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1. ABSTRACT 

Osteodegenerative disease and bone 
fractures lead to bone damage or loss, requiring 
new bone formation to replace the damaged tissues. 
Classical ‘top-down’ tissue engineering relies on seeding 
cell suspensions into biomaterial scaffolds, and then 
guiding cell fate by growth factors. However, complex 
tissue fabrication using this approach has important 
limitations. ‘Bottom-up’ tissue engineering has the 
potential to overcome the drawbacks of the top-down 
approach, by using ‘building blocks’ of cell spheroids 
for tissue biofabrication without a scaffold. Spheroids 
are 3D structures that resemble the physiological 
tissue microenvironment and can be produced in vitro 
by different methods. Spheroids of mesenchymal 
stem cells (MSC) and adipose stem cells (ASC) have 
regenerative properties. Here we review, the use of 
spheroids as ‘building blocks’ in the 3D bioprinting of 
large-scale bone tissue and as a promising alternative 
for the treatment of osteodegenerative diseases and in 
bone engineering, including endochondral ossification 
(or developmental engineering).

2. INTRODUCTION

Bone is a metabolically active tissue that can 
adapt to the loading conditions imposed by the skeletal 
system. This adaptability allows the skeleton to 
effectively protect and support the body organs during 
embryonic development (1). Bone is also responsible 
for hematopoiesis and mineral homeostasis, among 
other functions (2). 

In the United States there are six 
million patients with bone lesions every year and 
approximately 10% of these fractures do not reach full 
regeneration due to tissue loss, failed fixation, infection 
or inadequate vascularization (3). Currently, the most 
common treatments for fractures are based on the 
use bone autografts; however, this approach has 
serious limitations such as scarce tissue supply, donor 
site morbidity, infections and loss of cell integration 
(4). Allograft transplants have also been used as an 
alternative therapy for bone lesions, but have recently 
been associated with disease transmission and host 
immune rejection (4). 
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Bone engineering is a promising strategy 
for treating bone diseases such as osteoarthritis and 
osteoporosis, and bone lesions caused by traumas, as 
well as to reconstruct bone defects from embryogenesis. 
Traditional approaches to bone engineering rely on a 
‘top-down’ methodology based on the use of scaffolds. 
MSC are usually seeded on the surface of scaffolds 
in the presence of osteogenic inductive medium, and 
are expected to proliferate and differentiate into 3D 
bone tissue (5). Although the top-down approach has 
clear potential and allowed considerable progress to 
be made in bone engineering, recent discoveries about 
the importance of cell-to-cell and cell-to-extracellular 
matrix contacts in 3D scaffold-free cultures suggest that 

tissue engineering without a scaffold – known as the 
‘bottom-up’ approach - can bring further improvement to 
endochondral tissue engineering (6).

To date, few models of endochondral 
ossification have been developed, and most studies, 
both in vitro and in vivo, involve the use of collagen-
based scaffolds to promote endochondral bone 
formation (7). The use of spheroids formed with human 
stem cells as a template to recapitulate endochondral 
ossification has the potential to address some of the 
challenges of classical bone engineering approaches 
(Table 1). Spheroids can be formed using different 3D 
cell culture techniques, such as the ‘liquid overlay’, or 

Table 1. Studies on osteogenic induction in spheroids of adipose stem cells (ASC) and mesenchymal stem 
cells (MSC)

Cell 
source

Spheroid production method Factors used for differentiation induction Main outcomes Reference 

MSC Pellet culture Chondrogenic medium: 10 ng ml–1 rhTGF-β1, 
10–7 M dexamethasone and 2.5 x 10–4 M 
ascorbic acid. Osteogenic medium: 7.0 x10–3 
M  β-glycerophosphate, 10–8 M dexamethasone 
and 2.5 x 10–4 M ascorbic acid

Production of a chondro-osseous 
organoid reminiscent of the pre- 
invasion endochondral ossification 
pattern, where a bony collar is found 
around cartilage

76

MSC Suspension culture in 96- well 
plates

50 mg/mL L-ascorbic acid, 10 nM 
β-glycerolphosphate, 10 nM dexamethasone

Recapitulated in vivo bone formation, 
while providing a reproducible and  
versatile in vitro model of  
osteogenesis

84

MSC Spinner culture, hanging drop, 
96-well non-adhesive culture 
plates and polypropylene tubes

3 × 10−4 M l-ascorbic acid phosphate, 1 
× 10−7 M dexamethasone and 5 × 10−3 
β-glycerophosphate

Efficient osteogenesis induction in 
spheroids that are homogenous in 
size and shape 

66

ASC Hanging drop Dexamethasone, ascorbic acid 2-phosphate, 
ITS + 3, fatty acid supplement, NEAA, 
estradiol, progesterone, hydrocortisone, EGF, 
PDGF, SCGF-β, TNF-alpha, IL-1β

Revealed the maintenance of 
developmental plasticity and self-
renewal capacity in osteogenic 
induced ASC spheroids.

