group of North American 
subjects. This finding was confirmed by Horowitz 
et al. (185), they found an excess of the Val COMT 

allele in heroin addicts compared to an Israeli control 
group. Chinese heroin dependent subjects with the 
TT genotype of COMT rs737866 variants had higher 
novelty-seeking scores, and an earlier age of onset of 
heroin use than subjects with the CT or CC genotype 
(186). There have been controversial negative findings 
with COMT and other dopaminergic-based genes such 
as DAT1, and even DRD2, in Chinese samples, as 
well as, other ethnic groups. These negative findings 
may have resulted from the inadequate assessment of 
controls who may have multiple RDS behaviors (187-
193). Asians, for example, are known to carry the DRD2 
A1 allele at 72% a very high prevalence and have 
multiple RDS behaviors (194), all of these behaviors, 
not substance abuse alone must be screened for the 
selection of controls. 

It is well known that MAO can catalyze the 
oxidative deamination of various biogenic amines, 
including the key neurotransmitters: dopamine, 
norepinephrine, and serotonin (195). Of the two 
forms of MAO: monoamine oxidase A (MAOA) and B 
(MAOB), in 1987 both Fowler et al. (196) and Thorpe 
et al. (197) estimated, that 70% of neuronal MAOs 
are type A, which is expressed at the highest level in 
catecholaminergic neurons. Interestingly, MAOA is 
localized in brain regions that have been implicated 
in behavioral response to novel stimuli and addiction 
(198, 199). It is known that two MAOA polymorphisms, 
the EcoRiV polymorphism at position 1460 (200) and 
the VNTR polymorphism in the promoter region (201), 
are important because they influence enzyme activity 
and transcriptional activity, respectively. Studies by 
Cases et al. (202) and Shih et al. (203) reveal that a 
modest increase in dopamine due to MAOA knockout 
in mice results in a dramatic increase in aggressive 
traits. This finding is in agreement with others that show 
aggressive behavior in adolescents with substance 
use disorder that is linked to polymorphisms of both 
the DRD2 and DAT1 genes (204). 

There is evidence that genetic variants 
in the MAO gene have been associated with risk 
for substance abuse (205, 206). Other work by 
Chinese scientists assessed the role of MAO gene 
polymorphisms in alcoholism in five ethnic groups in 
Taiwan. They found significant associations between 
alcohol abuse and MAOA alleles in Han Chinese. 
However, this finding was specific for Han Chinese, 
but not among the aboriginal groups (207-209). Jin 
and associates (210) determined that the MAOA gene 
polymorphisms affect the origination of smoking in a 
Chinese cohort, persons with the 1460T/O and three-
repeat VNTR genotypes had an appreciably higher 
risk for nicotine addiction. Nonetheless, there is no 
substantial connection between the long repeat alleles 
of the MAOA promoter VNTR polymorphism and 
heroin dependence in Chinese men (211). One study 
by scientists in Sweden in alcoholics suggested that 
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carriers of the DRD2 A1 allele compared to DRD2 A2 
allele have lower platelet MAO-B activity. This finding 
may represent a protective mechanism. Lower platelet 
MAO-A activity allows for higher availability of plasma 
dopamine and may after penetration through the blood 
brain barrier indeed stimulate more D2 receptors in 
the reward system in the brain, especially when the 
D2 receptors are 30-40% deficient due to the DRD2 
A1 allele (212). This increase in dopamine and its 
subsequent penetration through the blood –brain 
barrier, especially in dependent individuals having a 
higher permeability than non-dependent individuals, 
may have relevance even for acute heroin abstinence 
due to the proliferation of dopamine receptors induced 
by brain mechanisms. 

3.6. Cytochrome P450 enzymes

Cytochrome P450 (CYP) is a superfamily of 
enzymes that metabolize clinical medications, toxins, 
endogenous molecules and abusable drugs. Narcotic 
metabolism by genetically polymorphic enzymes can 
have significant clinical implications for therapeutic 
failure, disease susceptibility and abuse liability (213). 
Many CYP enzymes belong to the highly polymorphic 
CYP2 drug-metabolizing family. Central functional 
pathways that are involved in drug-reinforced behavior 
and neurotoxicity may be modulated by CYP2 family 
enzymes (214). Certainly, many scientists have also 
identified valuable associations between the dosage 
and side effects of pharmacological treatments 
for substance abuse disorders, and the genetic 
polymorphism of the CYP450 enzyme gene (188, 
215, 216). Moreover, De Fazio et al. (217) suggested 
that heterozygous carriers of the CYP3A5(*)1 allele 
and of two single nucleotide polymorphisms in the 
P-glycoprotein gene (1236C/T and 3435C/T) showed 
poor adherence to methadone maintenance due to 
rapid clearance of methadone. 

Along these lines, related to narcotic 
metabolism and following the early work by Gold that 
showed the sensitization of norepinephrine (NE) in the 
locus coeruleus during opiate withdrawal is blocked 
by clonidine, paved the way for understanding acute 
opiate abstinence (218). Van Bockstaele & Valentino 
(219) extended this work by reviewing the current 
literature showing how stress-related neuropeptides 
and endogenous opioids co-regulate the function 
of the locus coeruleus (LC) - NE structure, and how 
chronic morphine, or stress, interrupts this regulation. 

4. OPIATE/OPIOID REWARD MECHANISM: 
A SNAPSHOT OF NEUROTRANSMITTER 
INTERACTIONS

Opioids are the most powerful analgesics 
utilized in a clinical setting; yet, their potent rewarding 
properties can cause several reward deficiency 

behaviors including addiction (220). The scientific 
challenge is to limit the development of tolerance, 
dependence, and addiction while retaining analgesic 
potency. It is understood that the first ascending 
pathways for pain are in dorsal horn and the medulla 
of the spinal cord, however, the regulation of, and 
sensitivity to pain, may exist in other neurological 
loci. In particular, the brain’s mesolimbic structure 
the reward center, and several genes and related 
polymorphisms may influence both pain tolerance and 
sensitivity. It is hypothesized that these polymorphisms 
are related to a susceptibility to intolerance or 
tolerance for pain and that documentation of specific 
gene polymorphisms offers a particular therapeutic 
target to aid in pain treatment. It is suggested that 
pharmacogenetic assessment of specific candidate 
genes like mu receptors, PENK, and others will result 
in pharmacogenomic solutions tailored to the specific 
patient, with possible advancement in clinical results 
(221). 

