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1. ABSTRACT 

Sepsis syndrome is a common and 
frequently fatal clinical condition. It is defined by 
the presence of both infection and an uncontrolled 
systemic inflammatory response. It represents a major, 
although largely unappreciated, healthcare problem 
worldwide. It is especially problematic in infants and 
toddlers who show markedly increased susceptibility 
to severe infections caused by various pathogens, 
including viruses. Viruses are important causative 
agents of sepsis. Host adenosine deaminase acting 
on RNA 1 (ADAR1) catalyzes adenosine to inosine 
(A-to-I) editing of RNA transcripts, thus changing viral 
RNAs and exerting antiviral and proviral effects. In 
addition, ADAR1 promotes viral replication by directly 
interacting with protein kinase R and suppressing its 
kinase activity. We here discuss the function of ADAR1 
and its regulatory role in viral infection. Further, we 
establish the relationship between ADAR1 and virus-
associated sepsis, thus providing an important basis 
for the development of novel therapeutic targets for the 
treatment of virus-associated sepsis. 

2. INTRODUCTION

Sepsis is a clinical syndrome that is defined 
by the presence of both, infection and an uncontrolled 
systemic inflammatory response. Dysfunction of the 
immune system is a crucial factor contributing to the 
outcome of sepsis (1, 2). Immune function defects 

culminate in a markedly increased susceptibility of 
infants and some toddlers to severe infections caused 
by various microorganisms, particularly viruses and 
encapsulated bacteria. Sepsis is the leading cause of 
death in infants and children worldwide (3–5).

Adenosine deaminases acting on RNA 
(ADARs) are enzymes involved in a type of RNA 
editing where adenosine residues are converted 
to inosine residues (A-to-I RNA editing) in double-
stranded RNAs (dsRNAs). The translation machinery 
subsequently reads inosine as guanosine, leading 
to recoding of genes and diversification of their 
functions (6). Thus, A-to-I editing of both cellular and 
viral RNA substrates may potentially alter the coding 
capacity and structure of RNA, which may modulate 
RNA function (7). As the most important member of 
the ADAR family, ADAR1 has been shown to play 
important roles in embryonic erythropoiesis, viral 
immune response, and RNA interference (RNAi) 
(8). In this review, we discuss the characteristics 
of ADAR1, including its RNA-editing activity and its 
ability to regulate RNAi. We highlight recent research 
into how ADAR1 plays both antiviral and proviral roles 
during viral infections. Furthermore, we elaborate on 
how viruses cause sepsis. Thus, using viruses as 
a link between sepsis and ADAR1, we argue that 
ADAR1 may regulate viral infections, and that it might 
constitute a new target for antiviral agents. 
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3. ADAR1 

3.1. Characteristics of ADAR1

Three ADARs exist in vertebrates (ADAR1–3) 
and all of them target dsRNAs (9–12). Members of the 
ADAR gene family share common structural features, 
such as multiple dsRNA binding domains (dsRBDs) 
and a separate deaminase domain. Three dsRBDs 
are present in ADAR1, but only two dsRBDs are found 
in ADAR2 and ADAR3 (13). Mammalian ADAR1 and 
ADAR2 are ubiquitously expressed in many tissues, 
while the expression of ADAR3 is limited to the 
nervous system (14, 15). Even though the carboxyl-
terminal catalytic domains and dsRBDs of ADAR1–3 
are conserved, only ADAR1 and ADAR2 possess a 
demonstrable enzymatic activity (14, 16, 17). These 
enzymes probably evolved from tRNA-processing 
adenosine deaminases after the split between the 
Protozoa and Metazoa (12). 

There are two ADAR1 transcripts, ADAR1-L 
and ADAR1-S, but only the former can be induced by 
interferon (IFN)-α/β and IFN-γ (18). The IFN-inducible 
form of ADAR1-L is a 150-kDa protein, referred to as 
p150, which localizes to both the cytoplasm and the 
nucleus (19); the smaller, constitutively expressed 
form of ADAR1-S, referred to as p110, localizes 
predominantly to the nucleus (19). Inactivation of 
ADAR1 results in an embryonic lethal phenotype 
because of widespread apoptosis (20, 21), indicating 
that ADAR1 is essential for life. Several features of the 
p150 protein, including its presence in the cytoplasm 
[the site of negative-stranded RNA viruse–measles virus 
(MV) replication] and its induction by IFN, make it a likely 
candidate enzyme responsible for generating biased 
hypermutations in the M gene that are associated with 
subacute sclerosing panencephalitis. Furthermore, the 
induction of ADAR1 in the central nervous system as a 
result of viral infection likely contributes to neuronal cell 
dysfunction because ADAR1 is essential for glutamate 
and serotonin receptor editing (7, 22, 23).