85

ASC Suspension culture in 96-well 
plates

0.01 mM 1,25-dihydroxyvitamin D3, 
50 mM L-ascorbate-2-phosphate, 
50 mM dexamethasone, and 10 mM 
β-glycerophosphate

Spheroids of homogeneous size 
had high levels of osteogenic 
differentiation, and increased matrix 
mineralization both in vitro and in vivo

11

MSC Low-binding plates Ascorbic acid, hydrocortisone, and β 
-glycerophosphate

Spheroids had increased 
osteoregenerative properties 
compared with monolayer cultures

9

MSC Hanging drop 10 mM β-glycerophosphate, 50 μg/
mL ascorbate-2-phosphate and 100 nM 
dexamethasone

Spheroids were resistant to apoptosis 
and had high proangiogenic potential 

72

MSC Liquid overlay 10mM β-glycerophosphate, 50µg/mL ascorbic 
acid, 10nM dexamethasone, 10nM vitamin K3, 
10nM vitamin D3, 1ng/mL TGF-β, 25ng/mL 
VEGF, 25ng/mL FGF-β

The osteogenic differentiation 
of spheroids impairs their 
vascularization capacity in vivo

86

MSC Rotation culture 10 % FBS, 100 nM dexamethasone, 0.0.5 
mM l-ascorbic acid-2-phosphate, and 10 mM 
sodium glycerophosphate

Significant regeneration of bone 
defects in vivo using spheroid 
implants

70

ASC Suspension culture in 96-well 
plates

100 μM ascorbic acid, 10 mM 
β-glycerophosphate and 1 μM dexamethasone

Regeneration of cartilage and 
subchondral bone (by 12 months) 
using spheroids implanted into an 
osteochondral defect site 

74

MSC Hanging drop 50 mg/ml ascorbate-2-phosphate, 10 
mM β-lycerophosphate, and 100 nM 
dexamethasone

Osteogenic induced spheroids 
remained capable of mineral 
production and had increased bone 
formation and regeneration properties

87

ASC Atop recombinant elastin-like 
polypeptide (ELP) conjugated 
to a charged polyelectrolyte 
polyethyleneimine (PEI)

50 µM L-ascorbic acid, 10 mM 
β-glycerophosphate, 0.05 nM dexamethasone 
and 10% FBS

Superior osteogenic differentiation of 
ASC cultured as spheroids

36
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the ‘hanging drop’ methods, or via the use of micro-
molded and non-adhesive hydrogels (8). Although 
spheroids were used initially as tumor models, both 
MSC and ASC spheroids are currently used for in vivo 
tissue regeneration (9,10,11). 

This work reviews the importance of using 
spheroids for bone regeneration, addressing new 
perspectives in the field, such as the use of spheroids 
as a template for endochondral ossification and the 
importance of 3D bioprinting for large-scale bone 
tissue engineering.

3. THE BIOLOGY OF ENDOCHONDRAL  
OSSIFICATION 

Long and axial bones of the mammalian 
skeleton originate from cartilage templates via a 
complex process called endochondral ossification. 
During this process, condensed mesenchymal tissue 
undergoes chondrogenesis directed by the Sox9 
protein (12). Initially, chondrocytes produce cartilage 
extracellular matrix molecules, such as the collagen 
type II alpha-1 chain (Col2a1) and aggrecan, and 
proliferate, creating the chondrocyte layer found in 
the growth plate. This structure defines the shape 
of skeletal tissues by determining the direction of 
tissue elongation. Subsequently, chondrocytes 
stop proliferating, become hypertrophic, mineralize 
the surrounding matrix and, ultimately, undergo 
apoptosis. Concomitantly, perichondral cells close 
to the mineralized hypertrophic chondrocytes turn 
into osteoblasts, forming the bone collar. In addition, 
the mineralized cartilaginous matrix is invaded by 
blood vessels carrying osteoblast precursors, which 
establish ossification centers (13). MSC, endothelial 
stem cells and chondrocytes are located in close 
proximity to each other within the cartilage template 
before invasion by osteoblasts and bone formation. 
The proximity between MSC (perivascular cells) and 
vascular endothelial cells is probably due to direct cell-
to-cell contacts, and these cell types share the same 
paracrine signaling within the blood vessel niche (14). 

Several cytokines and growth factors are 
involved in bone formation, including fibroblast growth 
factor (FGF), Wnt, transforming growth factor β (TGF-β) 
and bone morphogenetic protein (BMP) (15-16). 
Among these, TGF-β and BMP families have important 
functions in different aspects of skeletogenesis, 
playing roles in mesenchyme condensation, skeletal 
morphogenesis, growth plate development and 
osteoblast differentiation. Furthermore, TGF-β and 
BMP regulate the homeostasis of postnatal joint 
cartilage (15-16). BMP and TGF-β interact in various 
cell signaling pathways - such as Wnt, Hedgehog, 
Notch and FGF - and mutations in TGF-β and BMP 
signaling can cause a large range of skeletal disorders 
in humans. An example of these disorders is Myhre 

syndrome, where a mutation in the Smad4 protein 
results in short stature, short hands and feet, facial 
dysmorphism, muscular hypertrophy, deafness and 
cognitive delay (15). 

To improve the treatment of defects in bone 
development, there has been increasing interest in 
cartilage-mediated bone regeneration (endochondral 
ossification) in the field of tissue engineering, 
mainly due to the inherent ability of cartilage to form 
vascularized bone, improving graft integration in 
vivo compared with current bone engineering via 
intramembranous ossification (17). 