Moreover, based on the study results 
reviewed herein, we hypothesize that the subsequent 
coupling of these identified genes as described in this 
paper, as well as other genes and their polymorphisms, 
would allow for additional pharmacologically active 
substance-based pharmacogenomic mapping. 
The grouping will offer a map; a platform for the 
development of new DNA targeted regions, which 
will guide the selection of bioactive substances with 
possible anti-craving mechanisms and pain relief 
actions. In principle, the identification of reward 
gene polymorphisms and variations in additional 
physiologically-based endogenous opioid receptors 
and further signaling substrates will guarantee effective 
tailored clinical treatments for persons with atypical 
inborn pain sensitivity (see Figure 2). This information 
will undoubtedly serve as a way to combat the current 
opiate/opioid epidemic. The attending clinical team 
will be able to focus on short–term detoxification, 
and also target known genetic, and even possibly, 
epigenetic impairments that may be linked to the 
etiology of the initial cause of intensive opiate/opioid-
seeking behavior. While the system, as Li et al. (222) 
indicated is very complex and involves almost 400 
genes, we must, at least, attempt to address both the 
glutaminergic and dopaminergic systems (86). Without 
this strategy, short-term detoxification related to only 
focusing on Norepinephrine sensitization, by opiates, 
at the locus coeruleus, is short-sighted at best. 

Both the rewarding and pain-relieving 
mechanisms of opioids rely on actions at opiate 
receptor sites, including, but not limited to, the mu 
opioid (MOR) receptor. However, systemic opioid 
reward entails MOP receptor activity in the midbrain 
VTA, which is comprised of dopaminergic neurons. 
VTA dopaminergic neurons are associated with 
several features of reward, including reward prediction 
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inaccuracy, working memory, and incentive salience. 
It is evident that subsets of VTA neurons have diverse 
pharmacological characteristics and engage distinct 
circuits (223). It is known that both dopaminergic 
and non-dopaminergic circuits can contribute to 
VTA opioid reward. Although there is widespread 
acceptance of the idea that a crucial step in MOR 
reward is activation of midbrain dopamine neurons, 
there may be additional work required to tease out 
the possibility that in some cases, the involvement 
of dopamine may not be a necessary component of 
opioid reward (224-227). Certainly, we are in an early 
stage of truly understanding the interactive role of 
MOP and dopaminergic and GABAergic interactions 
regarding producing reinforcement, or its inhibition. 
We must, therefore, remain vigilant about promoting 
clear cut treatment and relapse prevention techniques 
by simply accepting the two-neuron model (glutamate 
and dopamine), because reward may not be solely a 
dopamine phenomena despite the dopamine neurons 
in the VTA that form a single functional group with 
uniform pharmacology (228, 229). 

While the latter may not be the sole target 
for treatment success, especially within an anti-opiate 
dopamine restoration model, until more is understood, 
we should consider developing treatment methods that 

target the ” two-neuron model” in an attempt to at least 
enhance functional connectivity of the brain especially 
at rest (230). Li’s group showed a dysfunctional 
Default Mode Network (DMN) in methadone-treated 
patients who have higher heroin relapse risk. They 
found that the left inferior temporal gyrus and the right 
superior occipital gyrus associated with DMN had 
decreased functional connectivity in heroin relapsers 
when compared with heroin abstainers while, the right 
middle cingulum and the left precuneus had greater 
functional connectivity. Mean intensity signal, isolated 
from left inferior temporal gyrus of heroin-relapsers, 
presented a substantial negative correlation consistent 
with the level of heroin relapse (231). 

5. DOPAMINE AND BRAIN FUNCTIONAL 
CONNECTIVITY

The role of dopamine in the brain at rest is 
an important and an emerging area of research with 
interest especially in Parkinsonism (231). Piray et al. 
using systematic pharmacological manipulation of 
dopamine D2-receptors and resting-state functional 
imaging in humans, found that dopamine modulates 
interactions between motivational and cognitive 
regions, as well cognitive and motor regions of the 
striatum. Specifically, stimulation or blockade of the 

Figure 2. This is a hypothetical Common Molecular Network for Drug Addiction. Li and his associates established an addiction-gene-system that was 
centered on the common pathways classified in their 2008 study and protein communication data. Addiction-related genes were characterized as 
white boxes while neurotransmitters and secondary messengers were emphasized in purple. The common pathways are emphasized in green boxes. 
Associated functional modules like “regulation of cytoskeleton”, “regulation of cell cycle”, “regulation of gap junction”, and “gene expression and secretion 
of gonadotropins” were emphasized in carmine boxes. Many positive feedback loops were classified in this particular network. Rapid positive feedback 
loops were stressed in red lines, and relaxed ones were emphasized in blue lines. This detailed addiction gene map was manually constructed based 
on the common pathways identified showing the final common pathway being glutaminergic and dopaminergic (86, 222). Reproduced with permission 
from, (222)
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dopamine D2-receptor has opposite effects (increasing 
or decreasing) on the efficacy of those interactions. 
In fact, attribute impulsivity, in particular, was linked 
to the dopaminergic variation of ventral-to-dorsal 
striatal connectivity. Subjects with increased attribute 
impulsivity displayed exaggerated drug-induced 
increases (following stimulation) and decreased 
(following obstruction) of ventral-to-dorsal striatal 
connectivity as compared to those with little attribute 
impulsivity (232). 

It is well known that dopamine signaling 
through D2 and other dopamine receptors has been 
associated with the regulation of reward processing, 
cognition, the outcomes for drug abuse, relevant 
aversive stimuli and is also the meaningful response 
to stressors (233). In fact, Peciña et al. discovered that 
a haplotype block comprised of two SNPs, rs4274224, 
and rs4581480, caused the hemodynamic reactions 
within the dorsolateral prefrontal cortex (DLPFC) 
during reward anticipation, and  in the subgenual 
anterior cingulate cortices (sgACC) during continuous 
emotional processing. The authors suggest that 
these findings may contribute to susceptibility to 
psychopathology related to those actions, for example, 
the risk for mood and substance use disorders or RDS 
behaviors (233). 

