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1. ABSTRACT

The commensal gut microbiota is an 
environmental factor that exerts manifold effects 
on host physiology. One obvious trait is the impact 
of this densely colonized ecosystem on small 
intestinal mucosal vascularization. At present, the 
microbiota-triggered signaling pathways influencing 
small intestinal renewal, angiogenesis, and vascular 
remodeling are largely unexplored. While the 
interplay of gut microbial communities with pattern 
recognition receptors, such as Toll-like receptors, in 
intestinal homeostasis is increasingly understood, it 
is unresolved how commensal microbiota affect the 
signaling pathways responsible for the formation of 
capillary networks in the intestinal mucosa. It is evident 
that intestinal vascular remodeling and renewal 
is disturbed in case of dysbiosis of this densely 
colonized microbial ecosystem, in particular under 
conditions of intestinal inflammation, but the effects 
of individual components of the gut microbiota are 
elusive. This review article provides an overview on 
the revealed microbiota-host interactions, influencing 
angiogenesis and vascular remodeling processes in 
the small intestine.

2. INTRODUCTION

Inherent factors such as genes along with 
environmental factors interact in tandem in myriad 

ways to influence, modulate, and modify the biology of 
all living organisms. This makes one wonder whether 
genetic and environmental factors can ever truly 
act independently of each other. Now we know that 
environmental exposures and experiences can have 
a direct influence on the expression of genes through 
epigenetic regulations or on the function of gene 
products through post-translational modification (1). 
Likewise, genetic factors influence the consequences 
of environmental exposures or stresses on the 
organism.

Dietary substances represent key 
environmental factors that influence the host and 
its resident, coevolving microbial communities (2). 
Microbiota, or the microbes that colonize each of us, 
populate all body surfaces (e.g. skin, vagina, lung, 
oral cavity, and gut). The corresponding collection of 
bacterial genes of this complex bacterial population 
provide a panoply of genomic material - the microbiome 
(3). The largest and most complex of these host-
associated microbial communities resides within the 
intestine. The metagenomic potential of this internal 
microbial community coevolved with the human host 
and has increasingly been shown to interact with the 
host genome in development, health, and in diseases, 
ranging from periodontal disease to rheumatoid 
arthritis to inflammatory bowel disease to cancer (4).
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The intestinal microflora serves three major 
functions: metabolic, trophic and protective (5). It 
produces short-chain fatty acids (SCFAs) and vitamins, 
thereby ensuring host health and metabolic functions. 
The microflora is also involved in intestinal epithelial 
cell growth, turn over and differentiation (6). The 
gut microflora induces maturation of host immunity; 
stimulate the intestinal epithelium in order to protect 
the host against invasion by pathogens and transforms 
carcinogens. With these including many other different 
functions, the gut microbiome serves as an ‘organ’, no 
wonder therefore, this symbiotic association of host–
microbe being considered as a ‘superorganism’ (7, 8) 
that influences human health and development (9). 
The development of the intestinal microflora occurs 
during early infancy (10), and a distortion in any of the 
microbiota functions could potentially contribute to a 
wide range of diseases. The trillions of microorganisms 
that colonize the human body control many aspects 
of both innate and adaptive immune responses (11, 
12), and a healthy microbiota plays a crucial role 
in maintaining immune homeostasis. Accordingly, 
dysbiosis of the gut microbiota is associated with many 
diseases characterized by chronic gut inflammation, 
including inflammatory bowel diseases (13). As the 
commensal gut microbiota is an environmental factor 
that is a driving force in postnatal gut development 
(14), including the development of intricate capillary 
networks in small intestinal villus structures (15), we 
here review the signaling mechanisms triggered by 
commensal microbiota that impact remodeling and 
renewal processes, angiogenesis, and vascularization 
of the small intestine.

3. PATHWAYS INVOLVED IN GUT 
DEVELOPMENT

The human intestinal tract is considered the 
organ with the most rapid renewal rates in the body. The 
underlying molecular pathways are usually involved in 
gut development and need to be tightly controlled in 
order to preserve vital organ functions, such as efficient 
nutrient uptake and transport, digestion, gut barrier 
function, excretion and detoxification of catabolites, 
and protection from infections. Small intestinal villus 
morphogenesis is induced at E15.5. (16) and major 
changes in morphology occur after birth and at weaning, 
indicating that this may coincide with the formation 
and changes of the gut microbiota, impacting normal 
gut development (17). The serosal mesothelium was 
shown to respond to Hedgehog signals, undergoing 
epithelial-to-mesenchymal transition and migrating into 
the gut tube at E11.5, differentiating into endothelial 
cells, vascular smooth muscle cells, and pericytes (18). 
The intestinal microbiota is an environmental factor 
that profoundly impacts on mucosal morphology and 
cellular renewal in the gut (19), but little is known on 
the exact mechanisms how this microbial ecosystem 
affects renewal of the epithelial lineage from the crypt 