4. TISSUE ENGINEERING 

4.1. ‘Top-down’ tissue engineering 

Tissue engineering aims to provide alternative 
approaches for tissue regeneration. Currently, ‘gold 
standard’  tissue engineering relies on three principles: 
(1) the use of scaffolds in the form of a constructed 
biomaterial designed to mimic the physical properties 
of the tissue extracellular matrix, while providing 
functional support to initiate tissue formation;  (2) cell 
seeding on the surface of scaffolds, to adhere and 
colonize the area to be regenerated in vivo; and (3) the 
provision of soluble growth factors such as vascular 
endothelial growth factor (VEGF) and FGF, to direct 
cell fate through proliferation and differentiation (18). 
The biomaterials and growth factors are expected to 
interact with the cells to create, in vivo, a dynamic 
environment that enables regeneration (19-20). This 
approach is part of the classical or ‘top-down’ tissue 
engineering and has been useful to build tissues for 
clinical applications (21). 

Top-down tissue engineering can be 
performed using different cell types. MSC are 
considered powerful tools for therapeutic strategies in 
regenerative medicine because they can be isolated 
from several tissues, are amenable to expansion in 
vitro and can be induced to differentiate into multiple 
lineages - including cartilage and bone - by BMP and 
TGF-β soluble factors (22). MSC isolated from bone 
marrow are commonly used in bone tissue engineering; 
however, cells originating from other sources, such as 
subcutaneous adipose tissue (adipose stem cells, or 
ASC) can also be used for osteogenic differentiation 
(23).

ASC are considered an attractive cell type 
for tissue engineering because of their abundance 
and ease of harvesting, with minimal morbidity of 
the adipose tissue donor. ASC can be maintained for 
long periods in culture and have higher proliferation 
capacity than bone marrow-derived MSC (23). Recent 
studies showed that human ASC differentiate towards 
an osteogenic phenotype when cultured in a bioactive 
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glass scaffold, as indicated by the expression of 
bone extracellular matrix markers (osteocalcin and 
osteopontin), as well as an increase in cell proliferation, 
viability and alkaline phosphatase (ALP) activity (20-
23). However, angiogenesis, which is essential for 
bone tissue formation, was absent in this model (23).

Different types of biomaterials have been used 
for bone engineering, including metals, ceramics (i.e., 
calcium phosphates), organic-inorganic composites 
and natural polymers, each one showing advantages 
and disadvantages (24). Metals such as titanium 
are biocompatible, strong and economic, but are not 
biodegradable and can induce stress in tissues. On the 
other hand, bioceramics such as hydroxyapatite and 
beta-tricalcium phosphate (β-TCP) have been widely 
used for bone repair due to their bioactivity, which is 
attributed to their structural and compositional similarity 
with the mineral phase of bone tissue (24). Also, the 
bioactivity of ceramics facilitates cell attachment and 
bone extracellular matrix synthesis (24). However, the 
use of ceramic implants remains limited because of 
their poor mechanical properties such as low torsion, 
bending and shearing resistance. 

In addition to metals and ceramics, several 
studies reported the use of polymeric materials for the 
generation of bone engineering scaffolds, particularly 
polycaprolactone (PCL), polylactic acid (PLA) and 
polyglycolic acid (PGA), which have excellent 
biocompatibility and biodegradability (4,25). The 
strategy of combining ceramic materials with polymers, 
generating composites, aims to improve the bioactivity 
of scaffolds. The production of biphasic (i.e., organic-
inorganic) composites by mixing polymers and ceramic 
materials combines the high mechanical performance 
of polymers with the increased compression resistance 
of ceramics, mimicking the biomechanical properties 
of bone (25). 

While top-down tissue engineering using 
different scaffold materials can promote the formation 
of a satisfactory biomechanical microenvironment 
for tissue regeneration in vivo, these strategies often 
result in non-homogeneous cell seeding, with cell 
escape and poor cell viability, particularly in the center 
of the scaffold (26). In addition, the long-term control 
of the mechanical and physical properties of the graft 
can be problematic using classic tissue engineering. 
The biofabrication of complex and larger functional 
tissues with high cell densities and diverse metabolic 
requirements is still considered a challenge in the top-
down approach, mainly due to the limited diffusion 
properties of biomimetic scaffolds. The ‘bottom-up’ 
approach described below has the potential to address 
this challenge, because it focuses on the biofabrication 
of microscale tissue building blocks, followed by the 
assembly of these blocks into complex engineered 
tissue constructs (27).

4.2. ‘Bottom-up’ tissue engineering 

Tissue hierarchies are formed from building 
blocks that enable and regulate system function. 
Bottom-up tissuMEe engineering aims to mimic 
this hierarchy, by creating tissues from functional 
‘building blocks’ - represented by cell-encapsulating 
microscale hydrogels, cell sheets and 3D spheroids 
- with a defined 3D architecture (27-28). Bottom-up 
approaches focus on assembling these building blocks 
to fabricate – or ‘biofabricate’ - larger constructs that 
could be used to restore injured tissues (29). In this 
context, ‘biofabrication’ is defined as “the automated 
generation of biologically functional products with 
structural organization from living cells, bioactive 
molecules, biomaterials, cell aggregates such as 
micro-tissues, or hybrid cell-material constructs, 
through Bioprinting or Bioassembly and subsequent 
tissue maturation processes” (30). 

The main advantages of the bottom-up 
approach to tissue engineering are: (1) the possibility 
of scaling by biofabrication methods; (2) the ability to 
create tissues with much higher cellular densities; and 
(3) the potential to incorporate a wide range of cell 
types in the construct (31). An efficient biofabrication 
process is fundamental for building large cell modules 
into 3D macroscopic tissues, while maintaining tissue 
geometries and also the initial conditions of cells (32).