Recent evidence supports the fact that the 
DMN consists of a group of interconnected brain 
areas with correlated activity during resting state fMRI. 
Moreover, this activity in the DMN is associated with 
functional connections to the striatum and dopamine 
levels in this brain region (234). Specifically, it was 
found that a decreased dopamine state resulted in 
the following system alterations: lowered global and 
local productivity of the entire brain system, decreased 
regional productivity in limbic regions, decreased 
modularity of brain systems, and a better connection 
between the generally anti-correlated task-positive 
and default-mode systems. In support of the work, 
earlier studies by Sambataro et al. (235) evaluated 
a functional SNP in the DRD2 gene, (rs1076560 
G > T), which changes the 2 D2 isoform splicing in 
D2 short and D2 long. Within the anterior DMN, the 
variant GG subjects had fairly increased connectivity 
in the medial Prefrontal Cortex (mPFC), which was 
associated with striatal DAT binding. However, within 
the posterior DMN, GG participants had decreased 
connectivity in the posterior cingulate compared to 
T carriers. Additionally, rs1076560 genotype may 
indicate connectivity variances in a striatal system and 
these variations were associated with connectivity in 
mPFC and posterior cingulate in the DMN. Sambataro 
et al. (235) proposed that the hereditarily resolute D2 
receptor signaling is linked with DMN connectivity 
and that these variations are associated with striatal 
function and presynaptic dopamine signaling. 
Moreover, regarding cognitive processing, non-

carriers of the A1 allele with higher DRD2 density, 
display higher task-switching rates, greater prefrontal 
switching functioning in the inferior frontal junction 
region, and greater functional connectivity in the dorsal 
frontostriatal circuits, compared to the A1 allele of the 
DRD2/ANKK1-Taq A1 polymorphism, carriers (236). 
Also, Stelzel et al. carried out a DRD2 haplotype 
analysis and confirmed an association between high 
D2-density and increased switching effort (236). 
Accordingly, these results emphasize the importance 
of individual differences in striatal D2 signaling in 
healthy humans, leading to individual differences in 
changing intentionally to newly relevant behaviors.

Finally, understanding that personality traits 
linked to emotion processing, are, in part, heritable and 
genetically based, Blasi et al. (237) evaluated the role 
of the DRD2 (intronic single nucleotide polymorphism 
in the DRD2 (rs1076560, guanine > thymine or G > T). 
They found increased amygdala functioning throughout 
implicit processing, and higher dorsolateral Prefrontal 
Cortex (DLPFC) reaction during explicit processing of 
emotional facial stimuli in GG participants paralleled 
with GT. Also, the rs1076560 genotype is associated 
with differential relationships between amygdala/
DLPFC functional connectivity and emotion control 
scores. 

The mesolimbic dopamine network is a 
portion of the brain’s reward circuitry. It regulates 
a person’s reactions to rewards, like food, social 
exchanges, and money, and is a significant factor 
involved in motivational drive. Midbrain dopamine 
neurons prominent in the striatum are a finite part of 
the reward-like processes. Recent work from Ferenczi 
et al. (238) clearly demonstrated that the stimulation of 
midbrain dopamine neurons pushes both striatal fMRI 
Blood Oxygen Level–dependent (BOLD) functioning 
and reward-seeking behavior. Moreover, they also 
showed that suppressing dopamine neurons subdues 
functioning in the striatum, as well as other brain areas, 
such as the hypothalamus (238), and pushes avoidance 
behavior (239). They also detected striatal reactions 
to dopamine, as well as, the behavioral motivation to 
pursue dopamine neuronal stimulation and natural 
rewarding stimuli. Most importantly, they determined 
that steadily increased mPF excitability coordinates 
corticolimbic BOLD and electrophysiological 
functioning, which can, in turn, determine anhedonic 
behavior in individual animals (238). Interestingly, the 
mPFC has glutaminergic neuronal input  (90) ), and 
there is indeed a requirement to balance and optimize 
the fine interaction between mPFC-Glutaminergic 
input to striatal mid-brain dopamine, and the resultant 
release of dopamine at the VTA-NAc. These new 
findings have direct implications for the decreased 
functional connectivity in heroin relapsers found by 
Li’s group (230) and our pivotal finding that KB220Z 
complex (discussed below) may indeed induce BOLD 
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activation due to a potential utilization of the mechanism 
of glutaminergic-dopaminergic optimization.

6. EPIGENETIC EFFECTS ON REWARD 
GENES CAN LEAD TO ABERRANT- 
SEEKING BEHAVIOR 

A PUBMED word search for “epigenetics 
and addiction” revealed 145 articles as of 01/09/2016. 
However, a narrower search using “epigenetics 
and opiate addiction” listed only four articles (240-
243). Kenney (242), pointed out that changes in 
gene expression are a part of addiction-related 
neuroplasticity, but that the methods by which, addictive 
drugs alter brain motivation circuits, continues to be 
uncertain. Moreover, MicroRNAs (miRNAs) are a group 
of non-coding RNA that can control the expression of 
many groups of protein-coding mRNA transcripts by 
binding to the 3’ untranslated region (3’ UTR) of the 
target transcripts and hindering their translation into 
the encoded protein or activating their disruption and 
degradation. Research has increasingly supported 
the involvement of miRNAs in controlling, addiction-
related neuroplasticity in the brain, and in regulating 
the motivational characteristics of cocaine and other 
drugs of abuse. Along these lines, others (244) have 
shown that leukocytes from methadone-substituted 
former opiate addicts, compared with matched 
healthy controls, had an increased methylation of a 
CpG-rich island in the OPRM1 gene which codes for 
μ-opioid receptors and expression impacted by global 
methylation site (LINE-1). Thus, higher DNA methylation 
was associated with chronic opioid exposure; that 
effect was reproduced in an independent cohort of 
opioid-treated patients, compared to pain patients not 
treated with opioids. Thus, opioids may stimulate DNA 
methylation. Furthermore, Doehring et al. (240) also 
found that the global DNA methylation at LINE-1 was 
significantly correlated with increased chronic pain. 
While more evidence is required, this important work 
suggests that opioids may be causally associated 
with increased genome-wide DNA methylation. Higher 
methylation may provide a reasonable epigenetic 
mechanism for opioid-induced hyperalgesia. 

In other work, Abdolmaleky et al.(244) and 
others (109) suggested that the epigenetic effects 
on an array of genes, may result in altered gene 
expression across the brain reward circuitry, leading 
to not only risk for opiate/opioid addiction, but many 
RDS behaviors. The array of genes includes: (DRD2, 
DRD3, and DRD4), serotonin receptor 2A (HTR2A) 
and COMT, DRD1, NMDA receptor genes (GRIN1, 
GRIN2A, GRIN2B), brain-derived neurotrophic factor 
(BDNF), and dopamine transporter (SLC6A3). They 
suggested, for example, that studies have indicated 
epigenetic alterations of reelin (RELN), BDNF, and 
the DRD2 promoters that may present vulnerability to 
psychiatric disorders. They further point out, that the 

hypoactive DRD2 alleles and the hyperactive COMT 
alleles, which damage the dopamine in the synaptic 
cleft, are linked to poor brain function. In an attempt to 
provide some clinical translational therapeutic targets, 
Abdolmaleky and associates (244) suggested that 
employing dopamine D2 receptor agonists or COMT 
inhibitors will be beneficial for patients with negative 
symptoms such as depression. These concepts have 
also been reported by Kato & Iwamoto (111), especially 
for bipolar disorders.

