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1. ABSTRACT

Henoch-Schonlein purpura (HSP) is an 
IgA-mediated disorder that most commonly occurs 
in children. Its etiology and pathogenesis remain 
unknown. In recent years, numerous studies have 
pointed to a dysfunction of T cells in the pathogenesis 
of HSP. Here, we will review the epidemiology, clinical 
and molecular characteristics of HSP, as well as 
abnormalities of Th cell subsets in this disorder. Finally, 
we will discuss the key factors that are involved in Th 
cell differentiation as potential novel targets for the 
prevention and treatment of HSP.

2. INTRODUCTION

Henoch-Schonlein purpura (HSP), also 
known as immunoglobulin A (IgA) vasculitis (1), is an 
IgA-mediated disorder that causes inflammation of 
small blood vessels, leading to hemorrhage in the skin, 
joints, intestines and kidneys. HSP can affect anyone, 
including elderly people (2), but it is most common in 
children between the ages of two and six years (3–5). 
It occurs about twice as often in boys as girls (6). The 
incidence of HSP in children is about 20 per 100,000 
children per year, making it the most common form 
of vasculitis in children (4). The most striking feature 
of HSP is a purplish rash, typically on the lower legs 
and buttocks. HSP can also cause abdominal pain and 
aching joints. The condition usually improves on its own, 
but medical care is generally needed if the disorder 
affects the kidneys (3, 7). Severe HSP nephritis (HSPN) 

remains the major cause of morbidity and mortality 
among children with HSP (8). In a systematic review, 
34.2% of HSP patients were found to have had renal 
involvement (9). Cases of HSP may occur anytime 
throughout the year, but some studies have found that 
fewer cases occur during the summer months, with 
most cases occurring in autumn and winter (10).

Multiple standards exist for defining HSP, 
including the 1990 American College of Rheumatology 
classification (11–13) and the 1994 Chapel Hill 
Consensus Conference nomenclature of vasculitides 
(14, 15). More recent classifications include the 2006 
European League Against Rheumatism and Pediatric 
Rheumatology Society classification criteria (16, 17). 
Recently, a modified semiquantitative classification 
was found to be more sensitive than the classical 
International Study of Kidney Disease in Children 
system for predicting the outcome in cases of HSPN 
(18). Like most human illnesses, HSP is an etiologically-
complex disease, with environmental factors triggering 
the disease in genetically predisposed individuals. 
The current diagnostic criteria have high sensitivity 
and specificity, and most HSP patients are accurately 
diagnosed. However, although the prognosis is 
generally good, the failure of HSP treatment remains 
a key problem. To reduce associated morbidity and 
mortality and improve patient quality of life, further 
research is needed to improve our understanding of 
the pathogenetic mechanisms underlying HSP.
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3. CHARACTERISTICS OF HSP

The pathophysiological features of HSP 
are not well understood but appear to involve the 
deposition of immune complexes containing IgA and 
complement component 3 (C3) in arterioles, capillaries 
and venules (19). The activation of the complement 
system, in part through the alternative pathway, may 
result in increased plasma levels of C3a and C5a; 
in particular, the increased level of C5a is thought 
to play a role in disease pathogenesis by activating 
the endothelium of cutaneous small vessels (19). 
Increased synthesis of IgA in response to antigens 
processed by the mucosa-associated immune system 
also appears to contribute to disease development. 
HSPN and IgA nephropathy are related diseases, with 
both resulting from glomerular deposition of aberrantly 
glycosylated IgA. Although both nephritides present 
with similar histological findings and IgA abnormalities, 
they display pathophysiological differences that have 
important therapeutic implications (20, 21). HSP 
nephritis is mainly characterized by acute episodes 
of glomerular inflammation with endocapillary and 
mesangial proliferation, fibrin deposits and epithelial 
crescents that can heal spontaneously or lead to 
chronic lesions. In contrast, IgA nephropathy normally 
presents with slowly progressing mesangial lesions 
resulting from continuous low-grade deposition of 
macromolecular IgA1 (22). Further, IgA nephropathy 
has a predilection for young adults while HSP is more 
predominant among children, and IgA nephropathy 
typically only affects the kidneys, while HSP is a 
systemic disease (23–25).

The dominant clinical features of HSP are 
cutaneous purpura (100%), arthritis (82%), abdominal 
pain (63%), gastrointestinal bleeding (33%) and 
nephritis (40%) (26). These symptoms can be 
summarized as four main characteristics (27, 28). The 
first is rash (purpura). Reddish-purple spots which look 
like bruises are the most distinctive and universal sign 
of HSP. The rash develops mainly on the buttocks, 
legs and feet, but can also appear on the arms, face 
and trunk and may be worse in areas of pressure, 
such as the sock line and waistline (29, 30).The 
second characteristic is swollen sore joints (arthritis). 
Patients with HSP often have pain and swelling around 
the joints, mainly in the knees and ankles. Joint pain 
sometimes precedes the classical rash by one or two 
weeks. These symptoms subside when the disease 
clears and leave no lasting damage (31). The third 
characteristic is gastrointestinal symptoms which many 
children with HSP develop, including abdominal pain, 
nausea, vomiting or bloody stools. These symptoms 
sometimes occur before the rash appears, so they can 
be helpful in the early diagnosis of HSP (32, 33). The 
final characteristic is kidney involvement. In most cases, 
this is revealed by protein or blood in the urine, which 
may not be evident unless a urine test is performed. 