Different types of cell culture can be used 
as building blocks for bottom-up strategies. In one of 
these strategies, known as ‘cell sheet engineering’, 3D 
tissues are built layer-by-layer from monolayers of cells 
(33). Cell sheet engineering allows the reconstruction 
of different types of tissues and organs, including skin, 
cardiac muscle and liver lobules (34). To allow cell 
sheet engineering, different methodologies have been 
applied to promote the nondestructive detachment 
of cell sheets from culture surfaces, such as the 
use of thermoresponsive surfaces, hydrogels, and 
enzymatically degradable substrates (33). 

A promising type of building block used in 
bottom-up tissue engineering is the ‘spheroid’, a 3D 
cell structure produced by self-assembly. Spheroids 
are living materials with controllable composition and 
biological characteristics (35). One interesting property 
of spheroids is their ability to undergo fusion when 
placed together, making it possible to engineer tissues 
with a predefined structure, such as an intra-organ 
branched vascular tree (35). Therefore, 3D spheroids 
represent attractive building blocks for the production 
of larger tissue constructs.

5. SPHEROIDS 

Spheroids are formed when cells do not have 
a substrate to adhere to and attach to each other 
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instead, through junctional complexes and adhesion 
molecules, such as N-cadherin (36), in a process 
of self-assembly. Spheroid self-assembly mimics 
natural processes that occur during embryogenesis, 
morphogenesis and organogenesis. Therefore, 
spheroids can mimic the architectural and functional 
characteristics of native tissues; for example, 
cardiomyocyte spheroids beat with a heart-like rhythm 
(8). Spheroid-based tissue engineering represents a 
‘scaffold-free’ or ‘bottom-up’ strategy.

Compared with 2D cell culture, spheroid 3D 
cultures more closely resemble physiological tissue 
microenvironments in numerous aspects. Secreted 
molecules are present at higher concentrations 
in 3D cultures such as spheroids, which ensures 
effective communication and facilitates intercellular 
signaling. Also, cells in 3D cultures are connected with 
extracellular matrix proteins and with other cells in all 
dimensions (Figure 1), unlike cells in 2D cultures. Thus, 
each cell within a spheroid is in contact with a larger 
number of neighboring cells. The extracellular matrix 
from spheroids acts as a scaffold and modulator of cell 
growth, proliferation, regeneration and differentiation 
(6). Therefore, the formation and morphogenesis of 
3D spheroids are dynamic processes regulated by 
differential cell adhesion, extracellular matrix synthesis 
and constant remodeling, resembling embryogenesis 
in vivo (37). 

Stem cell spheroids represent a new template 
to study the expansion and differentiation of stem 
cells, and are currently used in tissue engineering 
approaches, due to their remarkable regenerative 
properties. Spheroids of MSC have higher paracrine 
immunomodulatory capacity (38) and increased 
secretion of VEGF, basic fibroblast growth factor 
(bFGF) and angiogenin than 2D cultures (39-40). In 
vivo, spheroids of MSC remain viable in injured tissues, 
and provide increased secretion of anti-inflammatory 
and proangiogenic factors to improve repair (41-42). 
Besides, the differentiation of multipotent MSC into 
chondrogenic, osteogenic and adipogenic lineages is 
improved in spheroid cultures when compared with 2D 
cell monolayers (43,44,45).

In conclusion, spheroids are attractive 
building blocks for bottom-up tissue engineering 
because they provide a 3D microenvironment with 
intensive and direct cell-to-cell contacts, mimicking the 
biological features of a tissue. Also, spheroids have 
high regenerative potential when made from adult 
stem cells and can undergo fusion by biofabrication 
methods, forming larger constructs. For bottom-up 
tissue engineering it is mandatory to form spheroids 
with high cell viability, and homogeneous size and 
shape. This is particularly important for advanced 
bottom-up approaches such as bio-assembly and 
bioprinting, which use spheroid building blocks to 

Figure 1. Spheroids show improved cell-cell and cell-extracellular matrix interactions compared with 2D cell culture. Cells cultured in monolayers are 
forced to adhere to a flat substrate and assume an apical-basal polarity. The expression of adherent molecules, such as N-cadherin, is necessarily 
polarized, and the secretion of extracellular matrix components is low (A-C). In the spheroid architecture, cell-cell and cell-extracellular matrix interactions 
occur throughout the cell surface, which improves cytoskeleton dynamics and avoids artificial cell polaritzation. Furthermore, there is improved distribution 
of adhesion molecules in the plasmatic membrane surface and differences in molecule biosynthesis due to interactions between cells and the extracellular 
matrix (D-F). (C) and (F) represent the dimensions of cell interactions.
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nanoparticles. Cells are attracted to form a spheroid 
at the bottom of a multi-well plate using a cylindrical 
magnet. The resulting spheroids are homogeneous in 
size; however, nanoparticles remain inside spheroids. 

A different method of spheroid formation 
involves cultivating cells on a surface made 
of a thermo-responsive polymer, such as poly 
(N-isopropylacrylamide) (PIPAAm), which allows the 
release of cell sheets when the culture temperature is 
changed to 20ºC for 1 hour, and the polymer changes 
from hydrophobic to hydrophilic. The small cell sheets 
released can then be incubated in a non-adhesive 
surface, where they become compacted into spheroids 
(55, 56, 8). Thermo-responsive surfaces can be used 
to produce cultures that combine different cell types, 
such as hepatocytes and endothelial cells (55). 