One interesting example from Szutorisz et 
al. (245) clearly showed that parental THC exposure 
was related to variations in the mRNA expression of 
Cannabinoid, dopamine, and glutamatergic receptor 
genes in the striatum, constituents of the neuronal 
circuitry arbitrating compulsive actions and reward 
sensitivity. Specifically, they showed that adolescent 
exposure to Δ(9)-tetrahydrocannabinol (THC) effects 
behavioral and neurobiological irregularities in the 
succeeding generation of rats as an outcome of 
parental germline exposure to THC. In fact, adult 
F1 offspring that were unexposed to THC displayed 
increased work effort to self-administer heroin during 
the period of acute heroin withdrawal, showing the 
long-term impact of epigenetics (245). 

7. ANTI-OPIATE DOPAMINE RESTORATION 
MODEL: PROPOSING NOVEL CLINICAL 
STRATEGIES TO CHANGE THE RECOVERY 
LANDSCAPE 

7.1. Genetic addiction risk

A flood of research studies in the field 
of neurogenetics followed the discovery of an 
association between the DRD2 gene polymorphism 
and severe alcoholism. Genome-Wide Association 
Studies (GWAS), Whole Exome Sequencing (WES) 
lead to the development of Functional Genome 
Convergence. These developments have driven 
controversy nonetheless grouping these approaches 
with the multiple-candidate gene method has value as 
a very practical approach to identifying behavioral and 
actual, genetic allelic associations, that will eventually 
describe both risk and etiology. 

The umbrella phrase, Reward Deficiency 
Syndrome was conceived of in 1996 to elucidate 
the common neurochemical and genetic pathways 
that are part of both substance and non-substance 
addictive, behaviors(66). Notably, the suggestion is 
that the actual phenotype is RDS, and deficiencies 
in the brain’s reward cascade, either hereditary 
or environmentally (epigenetically) produced, are 
responsible for impulsive, compulsive, and addictive 
behaviors both substance and non-substance. 
Comprehension of this shared mechanism will 
eventually lead to improved diagnosis, treatment 
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and relapse-prevention. We cannot as yet proclaim 
that we have “hatched the behavioral addiction egg” 
(246), we are, however, starting to make the right 
inquiries. Based on numerous independent studies 
from around the world, it is becoming increasing clear 
that risk analysis of reward gene polymorphisms 
could provide vital information, for addiction clinicians. 
While many studies are investigating high and 
low drug metabolism, in particular for opiates like 
buprenorphine/naloxone with polymorphisms of the 
P450 system, pharmacogenetic information seems 
limited regarding altering clinical outcomes and the 
test, by itself, has questionable value. However, many 
strongly believe that pharmacogenetic testing is indeed 
relevant to clinical practice, and it will continue to be a 
wave of the future (247). Moreover, the development 
of a polygenic polymorphic test to evaluate risk for 
all addictive behaviors is a worthwhile endeavor, and 
some studies have clearly addressed this possibility for 
future clinical practice (248). For example, Gerra et al. 
(249) provided clear evidence that the dopaminergic 
system is linked to buprenorphine treatment response 
in heroin-addicted humans. Surprisingly, they found no 
difference between responders and non-responders to 
buprenorphine in the incidence of kappa opioid receptor 
(OPRK1) 36G>T SNP. Nevertheless, the incidence 
of dopamine transporter (DAT) gene polymorphism 
(SLC6A3/DAT1), allele 10, was significantly increased 
in “non-responder,” above “responder” persons 
(64.9.% vs. 55.9.%). The incidence of the class of 
additional alleles was increased in the responder 
group, rather than in non-responder persons (11.0.% 
vs. 2.1.% respectively). These outcomes dovetail with 
the effort of others, presenting improved treatment 
results and agreement based on dopaminergic 
polymorphisms, where hypodopaminergic qualities 
facilitate an enhanced reaction throughout treatment. 
We theorize that carriers of the 9 allele of the DAT1 
would present an improved treatment reaction with 
buprenorphine because of its rapid transport function, 
causing a hypodopaminergic attribute. Based on these 
and many other studies reviewed previously, (250) we 
encourage further research and development of a risk 
stratification test for RDS behaviors (251-254). Other 
important work by Pearson-Fuhrhop et al. (255) drew 
data from three separate groups: 1. a discovery group 
of healthy adult subjects (n = 273); 2. a duplication 
group of adults suffering from depression, (n = 1,267); 
and 3. a group of healthy adult subjects (n = 382). A 
genetic risk score was then produced by merging 
functional polymorphisms from five genes involved in 
synaptic dopamine availability (DAT and COMT) and 
dopamine receptor binding (DRD1, DRD2, DRD3). 
They found that the genetic risk score associated 
with depressive symptomatology and poor dopamine 
genetic risk scores specified decreased dopaminergic 
neurotransmission that anticipated increased levels of 
depression. The authors also simulated these results 
with a comparable genetic risk score based on genetic 

data from adults suffering from depression Based on 
these results, Pearson-Fuhrhop et al. (255) suggested 
that a sequence variation in multiple dopaminergic 
genes may influence depressive symptoms in an 
apparently, additive manner. 

These novel advances suggest the possibility 
of utilizing genetic profiles to determine genetic risk for 
opiate/opioid dependence, especially before patients 
are placed on powerful pain-relieving, narcotic–like 
compounds. 