This normally dissipates once the illness passes, but in 
a few cases kidney disease may develop and persist. 
Before these symptoms begin, patients may have two 
to three weeks of fever, headache and muscular aches 
and pains. Other organs, such as the brain, heart 
and lungs, may also be affected (34, 35).There is a 
significant correlation between the severity of renal 
involvement and pathological grading and scoring 
of HSPN; in particular, the severity of proteinuria is 
a significant determinant of renal pathologies (36). 
The exact cause of this phenomenon is unknown. It 
usually resolves within several weeks and requires 
no treatment apart from symptom control, but may 
relapse in a third of cases and cause irreversible 
kidney damage in about one in a hundred cases.

4. INVOLVEMENT OF CD4+ T CELLS IN  
HSP DEVELOPMENT

The immune system is believed to play a 
role in targeting the blood vessels involved in HSP. 
An abnormal immune response to an infection may be 
a factor in many cases. In recent years, the role of T 
cells in the pathogenesis of HSP has become a focus 
of research. It has been suggested that leukocyturia 
is associated with post-infectious glomerulonephritis 
(GN), interstitial nephritis and renal allograft rejection. 
In addition, prominent infiltration of T cells and 
macrophages is commonly observed in the renal 
tissues of patients with GN, accompanied by cellular 
crescent formation and/or interstitial cell infiltration 
(37). In urine from patients with different forms of GN, 
including IgA nephropathy, HSPN and anti-neutrophil 
cytoplasmic antibody-associated GN, T cells appeared 
together with macrophages. T cells from urine were 
mainly CD45RA−, CD45RO+ and CD62L (L-selectin), 
which are the phenotypic features of effector T cells 
(37). The findings suggest that the appearance of 
effector T cells in urine may reflect the cellular immune 
reaction that occurs in the kidneys of patients with GN, 
which is accompanied by active cell infiltration.

CD4+ T cells play critical roles in mediating 
adaptive immunity to a variety of pathogens. They are 
also involved in autoimmunity, asthma and allergic 
responses as well as in tumor immunity. Recently, 
these cells have been found to contribute to the 
pathogenesis of HSP. Results from 32 HSP patients 
and 25 healthy donors revealed that freshly isolated 
CD4+ T cells from patients with HSP expressed higher 
levels of OX40 than cells from healthy individuals 
(38). The levels of soluble OX40L (Sox40l) in the 
sera of patients with HSP were also much higher 
than in controls. Importantly, significantly elevated 
levels of OX40 on CD4+ T cells and Sox40L in sera 
were detected in patients with HSPN compared to 
patients without nephritis, indicating that both OX40 
upregulation and an increase in Sox40l were closely 
associated with disease activity in these patients (38). 



As OX40/OX40L is a costimulatory pathway that can 
promote T-cell activation and prolong survival, their 
upregulation indicates the involvement of CD4+ T cells 
in the pathology of HSP.

During T cell receptor (TCR) activation in 
a particular cytokine milieu, naive CD4+ T cells may 
differentiate into different subsets of T helper (Th) 
cells. There are at least four types of Th cells: Th1, 
Th2, Th17 and regulatory T (Treg) cells, as defined 
by their pattern of cytokine production and function. 
Th1, Th2 and Th17 cells are important for eradicating 
intracellular pathogens, helminth and extracellular 
bacteria/fungi, respectively. Th1 and Th17 cells are 
also involved in many types of autoimmune diseases, 
whereas Th2 cells contribute to allergic responses 
(39). Treg cells are critical in maintaining self-tolerance 
and in modulating immune responses to infections 
(40). CD4+ T cells are also important in the induction 
and control of immunoglobulin class switching and 
somatic hypermutation. These events occur mainly 
within germinal centers (GCs), and CD4+ T cells that 
enter GCs to mediate their helper function for antibody 
production are often designated T follicular helper (Tfh) 
cells (41). Children with HSP show T-cell disorders and 
abnormalities in Th cell differentiation.

4.1. Th1 cells

Th1 cells are the host immunity effectors 
against intracellular bacteria and protozoa. They are 
triggered by interleukin 12 (IL-12) and IL-2, and their 
effector cytokine is interferon gamma (IFN-γ). The key 
Th1 transcription factors are signal transducer and 
activator of transcription 4 (STAT4) and T-bet. Th1 
overactivation against autoantigens will cause type 
4 delayed-type hypersensitivity; tuberculin reactions 
and type 1 diabetes also belong to this category of 
autoimmunity (39).