Microfluidics techonology can also be 
employed to form spheroids, by seeding cells into a 
device where liquids are controlled and manipulated 
at a scale of a few microliters. Liquid perfusion within 
microfluidic devices improves the distribution of growth 
factors inside the spheroids (57-58), and this dynamic 
(albeit relatively complex) methodology offers high 
resolution, sensitivity, low cost and scalability, as well 
as reducing the time required for viability and other 
assays (59). Microfluidic systems such as ‘organ-on-
a-chip’ have already been used to form 3D spheroids 
from several cell lineages (60-61). 

Spheroids can also be formed using 
micromolded non-adhesive hydrogels, from agarose 
or polyacrylamide (Figure 2). Cells are settled at the 
bottom of a hydrogel containing a varying number of 
molded resections, and cell-cell interactions induce 
the formation of a single spheroid in each resection. 
This method can be scaled up to form spheroids 
with homogenous shape, size and cell composition 
by using automated platforms such as epMotionTM 
5070 (Eppendorf), currently in use by our research 
group. In addition, the hydrogel method allows cells 
to be registered as they self-assemble, and it is easy 
to change the culture medium and to add drugs, 
antibodies or growth factors to the system, allowing 
long-term spheroid culture and treatment (8,62,63). 

5.2. Spheroids for bone engineering 

Spheroids cultured for three days in 
osteogenic medium have more calcium nodules than 
cells cultured in monolayers for three weeks under the 
same conditions. Thus, spheroids have an accelerated 
osteogenic differentiation in vitro when compared 
with cell monolayers (6). Before the formation of 
bone nodules, MSC, ASC and osteoblast precursors 
undergo a complex differentiation process, in which 
cells change their morphology from a fibroblastoid to 
a cuboidal shape and start to produce an extracellular 

develop symmetric and functional engineered tissues, 
such as vascular tubes or a 3D liver (46-47). 

5.1. Techniques for spheroid formation  

Different techniques can be used to form 
spheroids. The ‘pellet culture’ approach uses 
centrifugal force to concentrate cells in the bottom of 
a tube, maximizing the opportunity for cell adhesion. 
This method is often used for bone tissue formation, 
as it produces aggregates easily; however, it has 
important disadvantages. In its current format, the 
method cannot be scaled up. Also, the cells cannot 
be visualized while they aggregate and there is no 
N-cadherin upregulation during the assembly process, 
since cell-cell interactions are forced by centrifugation 
(8).

Spheroids can also be formed using the 
‘spinner culture’ technique, where cells are transferred 
to spinner flasks and then cultured on a stirring 
platform, with stirring being maintained and controlled 
by an internal magnetic arm. This 3D culture system 
is similar to the rotating wall vessel, a cylindrical cell 
culture chamber covered internally with a membrane 
that allows oxygen to be drawn into the vessel as 
rotation starts. Both methodologies are dynamic 
and the rotation of the culture medium improves 
nutrient diffusion into spheroids. However, it is not 
possible to visualize spheroid formation using these 
culture systems, and the spheroids formed are not 
homogeneous in size (48). 

The ‘hanging drop’ spheroid formation 
technique is a simple method where cells are allowed 
to assemble into spheroids at the apex of a droplet 
of medium. While this method provides control of 
cell number and spheroid size, the establishment of 
long-term 3D cultures required for morphogenesis/
differentiation assays is problematic using this 
technique (49-50). The ‘liquid overlay’ method consists 
of forming spheroids in culture systems with no-
adherent surfaces (such as agarose-coated multi-well 
plates). However, this technique does not allow for the 
spheroid shape to be controlled, although spheroid 
size can be modulated by the number of cells plated in 
each well (51).

External forces such as electric or magnetic 
fields can also be used to guide cells to aggregate into 
spheroids (52-53), although it is difficult to immobilize 
the aggregates without compromising their integrity, 
after the field is switched off. The advantages of this 
method include the possibility to follow cells while they 
aggregate and the high cell viability when aggregates 
are successfully imobilized; however, spheroids are 
not homogeneous in size (53). Recently, Tseng et al 
(54) developed an assay where a suspension of cells 
is “magnetized” with a mix of biocompatible magnetic 
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matrix typical of bone, with collagen type I and 
several bone-specific proteins such as the primary 
mineralization nucleators osteopontin and osteoclalcin 
(64). Several studies have demonstrated that the 
scaffold-free 3D culture of osteogenic induced cell 
aggregates such as spheroids increases osteogenesis 
- both in vitro and in vivo - compared with 2D cultures, 
as it improves intercellular as well as extracellular 
matrix interactions and tissue-specific properties. 

Kale and collaborators (2000) (65) pioneered 
the use of spheroids for osteogenesis in vitro. These 
authors used calvarial and bone marrow-derived 
osteogenic cells to produce osteogenic induced 
spheroids, using serum-free TGF-β1 treatment, and 
showed that the assembly of cells into bone spheroids 
upregulates several bone-related proteins, such as 
type I collagen and osteonectin, and increases ALP 
secretion, in a period of 3–7 days. Importantly, the 
spheroids formed in vitro had a micro-crystalline bone-
like structure. This work demonstrated that the ex vivo 
bone formation using spheroids is able to provide 
crucial information on the timing of osteogenesis. 
After this pioneering work, numerous studies have 
confirmed and extended the potential of spheroids for 
bone tissue engineering (Figure 3).