stem cell niche, differentiation of mesenchymal cells, 
mucosal angiogenesis and vascular remodeling (20). 
If the control on intestinal cell renewal is lost, this can 
result in dysbiosis, malnutrition, intestinal inflammation, 
and even in the occurrence of intestinal cancers. 
The most central signaling pathways involved in gut 
development, intestinal morphogenesis and renewal 
are the Hedgehog pathway (21), the transforming 
growth factor-β (TGF-β)/Smad pathway, the WNT 
pathway (Wingless/Int-1), the Notch pathway as well as 
several tyrosine kinase pathways (e.g. EGF signaling). 
The gut microbial ecosystem may impact on several 
morphogenic pathways in the intestinal mucosa, thus 
shaping its habitat and host (patho)physiology (22).

4. GUT MICROBIAL PRODUCTS 
STIMULATING TOLL-LIKE RECEPTORS  
AND INTESTINAL REMODELING

Microbes are recognized by pattern 
recognition receptors, e.g. Toll-like receptors (TLRs), 
ubiquitously expressed by multiple cell types, leading to 
physiologic or pathologic responses. To study the role 
of TLRs in the intestinal epithelium and to explore the 
relationship between intestinal epithelial cells (IECs) 
and commensal bacteria, researchers first aimed to 
determine whether the intestinal epithelium expresses 
TLRs under normal physiological conditions and, if 
so, what is the regional and spatial localization of TLR 
expression in the intestine. Considering the diversity 
of whole intestine, it is difficult to pinpoint expression 
of TLRs by IECs using whole intestinal lysate as the 
intestine homes range of different cell types that can 
express TLRs, e.g. epithelial cells, macrophages, 
dendritic cells, B cells, T cells, and various stromal 
cell types. Hence, immunohistochemistry, enzymatic 
separation of IECs, and laser capture microdissection 
of the intestinal epithelium were used to show that TLR2 
and TLR4 are expressed at low levels by IECs in normal 
human colon tissues (23–25). TLR3 seems to be 
abundantly expressed in normal human small intestine 
and colon, whereas TLR5 is expressed predominantly 
in the colon (23). Almost all TLRs are expressed, at least 
at the mRNA level, in the human colon. The expression 
of TLR1, TLR2, TLR3, TLR4, TLR5, and TLR9 has also 
been detected in IECs of the human small intestine (25). 
Moreover, IECs from patients with inflammatory bowel 
diseases have higher expression of TLRs, especially 
TLR4, and comparable expression of TLR2, TLR3, 
TLR5, and TLR9 than IECs from control individuals (23, 
26–28). Inflammatory cytokines have been shown to 
regulate the expression of TLRs by IECs (27, 29–31). 
Early studies showed that interferon-γ (IFNγ) and tumor 
necrosis factor (TNF) induce the transcription of TLR4 
and its co-receptor MD2 (also known as LY96) (27, 30). 
Cytokine-mediated induction of TLRs may allow their 
selective expression during times of danger perceived 
by the host (32). Studies comparing germ-free (GF) 
mice with conventionally housed mice indicated that 
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commensals induce the expression of certain TLRs 
(TLR2, TLR3, TLR4, and TLR5), as assessed in mucosal 
scrapings (33). Using immunohistochemistry, TLR9 was 
shown to be expressed on the apical surface brush 
border of the colon of mice with conventional flora but 
not that of GF mice (34). In addition, we have recently 
shown that mice colonized with conventional microflora 
from birth showed TLR2-dependent increased small 
intestinal renewal and apoptosis compared with GF 
controls with elevated mRNA levels of the proliferation 
markers Ki67 and Cyclin D1, elevated transcripts of the 
apoptosis marker Caspase-3, and increased numbers of 
TUNEL-positive cells per intestinal villus structure (35), 
suggesting a role for TLR signaling in intestinal epithelial 
renewal. On the other hand, we have also reported gut 
microbiota independent TLR5 expression in the small 
intestine that is dependent on the MyD88 and TRIF 
adaptors (36).