3.2. RNAi modulation by ADAR1

A-to-I RNA editing occurs most often in 
non-coding regions that contain repetitive elements, 
such as Alu, and long interspersed nuclear elements 
(24). The levels of RNAi-dependent, endogenous 
short RNAs, which are derived from loci enriched in 
inverted repeats and transposons, are dramatically 
up-regulated in ADAR null mutant worms, indicating 
that A-to-I editing of dsRNA regions of transcripts 
derived from these loci inhibits their entry into the 
RNAi silencing pathway (25). The antagonistic 
relationship between A-to-I editing and RNAi, i.e., the 
competitive inhibition of the RNAi pathway by A-to-I 
editing of dsRNA substrates (25), results in structural 
alterations of these dsRNAs (specifically, a reduction 

in their double-strandedness). Editing of precursor 
microRNAs (pri-miRNAs) can inhibit their processing 
(26, 27) and suppress RNA-induced silencing complex 
(RISC) loading (28), leading to silencing of a different 
set of target genes by native and edited miRNAs (29).

In addition to the aforementioned studies that 
indicate an antagonistic relationship between A-to-I 
RNA editing and RNAi pathways, interaction between 
ADAR1 and RISC component proteins has also been 
demonstrated (30). ADAR1 interacts directly with Dicer 
in an RNA binding-independent manner. This promotes 
the processing of small interfering RNAs and miRNAs, 
RISC loading of miRNAs, and, consequently, silencing 
of target RNAs, thereby revealing a stimulatory, rather 
than antagonistic, role of ADAR1 in RNAi (30). In 
addition to forming homodimers, which is required for 
the A-to-I RNA editing activities of ADAR1 (31), one 
monomer of ADAR1 can also bind one molecule of 
Dicer. Thus, ADAR1 acts as an RNA editing enzyme or 
as a modulator of the RNAi machinery by forming two 
different types of complexes, ADAR1 homodimers and 
Dicer/ADAR1 heterodimers, respectively.

Nevertheless, the exact mechanism that 
determines the balance between these two functions 
requires further elaboration. It has been previously 
reported that ~20% of pri-miRNAs in the human brain 
are edited, which often inhibits their processing to 
mature miRNAs (26). Despite a significant increase in 
adar1 expression in E11–12 wild-type mouse embryos, 
A-to-I editing of pri-miRNAs is limited during that 
developmental stage (13, 32). Thus, ADAR1 function 
may be skewed toward that of an RNAi regulator, 
rather than an RNA editor, in developing embryos.

4. THE DUAL ROLES OF ADAR1 IN  
REGULATING VIRAL INFECTIONS

Considering that ADAR1 possesses these 
specialities elaborated above, it’s significant to dig out 
its function in regulating viral infections. As shown in 
Figure 1, these functions will be exhibited in details 
below.

4.1. The RNA editing activity of ADAR1 modulates 
viral infections

Host cells restrict viral replication by a myriad 
of mechanisms, the best known of which are those that 
are induced by type I IFNs (21, 33). ADAR1 is proposed 
to play a role in host defense mechanisms because its 
expression induced by IFNs and viral infections (34, 
35). ADAR1-edited MV genomes were first described 
in cases of subacute sclerosing panencephalitis , 
a rare, chronic degenerative disease that occurs 
several years after MV infection (36–38). Biased 
hypermutations were identified in single-stranded RNA 
viral genomes during lytic and persistent infections (39). 
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In MV infections, the biased hypermutation events are 
associated with a intensify in viral pathogenesis and 
persistent infections (40). In addition to these, ADAR-
editing of viral genomes is rare and mainly confined 
to negative-stranded RNA viruses, such as influenza 
virus A, lymphocytic choriomeningitis virus, respiratory 
syncytial virus, and paramyxovirus (39–43).

ADAR1 has been shown to inhibit replication 
of human hepatitis virus like hepatitis delta virus and 
hepatitis C virus, thereby compromising viral viability 
(44–46). It is not clear whether this antiviral effect 
of ADAR1 is a common mechanism of response to 
viral infections. Paradoxically, ADAR1-L RNA editing 
actually comprises an essential part of the life cycle of 
hepatitis D satellite virus (47).

A question has been raised as to why ADAR1 
possesses two apparently opposed activities. First, 
editing of viral RNA does not always culminate in an 
antiviral effect. When the editing sites are not critical 
for viral replication, hypermutations of viral RNA may 
help the virus to escape adaptive antiviral responses 
(40). This kind of RNA editing plays a proviral role. 
Thus, RNA editing by ADAR1 could exert an antiviral or 
proviral effect, depending on the edited sites. Second, 
the anti- and proviral effects might not spontaneously 
take place in the same host. The antiviral effect may be 
observed only when viruses co-localize with ADAR1 
and are accessible to dsRNA editing, and when the 
editing sites are essential for viral replication. 