Hildebrandt and co-workers (2011) (66) 
established a highly efficient protocol for the generation 
of MSC spherical aggregates with size control, based 
on non-adhesive 96-well culture plates. Using this 
method, the authors demonstrated that MSC spheroids 
can differentiate towards the osteogenic pathway 
(66). Baraniak and McDevitti (2012) (67) showed 
that when murine bone marrow MSC spheroids 
(produced by the external force technique) were 
induced to the osteogenic pathway, they had more 
robust extracellular matrix mineralization than cells in 
monolayers. Similarly, Vidyasekar and collaborators 
(2016) (68) showed that bone marrow MSC spheroids 
(grown on PLA microspheres) had higher potential for 
osteogenic lineage after differentiation induction, as 
determined by increased mineralization, compared 
with monolayer cultures. Spheroids maintained in 
growth medium remained viable (67,68), and Baraniak 
and McDevitti (2012) (67) observed no differentiation 
in the absence of induction factors.

Our research group works with human ASC 
to produce spheroids using the micromolded non-
adhesive hydrogel technique (69). We are currently 
establishing in our laboratory a model for osteogenesis. 
After 24 hours of cell seeding into the hydrogel, the 

Figure 2. Spheroids fabricated through the micromolded non-adhesive hydrogel technique. Macroscopic image of the MicroTissues 3D Petri Dish® 
silicone mold (SigmaAldrich, St. Louis, MO, USA) (A). Silicone mold after the addition of agarose to produce a micromolded non-adhesive hydrogel (B). 
The Hydrogel with resections is transferred to culture plates and ASC are seeded in each resection (C). Note the resections filled with cells (arrows). After 
24h, spheroids formation is complete (D). Scale bar: 200 µm.
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spheroids formed in the hydrogel resections are 
treated for 3 weeks with an osteogenic medium 
containing β-glicerophosphate, dexamethasone and 
human recombinant BMP-7. Our preliminary result 
indicate that spheroids treated with the osteogenic 
medium differentiate into bone, since we were able to 
detect calcium phosphate deposits only in the induced 
spheroids (Figure 4).

Spheroids have been used for in vivo bone 
formation with promising results. Using a rat model 
of bone regeneration, Suenaga and collaborators 
(2015) (70) showed that implants of spheroids 
of human bone marrow derived MSC (formed by 
rotation culture) show signs of new bone formation 
– such as osteoclastin and osteopontin accumulation 
– as visualized by imaging methods. Furthermore, 
Raman spectroscopy revealed similarities between 
the spectral properties of the repaired bone and 
those of the native calvarial bone. In another model 
of rat bone formation, Yamaguchi and collaborators 
(2014) (9) reported that spheroids of MSC fabricated 
using the low-binding plate technique provided 
increased calvarial defect regeneration compared 

with MSC cultured in monolayers, as assessed 
by micro-computed tomography and histological 
assays.  In addition, quantitative PCR (RT-PCR) 
analysis revealed that spheroids had higher levels 
of osteogenic markers (osterix, Runx2, osteopontin 
and bone sialoprotein) than 2D cultures, in vitro, and 
more calcium deposition was detected in spheroids 
of MSC. Shen and collaborators (2013) (11) were 
the first to investigate the potential of spheroids of 
human ASC for osteogenesis in vivo, compared with 
monolayers, showing that spheroids of this particular 
stem cell type had increase matrix mineralization, 
both in vitro and in vivo, similarly to that described for 
MSC from other sources. 

The combination of spheroids and 
biomaterials has not been widely explored in bone 
tissue engineering. Biomaterials may be used to guide 
spheroid properties (such as viability, proliferation 
and differentiation). Ho and collaborators (2016) (71) 
showed that osteogenic induced implants of spheroids 
of MSC encapsulated in Arg-Gly-Asp (RGD)-modified 
alginate hydrogels or nonfouling unmodified alginate 
showed mineralized tissue 8 weeks after subcutaneous 

Figure 3. Timeline of numbers of articles published with spheroids as a model for osteogenesis. The search was performed on the PubMed database, 
by entering the words ‘spheroids’ and ‘osteogenesis’. From the total of 57 articles retrieved by the search, only the studies performed with spheroids as a 
model for osteogenesis in vitro and/or in vivo were indicated for each year in the timeline. These articles were selected by abstract analysis. The search 
was conducted on December 09, 2017 at 9:23 p.m.

Figure 4. Alizarin red stainning showed calcium deposits in spheroids of ASC induced to the osteogenic pathway. Briefly, spheroids were fixed in 4% 
paraformaldehyde, dehydreted in an ethanol series, clarified in xylol and embebedded in paraffin. Samples were cut in a Cut 5062 microtome (Slee 
Medical) and histological sections were stainned with Alizarin red (solvents, paraffin and Alizarin red were from Sigma). Control spheroids without calcium 
deposits (A). Scale bar: 50 µm. Induced spheroids with calcium deposits (B). Scale bar: 100 µm. 
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implantation, in a model of immunodeficient mice. 
The spheroids in RGD-modified alginate had higher 
mineralization in vivo, and differentiated to the 
osteogenic lineage in vitro, as attested by incresed 
ALP activity, osteocalcin expression and calcium 
deposition. Murphy and collaborators (2014) (72) 
reported that osteogenic induced spheroids of MSC 
encapsulated in fibrin gels had increased viability 
and secreted significantly more VEGF in vitro than 
the dissociated MSC in the same material. However, 
fibrin gels with spheroids and those with dissociated 
cells had similar levels of osteogenic differentiation 
markers, such as calcium deposits and ALP activity. 