7.2. Drug –urine testing 

Substance use disorders are multi-faceted 
and difficult to treat with the progression of the disorder 
impacted by, aspects of treatment results and relapse. 
Assessment and quantification of these aspects are 
vital to decrease the disorder and increase positive 
outcomes. A majority of clinicians would concur that 
compliance with prescribed treatment medications, 
as well as patient abstinence from drugs of abuse 
throughout treatment, are significant challenges in 
chemical addiction programs. A 01/10/2016 PUBMED 
search resulted in only one article that matched the 
following terminology: “urine analysis and compliance 
to prescribed treatment medications and abstinence 
during in-patient or out-patient treatment” (19). A 
briefer word search did not uncover any other articles. 
One article was discovered regarding non-cancer pain 
patients, and the authors had established that “regular 
urine drug testing should be a part of acute and chronic 
pain management whether or not the patient has any 
signs or symptoms of drug misuse” (256). Likewise, 
a 01/10/2016 PUBMED search discovered no articles 
that equal the following terminology: “urine analysis 
and abstinence to drugs of abuse during in-patient or 
out-patient treatment.” While medications have been 
used and studied for over 20 years, the PLosOne article 
(19) is the only systematic analysis of both compliance 
to treatment medications and abstinence from licit 
and illicit drugs throughout treatment in one group 
investigation. However, there are arguments for, and 
against, standard drug urine screens regarding clinical 
outcome during treatment. Starrels et al. (257) argued 
that there is weak evidence to support the success of 
opioid treatment agreements and urine drug testing in 
decreasing opioid abuse by patients with chronic pain 
throughout treatment. In contrast, others suggest that 
urine drug testing is still an invaluable resource for 
primary care (258). 

In support of continued drug urine 
testing during treatment, it was reported that the 
Comprehensive Analysis of Reported Drugs (CARD) 
data used in a post hoc retrospective observational 
study from 10,570 patients, categorized to comprise 
2,919 patients given at minimum one treatment 
medication through 2010 and 2011. Specifically, the 



Opiate/opioid abstinence: Treating the symptoms and cause    

1263 © 1996-2017

initial and final urine samples (5,838 specimens) were 
examined; compliance with treatment medications 
and abstinence from drugs of abuse maintained 
treatment success for several patients. Paralleled 
with non-compliant patients, compliant patients were 
slightly less prone to abuse opioids, cannabinoids, and 
ethanol throughout treatment, though more probable 
to abuse benzodiazepines. Nearly 17% of the non-
abstinent patients used benzodiazepines; 15% used 
opiates, and 10% used cocaine throughout treatment. 
Compliance was considerably increased in residential, 
compare to non-residential treatment facilities. 
Furthermore, in 2010, 16.9.% of the patients were 
abstinent initially, but not at final urine testing, whereby 
this diminishing abstinence declined and in fact 
abstinence levels increased in 2011 and this outcome 
was statistically substantial. Lastly, a longitudinal 
analysis for abstinence revealed a statistically 
significant upward trend of abstinence frequencies as 
well as a comparable, but more powerful, tendency for 
compliance. Interestingly, similar findings have been 
obtained in unpublished work, showed significant 
opiate abuse in compliant buprenorphine/naloxone 
patients. These, and other results by Jabobs et al. 
(259), provide a strong rationale to use urine drug 
testing as an intervention. In fact, urine drug screening 
may have relevance in a global arena as well, where 
females living in a household may provide relevant 
information about substance abuse in the family (260). 

7.3. Gentile pro dopamine therapy: with glutami-
nergic-dopaminergic optimization required for 
long–term dopamine homeostasis 

A feeling of well-being may be achieved only 
when dopamine is released in the nucleus accumbens 
at balanced “dopamine homeostatic” levels. Genetic 
and epigenetic abnormalities   produce a dysfunction 
of dopamine called “dopamine resistance,” that can 
cause aberrant cravings. Even if we have not yet 
determined other potential opioid non-dopamine 
reward mechanisms as proposed by Fields’ group 
(261). Consequently, there is a necessity for a 
compound that can target and achieve dopamine 
regulation (i.e., dopamine homeostasis) is required for 
well-being. Further, there is a need for a non-addictive  
compound that can be administered to normalize 
brain impairments by activating the release of optimal 
amounts of brain dopamine at the reward site and 
thus, reduce excessive craving behaviors.

It is accepted that drug addiction is 
characterized by extensive irregularities in brain 
activity and neurochemistry that incorporate drug-
related alterations in the concentrations of the 
excitatory and inhibitory neurotransmitters glutamate 
and gamma - aminobutyric acid (GABA), respectively. 
In healthy persons, these neurotransmitters activate 
the resting state, a default state of brain activity that is 

also interrupted in addiction. We are in agreement with 
the concept that resting state functional connectivity 
may have clinical relevance crucial to the development 
of and risk for all RDS behaviors. Studies have shown 
that addicted individuals tended to show decreases 
in the glutaminergic system compared to healthy 
controls (262). Moreover, select corticolimbic brain 
regions showing glutamatergic and/or GABAergic 
abnormalities have been similarly implicated in resting-
state functional connectivity deficits in drug addiction 
(262). There are many studies showing impairments 
of resting state functional connectivity with alcohol, 
opiates, cannabis, psychostimulants, nicotine, 
glucose, and even some behavioral addictions, further 
suggesting the need to find compounds that will restore 
normal resting state functional connectivity (263-277).

Along these lines, it has been shown that 
N-Acetyl-Cysteine, compared to placebo in smokers 
who maintained abstinence, reported fewer cravings 
and higher positive effects, and concomitantly 
exhibited stronger rsFC between ventral striatal nodes, 
medial prefrontal cortex and precuneus-key default 
mode network nodes, and the cerebellum (264). Most 
recently, our laboratory proposed the combination of 
N-Acetyl-L-Cysteine with a well-known enkephalinase 
inhibitor and other pro-dopaminergic substances 
to combat aberrant RDS behaviors The Blum et al. 
laboratory (83) showed that a pro-dopamine complex 
mixture called KB220Z induced an increase in BOLD 
activation in caudate-accumbens-dopaminergic 
pathways of abstinent heroin addicts when compared 
to placebo 1-hour after acute administration. Also, in 
these abstinent heroin addicts, resting-state activity 
was reduced, in the putamen by KB220Z. In the 
second phase of this pilot study, three brain regions 
of interest were observed to have been significantly 
activated above resting-state by KB220Z compared 
to the placebo in all ten abstinent heroin-dependent 
subjects (with protracted abstinence on average 
of 16.9. months). Specifically, increased functional 
connectivity was seen in a putative network that 
included the dorsal anterior cingulate, medial frontal 
gyrus, nucleus accumbens, posterior cingulate, 
occipital cortical areas, and cerebellum. These 
results and other quantitative electroencephalography 
(qEEG) study results suggest a putative anti-craving/
anti-relapse role of KB220Z in addiction by direct or 
indirect dopaminergic interaction (278-280). 