Over the decades of scientific work, it is 
now well established that even in the absence of 
dysbiosis, pathogen-associated molecular patterns 
(PAMPs) derived from gut microbial communities, such 
as peptidoglycan (PG) (37) and lipopolysaccharides 
(LPS) (38) constantly leak into tissues and the portal 
circulation (39), triggering adaptive TLR signaling in 
the host. However, intestinal epithelial cell lines are 
unresponsive to purified, protein-free LPS as measured 
by NF-kB activation and IL-8 secretion (24, 40). This 
unresponsiveness was explained by the low expression 
of TLR4 and its co-receptor MD-2 in intestinal epithelial 
cell lines (24). Expression of both TLR4 and MD-2 
restores the ability of intestinal epithelial cells to respond 
to LPS, suggesting that the intracellular signaling 
pathway leading to NF-kB is intact in these cells. Even 
at remote sites, gut microbial products may contribute 
to disease pathogenesis by affecting endothelial cell 
function in conditions such as atherosclerosis and 
liver diseases (41, 42). TLR signaling is not restricted 
to innate immune cells (43), but involves potentially 
other vascular cell types, including endothelial cells 
(TLR2, 4, and 9) (44–46) and platelets (TLR1, 2, 4, 6, 
and 9) (47–50). The consequences of TLR activation 
on epithelial and immune cells have been investigated 
extensively (51, 52), but little information is available on 
the effect of microbial products on non-immune cells, 
microbiota-triggered remodeling processes in the small 
intestine, and particularly on mucosal endothelial cells.

5. IMPLICATIONS OF THE GUT MICROBIOTA 
IN REMODELING AND RENEWAL OF THE 
SMALL INTESTINE

The gut microbiota is a complex microbial 
ecosystem that forms immediately after birth and is 
shaped by numerous environmental factors (e.g. mode 
of birth, mother’s milk, nursing personnel, nutrition, 
antibiotics, stress) (10). So far, more than a thousand 
bacterial species have been identified most of them 

belonging to the Firmicutes and Bacteroidetes phyla. 
This ecosystem was estimated to consist of 395 bacterial 
phylotypes with most of the species never cultivated (53). 
The microbial communities in this intestinal ecosystem 
provide a multitude of functions that the host did not 
have to develop. Thus, this forgotten organ exerts 
profound effects on remodeling and cell renewal in the 
intestine mucosa, but also on host metabolism (22). It 
is known for several decades that colonization with a 
gut microbiota impacts on mucosal morphology and 
epithelial cell renewal rates across various phyla of 
the animal kingdom (19, 54, 55). Our recent work has 
revealed protease-activated receptor-1 (PAR1) mediated 
coagulation factor signaling pathways that trigger 
remodeling of intricate capillaries in the small intestinal 
villus architecture (20) (Figure 1). Now, we began to 
understand how the intestinal architecture and cell 
renewal is controlled (56). Nevertheless, the microbial 
signals that affect morphogenic pathways, the various 
morphogenic pathways in the intestine that are regulated 
by the microbiota, and the complex interplay between 
these pathways remain enigmatic. Also the role of the gut 
microbiota in the regulation of pathways regulating cell 
renewal and tissue repair in inflammatory disease states 
like necrotizing enterocolitis in newborns, inflammatory 
bowel disease (IBD), and radio or chemotherapy-induced 
mucositis of cancer patients is largely unexplored.

6. INNATE IMMUNE SIGNALING AFFECTS 
INTESTINAL VASCULAR REMODELING

As evident from experiments with GF animal 
models, normal development, especially of the 
gastrointestinal tract, is influenced by the presence 
of commensal microbiota (57). GF mice show an 
altered immune phenotype, with deficits in both 
innate and adaptive immune components of the gut 
mucosa (58, 59). Reintroducing microorganisms 
postnatally partially corrects many of these defects, 
although even a brief GF neonatal period can induce 
immunological changes that persist into adulthood 
(58, 60). Notably, different bacterial species have been 
shown to distinctly modulate the host immune system, 
indicating that the presence of specific bacteria within 
a given developmental window is important for normal 
patterning of host immunity (60–62).