5.3. Spheroids as templates for endochondral 
ossification 

Although the use of osteogenic induced 
spheroids showed some positive in vivo results for 
bone regeneration, improved graft integration could 
be achieved by using an endochondral ossification 
template, because of its inherent ability to form 
vascularized bone (17). Vascularization is improved 
with the use of spheroids of MSC and ASC as 
potent initiators of blood vessel formation in vivo 
(70,11,73,74). Therefore, the use of spheroids as in 
vitro templates for endochondral ossification, known 
as developmental engineering (1), has the potential 
to effectively address the treatment of bone diseases 
such as osteoarthritis and osteoporosis.

The synthesis of growth factors in spheroids 
is elevated and can induce osteogenesis. In 3D 
cultures, TGF-β1, TGF-β3, BMP-6 and insulin 
growth factor (IGF) are commonly added to induce 
endochondral ossification. Bioreactors are currently 
being tested to optimize this approach, by creating a 
better microenvironment for bone generation through 
the improved distribution of growth factor gradients 
and nutrients (75). 

Muraglia and collaborators (2003) (76) 
showed that spheroids of bone marrow MSC (made 
by pellet culture) produced a mineralized tissue 
around hyaline cartilage, recapitulating endochondral 
ossification in vitro, when cultures were maintained in 
chondrogenic medium for 4 weeks and then for 1-3 
weeks in osteogenic medium. This study showed 
that the culture of ASC spheroids for the treatment 
of osteochondral defects can be optimized by first 
differentiating these cells to the chondrogenic lineage, 
and then changing the culture medium to osteogenic 
factors (76). Spheroids have also been tested in 
studies of endochondral ossification in vivo aimed at 
avoiding the use of biomaterials for tissue regeneration 
in osteochondral defects (74,10,77). Yoon and 
collaborators (2012) (10) showed that in vivo cartilage 
formation improved when spheroid of ASC induced to 
the chondrogenic lineage (and produced using spinner 

flasks) were transplanted into the subcutaneous space 
of athymic mice, compared with the transplantation 
of non-aggregated cells previously cultivated as 
monolayers. The in vitro chondrogenic differentiation 
of ASC was also improved in spheroids compared with 
cells in 2D cultures, probably due to the activation of 
hypoxia-related cascades and to increased cell–cell 
interactions in spheroids of ASC. This study showed 
that spheroid of ASC can be used effectively for in vivo 
cartilage formation, after large-scale chondrogenic 
differentiation in vitro. 

Recently, Murata and collaborators (2015) 
(74) reported positive results for the regeneration of 
articular cartilage and subchondral bone using a 3D 
construct made of spheroids of porcine ASC placed 
into a cylindrical mold. Under specific conditions, the 
cells differentiated into osteogenic, chondrogenic 
and adipogenic lineages, as shown by tissue-
specific gene expression and extracellular matrix 
composition. The 3D construct was implanted in a 
site of osteochondral defect, in the femoral trochlear 
groove. Histopathology evaluation of the implant 
revealed active endochondral ossification underneath 
a thicker-than-normal fibrocartilage at 6 months after 
implantation. Twelve months after implantation, the 
fibrocartilage had decreased in thickness, matching 
the surrounding normal cartilage, and the implant 
contained subchondral bone. These results suggested 
that implantation of spheroids of porcine ASC into 
osteochondral defect sites induces regeneration of the 
original structure of cartilage and subchondral bone, 
over a 12-month period. 

Ishihara and collaborators (2014) (77) 
also reported the regeneration of both cartilage and 
subchondral bone in rabbit knees using a novel 
technique, the scaffold-free autologous construct, 
consisting spheroids of MSC loaded into a molding 
chamber to produce a columnar structure of fused 
spheroids. Although both bone and cartilage were 
regenerated up to one year after implantation, and 
cartilage thickness remained constant, the authors 
observed overgrowth of the surface, and subchondral 
bone regeneration was extremely limited.

While these reports showed positive results 
for the use of spheroids in developmental engineering 
in vivo, additional studies are necessary to improve 
the techniques employed, and long-term analysis (for 
more than a 12 months) in vivo should be performed. 
Furthermore, the translation of laboratory research into 
clinical trials demands adaptation and standardization 
of methodologies for spheroid biofabrication (49). 
Spheroids could also be used as a model to study 
the molecular mechanisms involved in endochondral 
pathologies such as osteoarthritis, to guide the 
development - in vitro and in vivo - of new regenerative 
medicine strategies (Figure 5). 
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6. 3D BIOPRINTING OF SPHEROIDS INTO 
TISSUES AND ORGANS 

The generation of complex human tissues 
and organs by bottom-up tissue engineering requires 
scalable techniques to fabricate spheroids of 
homogeneous size, and the development of integrated 
and automated robotics tools or organ biofabrication 
lines, to incorporate spheroids into constructs. For 
example, micromolded non-adhesive hydrogels allow 
the generation of uniformly sized spheroids that 
can be incorporated into constructs using a robotic 
dispenser, as mentioned above (78). The resulting 
spheroids, biofabricated in large scale, must be 
subjected to a quality control protocol. We propose 
that this protocol should include as key quality control 
elements an analysis of bone biomarkers in the 
spheroid supernatant, as well as mechanical testing 
(Figure 6). Our research group have performed 
cyclic compression assays (using a MicroSquisher, 
from CellScale) to measure the physical resistance 
of spheroids of ASC previously induced to bone and 
cartilage, and we also analyzed by proteomics, the 
spheroid of ASC secretome, which contained proteins 
associated with osteogenesis, such as osteonectin, 
tenascin C and osteoglycin (manuscript in preparation).