4.2. ADAR1 interacts with protein kinase R to 
promote viral infections

The IFN-inducible, dsRNA-activated protein 
kinase R (PKR) is a key dsRNA-binding protein (DRBP) 
and a serine/threonine kinase. PKR plays a central role 
in host innate defense strategies, and it possesses 

pronounced antiviral and antigrowth activities (48–50). 
Its activation leads to the autophosphorylation and 
phosphorylation of its downstream targets, including 
the α subunit of eukaryotic translation initiation 
factor 2 (eIF2α). Phosphorylated eIF2α prevents 
translational initiation at viral and cellular mRNAs (50). 
In addition, its amino-terminus forms complexes with 
proteins involved in cellular signaling pathways that 
mediate the activation of the nuclear factor κ B protein 
complex, which in turn contributes to the production 
f inflammatory cytokines (51, 52). PKR is extremely 
effective in restricting the expression and replication 
of human immunodeficiency virus 1 (HIV-1) in vitro 
(53–55). Nevertheless, HIV-1 replicates efficiently 
in many cell lines and primary cells, suggesting that 
the kinase activity of PKR is tightly regulated during 
natural infections of lymphocytes (56).

As a typical DRBP, ADAR1 contains two 
putative Z-DNA binding domains and three dsRBDs. 
Notably, DRBPs are commonly known to stabilize 
heterotypic protein-protein interactions, and they 
often mediate down-regulatory functions via PKR 
during viral infections (33, 57). These observations 
support the notion that ADAR1 can interact with 
PKR, inhibit its kinase activity, and suppress eIF2α 
phosphorylation. Consistent with its inhibitory effect 
on PKR activation, ADAR1 increases the severity of 
vesicular stomatitis virus (VSV) infections in Pkr+/+ 

mouse embryonic fibroblasts; however, no significant 
effect was found in Pkr−/− cells. Such proviral effect of 
ADAR1 requires its amino-terminal domains but does 
not require its deaminase domain (8). These findings 
reveal a novel, proviral role of ADAR1, suggesting that 
ADAR1 can enhance VSV replication via a mechanism 
independent of dsRNA editing.

The proviral effect of ADAR1 may be more 
important when PKR activation is sensitive to viral 

Figure 1. Schematic diagram of the potential relationship between ADAR1 and virus-associated sepsis. ADAR1, an adenosine deaminase, could catalyze 
A-to-I RNA editing of RNA transcripts. This function enables ADAR1 to cause antiviral and proviral effects by manipulating viral RNAs. In addition, ADAR1 
also promotes viral replication by interacting directly with PKR to suppress its kinase activity. Through its A-to-I RNA editing capability and its ability to 
form ADAR1-Dicer heterodimers, ADAR1 plays important roles in RNAi. However, whether ADAR1 can regulate viral infections via its RNAi function has 
not been elaborated. Thus, viruses are a key link between ADAR1 and virus-associated sepsis.
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infection. In addition, further investigation is needed to 
address the question why ADAR1 negatively regulates 
PKR activation. It is well known that cells require 
PKR to adequately respond to different stresses, in 
addition to viral infections, and to mediate different 
forms of stress-induced apoptosis (58, 59). This is in 
agreement with the anti-apoptotic role of ADAR1 during 
stresses (21). These observations suggest a potential 
mechanism whereby ADAR1 negatively regulates the 
pro-apoptotic effect of PKR. VSV may have taken 
advantage of this mechanism to establish infections in 
the host. Recombinant VSV is an effective intranasal 
vaccine vector for gene therapy (60, 61). Thus, 
these findings also suggest a possible strategy for 
optimization of recombinant virus production, and the 
development of new targets for antiviral therapeutics.

5. VIRUS-ASSOCIATED SEPSIS

Sepsis syndrome (i.e., a systemic 
inflammatory response associated with infection; 
ranked by increasing severity as sepsis, severe 
sepsis, and septic shock) is a common and frequently 
fatal clinical condition. It represents a major, albeit 
underappreciated, healthcare problem worldwide. 
Although the reported incidence of severe sepsis 
varies, ~750,000 people are annually affected by this 
condition in the United States (62). Severe sepsis is 
the number one cause of mortality in non-coronary 
European intensive care units (63). It is concerning 
that a 75% increase in the number of patients 
diagnosed with severe sepsis has been observed 
over the past two decades. This increase may be 
partly explained by the improved care of the growing 
number of individuals surviving into their 70s, 80s, 
and 90s, and by the associated co-morbidities of the 
elderly (i.e., cancer and diabetes) (64). Therefore, as 
the general population continues to age, the incidence 
of sepsis is projected to significantly increase in the 
forthcoming years, resulting in, for example, over 1 
million cases of severe sepsis in 2020 in the United 
States alone (62).