Angiogenesis, the formation of new blood 
vessels from pre-existing vessels, is a complex 
process involving endothelial as well as various 
mesenchymal cell types, which are in close proximity 
to the microvasculature (63). Fibroblasts release 
various pro-angiogenic factors upon cytokine 
stimulation and express functional TLRs (64). The 
TLR adaptors MyD88 and TRIF are essential elements 
that are required for renewal and villus vascularization 
in postnatal gut development (65). Recently, it was 
shown that the gut microbiota can selectively activate 
mucosal endothelial and mesenchymal cells to 
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promote specific angiogenic responses in a TLR- and 
NOD-like receptor-dependent fashion (Figure 2). This 
innate immunity-mediated response may expand 
the mucosal microvascular network, foster immune 
cell recruitment, and contribute to chronic intestinal 
inflammation (66). Leaking of microbial products in 
the inflamed intestine allows interaction with mucosal 
cells bearing their specific receptors (67), including 
endothelial and other mesenchymal cells (64, 68, 69). 
In addition to microbial derived products, microbiota 
help breaking down complex dietary macromolecules 
in much simpler and absorbable micromolecules that 
result in stimulation of a wide range of host genes 
involved in the uptake of theses digestion products 
benefiting the host (3, 70–76). Simultaneously, 
by increasing the intestine’s absorptive capacity 
through promotion of angiogenesis, the microbiota 
provide excellent mutual beneficial associations to 
the host. Endothelial cells, including human intestinal 
microvascular endothelial cells (HIMEC), produce 
their own pro-angiogenic factors, acting in an 
autocrine fashion, and gut mucosal extracts contain 
pro-angiogenic factors (77, 78).

Not only development of blood 
microvasculature but also lymphatic vascularization 
extends beyond postnatal development and various 
proteins were shown to regulate this process. 

The multifunctional protein fasting-induced adipose 
factor (Fiaf), also known as angiopoietin-like protein 4 
(Angptl4), has been shown as an important regulator 
for functional partitioning of postnatal intestinal 
lymphatic and blood vessels (79). It was observed that 
Fiaf-deficient GF mice exhibited a similar phenotype 
as conventionally raised (CONV-R) Fiaf knockouts 
and Fiaf mutants die within a few weeks of birth with 
dilated and blood-filled lymphatics that are aberrantly 
connected to blood vessels (79). It is interesting 
to note that Fiaf expression is higher in the villus 
epithelium of GF mice compared with CONV-R wild-
type mice (80, 81). Moreover, transcriptional profiling 
of mice monoassociated with S. boulardii showed 
upregulation of ‘non-immune’ signatures. The majority 
of those signatures were derived from vascular 
genes (82). This yeast along with enteric microbiota 
modulates angiogenesis to limit intestinal inflammation 
and promotes mucosal tissue repair by regulating 
VEGFR signaling during the acute phase of intestinal 
inflammation (83).

Taken together, under basal conditions, 
several immune and non-immune pathways are 
regulated in the intestinal epithelium. These signals 
selectively induce specific pro-angiogenic pathways 
that promote intestinal angiogenesis by activation of 
mucosal endothelial and mesenchymal cells.

Figure 1. Immunofluorescence image of the mid small intestinal villus architecture of a conventionally raised mouse. Cell nuclei (blue), the vascular 
marker PECAM-1 (green), smooth muscle actin (red); 10x magnification.
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7. MICROBIOTA-INDUCED VASCULAR 
REMODELING OF THE SMALL INTESTINE

Immediately after birth, the intestine undergoes 
rapid and dramatic postnatal remodeling. The 
complexities in the intestine in terms of villus architecture 
and vascular branching grows extraordinarily during 
postnatal development. The quantum of complexities 
measured in the intestine of GF mice as opposed to 
CONV-R mice was 50% less in terms of vascularization, 
which was recovered within 10 days of colonization with 
commensal microbiota (15). Interestingly, in the same 
study it was also established that monocolonization 
of GF mice with Bacteroides thetaiotaomicron was 
sufficient to recapitulate normal vascular development 
(15). Throughout host development, this coordination 
between the microbiota and the host intestine grows 
in parallel to fulfill the need of nutrient requirements. 
This regulation was demonstrated to be coordinated to 
some extent by Paneth cells (15). The appearance of 
Paneth cells coincides with initial colonization of the gut 
and their strategic positioning coordinate development 
of both the microbiota and the microvasculature. It 
is of note that commensal microbiota influence the 
subsequent differentiation of Paneth cells, while at 
the same time their secreted antimicrobial peptides/
proteins effect microbial ecology (84, 85). With sufficient 
evidence it can be said that colonization increases 
angiogenesis-related gene expression in the intestine, 
e.g. angiogenin-3 along with secreted proteins with 
known pro-angiogenic activity (86, 87). qRT-PCR and 
microarray data suggested that angiogenin-3 mRNA is 
largely expressed in crypt epithelium, which increases 
upon colonization (88). Furthermore, monoassociation 
with either Bacteroides thetaiotaomicron or 
Bifidobacterium infantis or E.coli K12 is sufficient to 
restore angiogenin-3 expression in the ileum of GF 
mice to comparable levels as measured in CONV-R 
counterparts (88). The influence of gut microbiota 
on intestinal injury healing innvolving angiogenesis 
is evident in yet another study of fecal microbiota 
transplantation (FMT), where gut microbes were shown 
to not only alleviate and protect against radiation 
induced intestinal injury but also improved survival rate 
in a murine irradiation model via upregulating VEGF 
expression levels in the small intestine of irradiated 
mice (89). In summary, colonization with gut microbiota 
or select gut resident microbes evokes transcriptional 
responses that shape intestinal development and 
microvasculature expansion.