Regarding support for the concept of long-
term activation instead of blocking dopamine release 
in the NAc and other relevant brain regions like the 
cingulate gyrus (relapse region), Willuhn et al. (281) 
pointed out that cocaine consumption, and even non-
substance-associated addictive behavior, increases 
as dopaminergic activity declines. Habitual cocaine 
exposure has been linked to a reduction in D2/D3 
receptors and was also linked to decreased activation in 
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response to cues in the occipital cortex and cerebellum 
as indicated in a recent PET study by Tomasi et al. 
(282). Also, Volkow et al. (283) showed that stimulant–
induced dopamine increases are markedly blunted 
in active cocaine abusers despite methylphenidate-
induced changes in the ventral striatum, which were 
associated with intense drug craving. It is our opinion 
that this seemingly paradoxical response is consistent 
with super sensitivity, as proposed earlier with the 
possibility of relapse, especially in DRD2 A1 carriers 
(69). In clear support for the potential for utilizing 
compounds that induce dopamine homeostasis in the 
long-term, Badgaiyan, and associates (284) recently 
reported, that at rest, the ligand binding potential 
(BP) was significantly higher in the right caudate of 
ADHD volunteers, suggesting reduced tonic dopamine 
release. During task performance, significantly lower 
ligand BP was observed in the same area, indicating 
increased phasic release. In ADHD, the tonic release 
of dopamine is attenuated, and the phasic release is 
enhanced in the right caudate. This characterization 
of the nature of dysregulated dopamine 
neurotransmission in ADHD helps to explain earlier 
mixed findings of reduced or increased dopaminergic 
activity, which may also be the case in other RDS 
behaviors, including risk for opiates/opioids. Certainly, 
it is known that carriers of the DRD2 A1 allele have a 
higher chance of relapse as reported by Dahlgren et 
al. (285). Therefore, while we agree with the short-term 
utilization of FDA MATs to block excessive dopamine 
release leading to psychological extinction, we must 
at the same time reject long-term treatment strategies 
such as the use of potent D2 agonists like bromocriptine 
which will ultimately reduce dopamine D2 expression 
(286). As such, long-term even life-long treatment with 
gentle pro-dopamine therapy, not potent D2 agonists, 
may provide dopamine homeostasis. We are therefore 
proposing that an anti-opiate restoration strategy that 
can preserve dopamine activity may be a unique and 
effective method of relapse prevention in opiate/opioid 
abuse, acute abstinence, and behavioral addictions, 
and warrants considerably more research.

Our essential tenet is that addiction has a 
high genetic inheritability factor, based upon reward 
deficiency, a hypodopaminergic characteristic, and 
does not follow Mendelian inheritance (sui generis). We 
believe that in order to change the continued abuse of 
opiates/opioids by a very significant number of people 
in the USA, an anti-opiate dopamine restoration model 
AODR if adopted might have better long-term clinical 
outcomes (287). The studies presented in this review 
support following our proposed strategic treatment 
plan, and scientists across the globe may be inspired 
to evaluate our concept further. 

Substantial progress can be seen in our 
present comprehension of several features of RDS and 
associated addictive behaviors including neurobiology, 

candidate reward and additional genes, and numerous 
genomic-based human and animal experiments. With 
the advent of neuroimaging tools, comprehension 
of each psychiatric disorder has improved, and vast 
knowledge about brain activity and behavioral functions 
has been acquired. Genome-wide association 
studies have recognized unique clusters of gene 
polymorphisms and may indeed find real answers by 
gene convergence linked to top candidate genes in the 
final analysis. Genome-wide studies may have failed, 
to date, due to poor controls, whereby these so –called 
controls have hidden or unscreened RDS behaviors. 
Perplexity in the literature has transpired because 
we have not accepted the right phenotype to assess, 
and we have not obtained disease-free controls in 
several of our genetically-based studies - something 
that is continuously problematical in behavioral genetic 
research.

There remains a large health concern with 
few treatment options permitted by the FDA and 
presently accessible. A new KB220 variant that can 
induce dopamine homeostasis a “Glutaminergic-
Dopaminergic Optimization Complex” is just one 
part of the AODR model (see Figure 3). This model 
proposes that we should begin to employ genetic 
testing to determine risk stratification, drug urine 
screening for patients in both in-patient and out-patient 
opiate substitution programs, and provide, especially 
during treatment and aftercare, a methodology that will 
promote long-term “dopamine homeostasis.”

7.4. Promising new therapies

There are other promising therapies primarily 
affecting cocaine abuse that could, however, have 
similar mechanisms, and effect opioids. We need to 
encourage additional research, such as the new work 
reported by Harraz and Snyder (288), which provides 
convincing evidence that Nitric Oxide-nitrosylation 
glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) transcriptional signaling mediates behavioral 
actions of cocaine. They propose that a new compound, 
CGP3466B, powerfully prevents GAPDH nitrosylation, 
impeding the signaling cascades and hindering both 
behavioral activation and the neurotoxic results of 
cocaine use. Also, others have used optogenetics; 
opsin microbial engineering and molecular-genetic 
models for cell-type targeting and optical strategies for 
guiding light through brain tissue, allowing for optical 
control of defined cells in living systems. Deisseroth’s 
group (289) recently used target transcranial magnetic 
stimulation (rTMS) in a clinical study to help patients 
addicted to cocaine. In essence, they found that 69% 
of the rTMS-treated group of 32 cocaine dependent 
individuals compared with 19% of the control group 
in remained drug-free during the initial treatment 
phase, (as tracked by urine drug tests). The rTMS 
treated group also reported significantly less cocaine 
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craving. Others have proposed the utilization of TMS 
in refractory heroin addicts, especially by targeting the 
cingulate gyrus and NAc brain regions (290). 

7.5. Understanding “the changed setpoint theory” 
of opiate withdrawal

Finally, we are cognizant of what has been 
termed “the changed setpoint model” of drug addiction 
(291), which is based on the altered neurobiology of 
the dopamine neurons in the VTA and of the Locus 
Coeruleus (LC) neurons during the early stages of 
acute withdrawal and abstinence. It is well–established 
that neurons of the mesolimbic reward pathways 
are naturally “set” to release enough dopamine in 

the NAc to provide a normal level of pleasure (292). 
Importantly, Koob & LeMoal (293) propose that opioids 
trigger addiction by starting a vicious cycle of altering 
this set point, such that the discharge of dopamine 
is decreased when typically enjoyable activities 
happen and opioids are not in the system. Likewise, 
an alteration in set point occurs in the LC, but in the 
reverse direction, such that NAc discharge rises 
throughout withdrawal. 