Tri-dimensional bioprinting is a novel additive 
manufacturing technology currently used by many 
groups to produce complex engineered tissues 
from modular components or ‘building blocks’. This 
relatively new technology has attracted increasing 
attention due to its immense potential for scalable 

tissue construct production. Spheroids could be used 
as building blocks to assemble functional tissues or 
organs by 3D bioprinting, if incorporated into a ‘bioink’. 
In this model, spheroids are expected to accelerate 
tissue formation and maturation through the fusion 
mechanism. Alternatively, cells could be printed in a 
hydrogel that would act as the ‘paper’ in the bioprinting 
process, contributing for the assembly of spheroid 
building blocks (79,80) (Figure 7). 

The fusion of homogeneous spheroids using 
a bioprinter, which involves the presence of adhesion 
molecules, could be done by dispensing spheroids 
continuously inside one cylindrical non-adhesive 
support, where they would be spontaneously arranged. 
In this context, ASC or MSC could be used to produce 
spheroids of cartilage, bone or adipose tissue, when an 
appropriate inductive medium is employed and, after 
their fusion using a bioprinter, the constructs formed 
could be used in a variety of pre-clinical and clinical 
studies. The ability of spheroids to fuse to each other 
may vary depending on the level of spheroid maturation, 
possibly due to matrix production and rearrangement, 
or mineralization. For example, spheroids from human 
cartilage progenitor cells (CPC) cultured for 21 days 
undergo spontaneous chondrogenic differentiation, 
but have reduced capacity to fuse compared with CPC 
spheroids cultured for 2 days, when no differentiation 
has occurred (81).

Many challenges need to be addressed 
for the successful production, in the future, of tissue 
and organ constructs by 3D bioprinting in a cost-

Figure 5. Spheroids as an in vivo model of endochondral ossification for efficient bone engineering. Spheroids pre-induced to the chondrogenic pathway 
are delivered at the implantation site (A). Spheroids attract blood vessels and progenitor cells in vivo (B), and the endochondral ossification process is 
initiated (C).
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Figure 6. Mechanical resistance of spheroids of ASC induced to the osteogenic pathway. Note an induced spheroid of ASC between the two plates of 
the Microsquisher mechanical test system (CellScale), during a compression assay (A). Force measurement (in μN) of spherois left untreated (control) 
or induced to the osteogenic pathway (B).
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effective and scalable manner. The establishment 
of biofabrication research centers for organ printing 
requires sophisticated hardware and software 
- including cell sorters, spheroid biofabrication 
equipment, bioprinters, rapid prototyping machines 
and bioreactors - as well as strong intellectual expertise 
(particularly in mathematical modeling) to support such 
as complex task (35).

7. CONCLUSION: SUMMARY AND  
PERSPECTIVES 

The inadequate healing of fractures and the 
complications associated with autografts and allografts 
severely limit bone tissue regeneration, and highlight 
the impotance of developing new tissue engineering 
approaches to promote bone regeneration (82). 
While classical top-down tissue engineering improved 
considerably our understanding of bone mechano-
physiology (83), it has many disadvantages, including 
poor cell viability, non-homogeneous cell seeding 
(26), and difficulties in controlling the mechanical and 
physical properties of the scaffold (36). Bottom-up 
tissue engineering - which relies on the biofabrication 
of microscale tissue building blocks with high cell 
densities and elevated metabolic activity - has the 
potential to overcome some of the drawbacks of the 
top-down approaches. 

Bottom-up approaches using spheroids 
produced by different methods has become an 
increasingly popular choice in bone and cartilage 
tissue engineering, and involves the in vitro 
production of templates for bone and cartilage 
tissues, for subsequent implantation in vivo. A new 
perspective in this field is the use of spheroids as a 
model for endochondral ossification, also known as 
developmental engineering, which has the potential 
to improve the treatment of frequent bone diseases 
such as osteoarthritis and osteoporosis. Pre-clinical 
studies using spheroids showed in vivo regeneration 
of osteochondral defects, since spheroids can 
produce high concentrations of pro-angiogenic factors, 
promoting vascularization. However, additional studies 
are necessary to improve the techniques for spheroid 
use in bone tissue regeneration, and to provide long-
term regeneration analysis. 

Finally, spheroids can be used as building 
blocks for 3D bioprinting of tissue and organ constructs 
with clinically relevant dimensions (78). Spheroids of 
ASC or MSC can support the production of autologous 
bone with high complexity in vitro, and with physical 
and mechanical properties similar to those of native 
tissues. However, the engineering of complex tissues 
by 3D bioprinting is still in its infancy, and further 
technological developments are required to allow 3D 
bioprinting using spheroids of ASC to become a reality 
in tissue engineering and bone therapy.

Figure 7. Spheroids as building blocks for 3D bioprinting. Spheroids 
are first encapsulated into a hydrogel (A), and then dispensed close 
to each other by a 3D bioprinter (B). Then, spheroids fuse to one 
another and form a more complex tissue structure, in a pre-defined 
shape (C).
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