8. ROLE OF MICROBIAL PROTEASES 
AND HOST PROTEASES IN PROTEASE-
ACTIVATED RECEPTOR (PAR)-MEDIATED 
INTESTINAL REMODELING PROCESSES

The activity of serine proteases and matrix-
metalloproteases (MMP) can impact morphogenic 
signaling pathways in the intestine and in turn may 

alter the cell-type specific expression of proteases 
that act on paracellular junctions or extracellular 
matrix components of the basal lamina thus affecting 
intestinal function (90). For instance, it has been 
demonstrated that TGF-β enhances the migration of 
intestinal epithelial cells by up-regulating their MMP-1 
and MMP-10 expression (91). Members of the PAR 
family of heptahelical G-protein-coupled receptors are 
expressed in most tissues and are also active in the 
intestinal mucosa (92–97). These receptors primarily 
mediate the cellular actions of coagulation proteases, 
but they also fulfill important non-hemostatic functions 
during development and are mediators of tissue 
remodeling and repair processes. Ample evidence 
exists for that activation of PAR signaling pathways 
improves wound healing (98, 99). In this context, 
the pro-angiogenic function of activated Protein C in 
cutaneous wound healing has been demonstrated 
(100). In line with the importance of tyrosine kinase 
signaling in intestinal remodeling, we have recently 
revealed that tissue factor (TF)-dependent coagulation 
factor signaling via PAR1 augments angiopoietin-1 
(Ang-1) expression and Tie-2 signaling in the distal 
small intestine. This microbiota triggered signaling 
loop enhances vascular remodeling in small intestinal 
villus structures (20) (Figure 2). On the other hand, the 
various proteases expressed by gut microbes can also 
act directly on PARs. For instance, Staphylococcus 
aureus has become an early colonizer of the infant 
gut (101) and Staphylocoagulase (102) can activate 
prothrombin, the prototypic serine protease that 
activates PAR1. Moreover, it has been suggested that 
proteases from Porphyromonas gingivalis can induce 
β-defensin-2 expression via gingival epithelial PAR2 
receptor signaling (103). There is emerging evidence 
for an interplay between innate immune signaling and 
PAR signaling since NFκB signaling can be enhanced 
by the physical interaction of TLR4 with PAR2 (104). 
The information on bacterial activation of PARs is 
sparse, but it appears plausible that beyond pattern 
recognition this could be a relevant mode of action of 
how gut microbial communities can shape their habitat.

9. DYSBIOSIS AND GENE MUTATIONS 
AFFECT INTESTINAL REMODELING IN 
INTESTINAL DISEASE

Microbial dysbiosis is associated with a 
number of diseases, including inflammatory disorders, 
but it is currently unclear whether dysbiosis occurs as 
a consequence of an inflammatory process or if other 
factors, such as diet or host genetics, induce dysbiosis, 
which then leads to inflammation. Obesity is one 
known factor that leads to dysbiosis and is linked to 
an increased risk for cancer. Obese individuals exhibit 
increased proportions of Firmicutes and decreased 
proportions of Bacteroidetes in the gut (105) as well 
as an overall reduction in microbial genetic abundance 
(106). Inflammation driven by gut bacteria is also 
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thought to have an impact on carcinogenesis. In 
some cases, inflammation promotes tumorigenesis by 
generating a dysbiotic environment within the gut that 
favors the expansion of tumorigenic bacterial strains. 
Recent work showed that intestinal inflammation in the 
IL-10-deficient mouse model modifies gut microbial 
communities and promotes the growth of genotoxic 
bacteria (107). These findings support the idea that 
cancer in the colon can be caused by particular 
microbes that are fostered within an inflammatory 
environment.