In this model, both the positive (drug-liking) 
and negative (drug withdrawal) features of drug 
addiction are taken into account. A particular method 
that the dopamine neurons can become dysfunctional 
is linked to a modification of their standard resting 

Figure 3. This is a schematic of the anti-opiate dopamine restoration model. The AODR model a suggested plan that starts when an opiate/opioid-
dependent patient enters a treatment center interested in detoxification. An initial history and physical examination that includes the collection of saliva/
cheek cells and urine is taken on day one. The cheek cells will be used to determine the Genetic Addiction Risk Score (GARS), and the urine will be 
processed for initial screening for compliance with MAT like Buprenorphine/Naloxone and absences from other licit and illicit drugs of abuse in the 
urine. The detoxification process will then take place over six-days. A careful tapering process that utilizes clonidine benzodiazepines and includes 
a glutaminergic-dopaminergic optimization complex; KB220Z and any other medications necessary to provide an easier acute opiate withdrawal is 
recommended. The genetic test results could be discussed with the patient following detoxification whereby the GARS test could determine risk severity 
and identify risk of relapse. Patients with either risk or no risk alleles can be identified. Both groups should receive short–term non-opioid MATs such 
as Acamprosate®, to extinguish reward from their drug of choice. Concurrently they should be treated with KB220Z to assist in the normal release of 
dopamine and improve resting state connectivity, cognition and reduce cravings. They should continue with routine drug urine screening, and attend self-
help groups like Alcoholics and Narcotics Anonymous. Finally, in the long term, the non-genetic risk group should receive KB220Z for at least 3 years; the 
time considered for the brain to heal following protracted abstinence from opiate/opioid dependence, while the high genetic risk patients may need to take 
a glutaminergic-dopaminergic optimization complex for life, possibly customized against specific polymorphic reward genes (278)
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levels of electrical functioning and dopamine discharge 
(292). However, it is noteworthy that in ADHD patients 
and possibly in RDS, the tonic resting dopamine trait 
is low as discovered by Badgaiyan et al. (284). In this 
additional variant of the altered setpoint model, this 
resting level is the outcome of two aspects that affect 
the quantity of resting dopamine discharge in the NAc. 
Firstly, the cortical excitatory (glutamate) neurons 
that push the VTA dopamine neurons to discharge 
dopamine, and secondly, autoreceptors (“brakes” 
potentially GABA from the Substantia Nigra) that stop 
additional discharge when dopamine levels become 
extreme. Acute stimulation of the opioid receptors 
by heroin and heroin-like drugs primarily avoid these 
brakes and lead to a large discharge of dopamine in 
the NAc. Nonetheless, with frequent heroin use, the 
brain reacts to these consecutive great dopamine 
discharges by raising the amount and force of the 
brakes on the VTA dopamine neurons. 

Eventually, the enhanced “braking,” essentially 
unknown auto-receptors, prevent the neurons’ resting 
dopamine discharge. When this occurs, the individual 
will consume even more heroin to counterbalance 
the decrease of normal resting dopamine discharge. 
When he or she ends using heroin, a state of dopamine 
deficiency will occur, causing withdrawal symptoms; 
dysphoria, pain, distress, nausea that can ultimately 
lead to a series of drug relapse events. One option 
is that the excitatory cortical pathways may create 
slight reactions in the VTA through the resting state, 
leading to decreases in dopamine. Nevertheless, 
when the opiate dependant individual is open to 
cues that generate cravings, the glutamate pathways 
may activate to increase dopamine and motivate a 
desire for a superior high. This corresponding rise 
in glutamate functioning will increase NAc discharge 
from the LC to generate a dysphoric state, prompting 
relapse and prolonged addiction. While this tenet 
seems reasonable and as proposed by Kosten & 
George, drugs that are antagonists to the glutaminergic 
system, like lamotrigine, will reduce dopamine during 
opiate-induced withdrawal, may not be prudent. (291), 
drugs that are antagonists to the glutaminergic system, 
like lamotrigine, will reduce dopamine during opiate-
induced withdrawal, may not be prudent. In fact, in 1976, 
Blum et al. (35) using an ethanol–inhalation technique 
found that both L-DOPA and intracranial-injection of 
dopamine resulted in attenuation of ethanol-induced 
withdrawal convulsion scores; whereas, haloperidol, a 
known dopaminergic-D2 receptor blocker, was found 
to significantly increase convulsion scores. Moreover, 
using the same experimental design, they found that the 
acute administration of morphine, alcohol or dopamine 
effects a marked suppression of the convulsions 
created by alcohol in mice. The suppressive reaction 
of morphine on alcohol withdrawal in the mouse is 
seemingly not a result of morphine intoxication, but 
rather of some, particular additional contact between 

alcohol and morphine in the central nervous system. 
The assumption proposes that dopamine may serve 
as a modulator in the withdrawal symptoms of both 
alcohol and opiates/opioids based on common 
blocking of induction of protein into the brain RNA by 
cycloheximide (32, 294, 295).

Importantly Gronier et al. (296), proposed 
that activation of midbrain dopamine neurons by the 
systemic administration of 5-HT1A agonists does 
involve the inactivation of a tonic GABAergic tone, 
mainly in the GABAB receptors. This activation 
probably leads to the stimulation of a glutamatergic 
excitatory drive from the PFC to the VTA and an 
increase in glutamate release. This increased 
glutamate release will stimulate dopamine neurons, 
favorably within NMDA receptors. While there are 
many facets to understanding the complex nature of 
glutamine and dopamine interactions, the exact role of 
the glutaminergic drive onto VTA dopamine neurons is 
not understood. In fact, most recently, Baker et al. (107, 
297) and NIDA scientists (107) reported outcomes that 
presented that multiplexed VTA neurotransmission 
may be facilitated by either the separation of dopamine 
and glutamate into distinctive micro-domains within a 
single axon or by the incorporation of glutamate and 
GABA into a single axon terminal. This convergence 
suggests actual cross–talk between glutamate and 
GABA in the same neuron, whereby both genetic and 
epigenetic factors provide the basis for the net release 
of VTA dopamine at, for example, the NAc. 

Understanding the mechanisms involved in 
acute opiate/opioid abstinence provides the framework 
to determine therapies not just for withdrawal symptoms 
in the short–term, but also directed towards finding new 
ways to induce long-term dopamine homeostasis. The 
AODR model is an attempt to target both neurogenetic 
and epigenetic mechanisms so that dopamine balance 
may be maintained to achieve a normal experience of 
pleasure, free of addictive agents like methadone and 
buprenorphine (Figure 4).Lives are being lost, we must 
proceed, but with great caution and continue the work 
of addiction science until the real “magic bullets” are 
discovered (107, 297-301). 