Sepsis represents a clinical syndrome 
defined by the presence of both, infection and an 
uncontrolled systemic inflammatory response (1, 2). 
Many factors contribute to this outcome, including 
specific etiologies, patterns of inflammation, underlying 
immune dysregulation, and delays in prompt diagnosis 
and treatment. The mortality in sepsis is attributed 
to an over-stimulated immune system. This notion 
is based on studies in animals but does not seem to 
reflect the clinical picture in human (65, 66). Bacterial 
infections are a major cause of sepsis, and many 
experimental studies and clinical observations have 
focused on the pathogenesis and clinical features 
of sepsis induced by Gram-negative bacteria and 
their endotoxins. However, viruses are very common 
pathogens that cause diseases in children, especially 

infants and young children. As compared with adults, 
the children’s immune system is still developing, and 
the immune function is incomplete. Thus, it is apparent 
that we should also attach importance to virus-induced 
sepsis.

Influenza is one of the most common causes 
of viral sepsis in children, and it results in one of 
the highest rates of hospitalizations and the highest 
number of deaths (67). Although vaccination may 
prevent majority of influenza-related severe respiratory 
infections, low vaccination rates (68), decreased 
vaccine responses in young children, and periods of 
poor match between the circulating viruses and the 
influenza vaccine lead to a continuous healthcare 
burden (69). Although the parainfluenza virus is 
usually contained to the upper airway and causes 
croup, mostly in healthy children, it can cause severe 
pneumonia in children with compromised immune 
system or respiratory symptoms (70). This is also true 
for the adenovirus (71).

Bronchiolitis, a viral infection of the lower 
respiratory tract, is characterized by lung hyperinflation, 
increased mucous production, air trapping, and 
wheezing, and affects 1–2% of infants worldwide 
(72). Although respiratory syncytial virus is detected 
in majority of infants that are hospitalized because 
of bronchiolitis in the developed world (73), very few 
of these infants die if given supportive care. Human 
metapneumovirus and rhinovirus are increasingly 
associated with the hospitalization of infants suffering 
from bronchiolitis (73). Risk factors of life-threatening 
bronchiolitis and viral sepsis include premature birth, 
chronic lung disease, congenital cardiac abnormalities, 
and primary immunodeficiency (74).

Viral-bacterial co-infection occurs in up to 
23% of cases of severe pneumonia, resulting in a high 
likelihood of respiratory failure and septic shock (75). 
Viral infections are thought to predispose children to 
bacterial invasion. For example, methicillin-resistant 
Staphylococcus aureus was recently reported to be 
associated with the mortality of otherwise healthy 
children infected with the influenza virus (76). 
This was especially true during the 2009 influenza 
pandemic when this fatal co-infection, which caused 
an unrelenting destruction of the lungs despite the 
use of appropriate antibiotics, was a strong predictor 
of mortality (77). Although the mechanism underlying 
a viral-bacterial co-infection is unclear, one study 
showed that a subgroup of children at the highest risk 
of influenza-S. aureus co-infection was more likely to 
experience a “cytokine storm” than children infected 
with influenza alone (78). Neonates are susceptible 
to severe viral sepsis caused by herpes simplex virus 
(HSV), enterovirus, and parechoviruses (79–81), and 
profoundly immunocompromised children with cancer 
or HIV infections can develop sepsis upon infection 
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with HSV, acute cytomegalovirus, adenovirus, or 
Epstein–Barr virus (82–84). Except for influenza virus 
infections, older children and adolescents with healthy 
immune and cardiorespiratory systems are rarely 
hospitalized for viral sepsis.

6. THE POTENTIAL ROLE OF ADAR1 IN  
VIRUS-ASSOCIATED SEPSIS

As the susceptibility of infants and toddlers 
to severe infections particularly caused by viruses,.
accompaning sepsis becomes the leading cause of 
death in infants and children worldwide (3–5). It is 
essential to think seriously about enfficint solutions 
about virus-associated sepsis. Focusing on the control 
of viruial infection, we fully analysis the potential 
application of ADAR1 in this field (Figure 1). ADAR1 
modifies the coding and noncoding sequences of 
cellular and viral RNAs by A-to-I editing, which can 
modulate the progress of viral infections. ADAR1 also 
promotes viral replication by directly interacting with 
PKR to suppress its kinase activity. Given its A-to-I 
RNA editing capability and ability to form heterodimers 
with Dicer, ADAR1 plays important role in RNAi. 
However, whether ADAR1 regulates viral infections via 
its RNAi function remains to be fully investigated. Thus, 
viruses might constitute a key link between ADAR1 
and virus-associated sepsis that may be exploited for 
the development of novel therapeutic targets for the 
treatment of virus-associated sepsis.
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