Inflammatory bowel disease (IBD) is an 
autoimmune condition that is believed to be caused 
by an excessive immune response against normal 
constituents of the gut microbiota (108). Important, 

recent studies provide compelling evidence that 
this diseases can result from dysbiosis since it can 
be transmitted by transfer of the microbiota from a 
T-bet(-/-)×Rag2(-/-) ulcerative colitis (TRUC) mouse to 
adult WT mice (109). During IBD and celiac disease 
altered TGF-β signaling is observed (110–112), 
but the influence of the gut microbiota or single gut 
bacterial species on these pathways are unexplored. 
Of note, impaired TGF-β signaling in T-cells results 
in a reduced number of regulatory T-cells and higher 
susceptibililty to dextran sodium sulfate-induced colitis 
(113). Expression of TGF-β was found increased in 
various mouse colitis models, but TGF-β signaling was 
impaired due to elevated levels of Smad 7 (114). In fact, 
TGF-β signaling is defective in IBD (115). In mouse 
models Smad 7 overexpression increased the severity 

Figure 2. Schematic view on relevant pathways influencing vascularization in the small intestine. (I) Gut microbiota promote N-glycosylation of tissue 
factor (TF) on enterocytes, triggering coagulation factor signaling via protease-activated receptor-1 (PAR1) resulting in TF phosphorylation and expression 
of a pro-angiogenic genes. (II) Microbiota-induced pattern recognition receptor signaling augmenting the expression of genes involved in vascular 
remodeling in the small intestinal mucosa.
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of DSS-induced colitis (116). In healthy individuals, 
the gut is primarily populated by a core microbiota 
composed mainly of obligate anaerobic bacteria 
within two phyla, the Firmicutes and Bacteroidetes. 
However, when there is a disturbance that shifts 
the composition of the normal microbial community, 
there is an increase in facultative anaerobic bacteria, 
that can lead to various inflammatory processes by 
including potentially harmful microorganisms (117). 
From a therapeutic point of view, it draws an attention 
to correct dysbiosis. So far, the efficacy of bacteria 
based therapies, such as probiotics or antibiotics, were 
proven to be inefficient to overcome complex intestinal 
inflammatory conditions, such as IBD. However, on 
certain instances like recurrent Clostridium difficile 
infection (CDI), FMT has been successfully used 
for several years as a treatment regime with proven 
randomized control trial (118). More recently, FMT 
was proven to be a method of choice to treat IBD. 
FMT not only restored the deficient microbiota but 
also established the crosstalk of the host immune 
system with indigenous microflora, which is affected 
during complex disease etiologies such as IBD (119, 
120). It appears plausible that complex microbiota 
derived diseases like IBD would require combinatorial 
treatment, on the one hand to restore the host 
microbiota crosstalk and on the other to suppress the 
exacerbated immune activation.

10. CONCLUSION AND PERSPECTIVE

Growing evidence suggests the implication 
of the gut microbiota in various facets of health and 
disease and it now appears to influence the host at 
nearly every level and in every organ system (121, 
122). The impact of gut microbial communities on 
intestinal renewal and the expansion of intricate 
capillary networks in the small intestine is one 
pivotal trait modulating various immunological and 
metabolic functions. Determining the details of the gut 
microbiome’s involvement in host development, and 
its function in both health and disease holds promise 
of translational applications, from optimizing healthy 
nutrition to offering new tools in our fight against the 
pandemics of cancer and obesity.

With further advances and the use of 
available technologies, such as metagenomics 
and metabolomics, keystone microbes should be 
characterized and their interaction with the host 
understood, which will allow the creation of a database 
of potential pathobionts to target in order to modulate 
the microbial community. However, to reach this stage, 
research efforts must pose and answer concrete 
questions detailing specific aspects of host-microbe 
relations and the mechanisms underlying them.

We are now entering in an era when the use 
of antibiotics is increasingly restricted, while probiotics 

can expect a promising future. Besides, the selection of 
excellent strains and improved processing techniques, 
more research is needed to evaluate the functionality 
and efficacy of select strains and their substrates 
related to host nutrition. Therapeutically, probiotic-
based approaches have been used with some success 
as have the more drastic and cruder approach of 
wholesale microbiota replacement strategies based 
upon fecal transplantation.
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