In the United States, 8-10% of individuals, 
ages ≥12 years, approximately 20-22 million persons 
nationwide, are addicted to alcohol or other drugs of 
abuse. The abuse of tobacco, alcohol, and illicit drugs 
in the United States causes greater than $700 billion 
per year in expenditures associated with crime, lost 
work throughput, and health care (302-305). With 
almost one trillion in annual productivity cost and 
thousands dying every day in America (25,000 last 
year), we must begin to understand that all addictive 
behaviors result from a real brain disorder. Most 
recently, Volkow from NIDA, Koob from NIAAA, and 
others (302) provided clear evidence linking addiction 
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to neurobiology. They adequately assessed evidence 
about the desensitization of reward circuits, which 
reduces the capacity to feel pleasure and the drive to 
persue ordinary healthy activities and undertakings. 
They assessed the rising power of habituated reactions 
and stress reactivity, which causes more cravings for 
alcohol and other drugs and adverse emotions when 
these cravings are not satiated. Also, they noted that 
the diminishing of brain areas involved in executive 
actions such as decision making, inhibitory control, 
and self-regulation, lead to recurrent relapse. The take 
home message based on the Volkow et al. review 
(302) is the suggestion that brain regions need to 
balance to help regulate the “normalization” of brain 
function. It points to a better understanding of high 
genetic risk and the need to fix these infractions that 
in some individuals are present at birth through either 
DNA gene polymorphisms or chromatin epigenetic 
alterations (environmental) passed from one 
generation to another (245).

Recent work from Zhang et al. (306) used 
Granger Causality Analysis to investigate directional 
causal influences among the brain circuits in 
heroin-dependent individuals (HDI)s - during opioid 
maintenance treatment (OMT) compared to non-
opioid users. Their results revealed a weaker effective 
connectivity between the caudate nucleus implicated 
in mediating the reward circuit and other brain regions 
and also a weaker connectivity between the anterior 
cingulate cortex and medial prefrontal cortex involved 

in mediating inhibitory control. In contrast, HDIs-OMT 
exhibited stronger effective connectivity between the 
hippocampus and amygdala implicated in mediating 
learning-memory, and the anterior cingulate cortex 
involved in mediating inhibitory control while the 
putamen mediated learned habits, suggesting that the 
hippocampus and amygdala may propel the memory 
circuit to override the control circuit and drive the 
learned habit in HDIs-OMT. These interesting findings 
may provide insight into treatment targets. The authors 
correctly suggest that sustained neural effect of opioid 
dependence on methadone maintenance including 
hyperactivation in the memory circuit and impairment 
in the control circuit, support the role of the memory 
circuitry in relapse, and may help redefine targets 
for treatment. Interestingly, our findings with KB220Z 
showed an enhanced resting state in abstinent heroin 
addicts accompanied with an enhanced functionality 
in the control circuit (cingulate gyrus) as well as a 
reduced or balanced activity of the hippocampus 
putamen seems to help explain the delayed onset of 
relapse in poly-drug abusers obtained, in earlier work 
(84).

Finally, in alcohol dependent and abstinent 
subjects and rodent models surprisingly Hirth et 
al (307) found convergent evidence revealing a 
“hyperdopaminergic “state during three weeks 
alcohol abstinent in rats that seems to agree with 
their post-mortem human data. While this could be 
the fact, it would be of interest to apply the Granger 

Figure 4. Therapeutic targets. Both neurogenetic and epigenetic mechanisms can be so that dopamine balance may be maintained to achieve a normal 
experience of pleasure.
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Causality Analysis as described by Zhang et al. (306) 
to provide a clearer view as to exactly which regions 
of the brain maybe “hypodopaminergic” compared to 
“hyperdopaminergic” as reported for maintained heroin 
addicts as well as abstinent heroin addicts in earlier 
studies the same group in China (83-85). Moreover, 
it would have been important to characterize the 
alcoholic cohort presented by the Hirth et al. study by 
genotyping the entire sample and then by genotype 
re-evaluate the results to eliminate DNA polymorphic 
traits. However, even until this question is resolved the 
best approach for targeting relapse prevention at least 
for opiate/opioid dependence during recovery is to 
balance cannabinergic- endorphinergic -glutaminergic-
dopaminergic brain function by using D-Phenylalanine 
and N-Acetyl L-Cysteine NAC novel therapeutic 
ingredients as found in KB220Z. 

Regarding therapies many psychiatrists treat 
opiate and alcohol dependent individuals with the 
substance Gabapentin that has been shown in some 
studies to reduce subsequent substance seeking 
(308). The effect is simply due to an attenuation of 
dopamine release at NAc leading to psychological 
extinction. The pharmacological effect of Gabapentin is 
due to its activation of GABA signaling. With this said, 
we would like to caution clinicians as to the prolonged 
use of Gabapentin especially in recovery, because 
blocking dopamine function in the long-term will induce 
relapse. Moreover, there is a growing concern about 
gabapentin misuse. In one study, Bastiaens et al. (309) 
showed that 26 percent of opiate addicted patients 
reported illegally obtaining, overusing, or malingering 
to obtain gabapentin. This effect seems to be specific 
for opiate addicts.

8. CONCLUSION

The steep increase in prescription opioids 
in the United Sates has led to a significant parallel 
increase in opioid and heroin misuse and fatal 
overdoses. Unfortunately, there has also been a 
drastic increase in the number of infants born with 
neonatal abstinence syndrome (NAS). Moreover, in 
the U.S., where approximately 14-22% of pregnant 
women receive these opioids legally, the rise in NAS 
may be due to prescription opioids. 

This review was written in support of our 
proposed AODR model (Figure 3). We encourage the 
scientific community to, as suggested, in the DSM-
5, treat acute opiate/opioid abstinence in the short-
term focusing on withdrawal symptoms. Additionally, 
the model we are proposing is to concentrate at the 
same time, on treating the etiology of RDS, the long-
term “hypodopaminergic” trait/state as demonstrated 
by reduced resting-state dopamine tone. Through 
required additional research, we may find new 
ways to enhance an optimization of glutaminergic/

dopaminergic systems and induce “dopamine 
homeostasis” despite either a “hypo” or “hyper” 
dopaminergic trait/state. 
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