There are findings showing that in urine from 
patients with IgA nephropathy, HSPN or anti-neutrophil 
cytoplasmic antibody-associated GN, T cells were 
present along with macrophages. These urine cells 
expressed mRNA for Th lymphocyte 1 cytokines, IL-2 
and/or IFN-γ, indicating the involvement of Th1 cells in 
the pathology of HSP (37). Furthermore, renal biopsy 
specimens from 22 pediatric patients diagnosed with 
HSP were compared to normal renal tissue taken during 
nephrectomy in 20 pediatric patients diagnosed with 
Wilms tumor (42). Immunohistochemical analysis of 
IFN-γ expression showed that glomeruli and tubules in 
HSP patients had significantly higher IFN-γ expression 
than those in control patients. This suggests that 
IFN-γ may contribute to HSP in children and provides 
indirect evidence that Th1 cells may be involved in 
the pathogenesis of HSP. Another study suggesting 
Th1 predominance in HSP studied the transcriptional 
factor T-bet, which regulates the differentiation of Th 

lymphocytes into the Th1 subset (43). The relative 
expression of T-bet was significantly higher in the 
urinary sediment from patients with HSP than in 
healthy controls. Moreover, a significant increase in 
T-bet expression was observed in glomeruli biopsy 
specimens from all patients studied. When the patients 
received immunosuppressive therapy, expression of 
T-bet was reduced (43), suggesting a predominant 
role for Th1 cells in the development of HSP. However, 
other studies have found no evidence that Th1 is 
involved in the pathogenesis of HSP (44, 45). 

4.2. Th2 cells

Th2 cells are the host immunity effectors 
against extracellular parasites, including helminths. 
They are triggered by IL-4 and their effector cytokines 
are IL-4, IL-5, IL-9, IL-10 and IL-13. The key Th2 
transcription factors are STAT6 and GATA3 (46). 
IL-4 is the positive feedback cytokine for Th2 cell 
differentiation, and overactivation of Th2 in response 
to autoantigen causes Type1 IgE-mediated allergy and 
hypersensitivity. Allergic rhinitis, atopic dermatitis and 
asthma belong to this category of autoimmunity (39).

The transcriptional factor GATA-3, which 
regulates the differentiation of Th lymphocytes into 
the Th2 subset, was examined in HSP patients (43). 
The relative expression of GATA-3 was significantly 
lower in the urinary sediment of patients than 
in control subjects. When the patients received 
immunosuppressive therapy, the expression of GATA-
3 remained static (43), which suggested that Th2 
cells were not be involved in the pathogenesis of 
HSP. In another study, histone modification patterns 
in peripheral blood mononuclear cells (PBMCs) from 
HSP patients were analyzed and the expression of 
inflammatory cytokines (IFN-γ, IL-2, IL-4, IL-6 and IL-
13), transcription factors (T-bet, GATA-3 and TIM-1) and 
chemokines (CXCL4 and CXCL10) were investigated 
(47). Results showed that histone H3 acetylation and 
methylation were significantly enhanced in PBMCs 
from HSP patients. In particular, there were marked 
increases in histone H3 acetylation and H3 lysine 4 
trimethylation at the IL-4 locus in these patients. In 
addition, the expression levels of IL-4, IL-6, IL-13, 
GATA-3, TIM-1 and CXCL4 were increased, indicating 
that abnormal histone modifications may have led to 
the Th1/Th2 cytokine imbalance in HSP, and hence 
that Th2 cells may contribute to the pathogenesis of 
HSP. The same conclusion can be drawn from another 
study which showed that toll-like receptor 2 (TLR2) 
and TLR4 overactivation induced HSP-related renal 
impairment, and further indicated that activated TLR2 
and TLR4 may mediate the pathogenesis of HSP 
by upregulating a Th2-type immune response (45). 
Finally, a study of 42 children with acute HSP and 
30 healthy children showed that the plasma levels of 
IL-4, IFN-γ and IL-17 were significantly higher in the 
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HSP group compared to the controls. And the TLR6 
protein expression levels in the monocytes of the HSP 
group significantly positively correlated with the serum 
IL-4 and IL-17 levels, but not with the serum levels of 
IFN-γ. Thus, the activation of TLR6 may be involved 
in the immunopathogenesis of HSP by upregulating 
the immune responses of Th2 and Th17 cells (48). 
However, further studies will be required to confirm 
Th2 cell involvement in the pathology of HSP. 

4.3. Th17 cells

Th17 cells are a subset of Th cells, and are 
developmentally distinct from Th1 and Th2 lineages in 
that they produce IL-17. They are related to Treg cells 
because the signals that cause Th17 to differentiate 
inhibit Treg differentiation (49). Transforming growth 
factor beta (TGF-β), IL-6, IL-21 and IL-23 contribute 
to Th17 formation in mice and humans. Key factors 
involved in the differentiation of Th17 cells are STAT3 
and retinoic acid receptor-related orphan receptor 
gamma (RORγ) and alpha (RORα) (50). Th17 cells 
can alter their differentiation program, ultimately 
giving rise to either protective or pro-inflammatory 
pathogenic cells.

IL-17 and Th17 cells are known to be 
involved in many autoimmune diseases, and studies 
have shown that IL-17 and Th17 cells may be involved 
in the pathogenesis of childhood HSP. For example, 
it has been shown that children with acute HSP have 
significantly higher serum levels of IL-17, IL-6 and 
TGF-β than healthy controls (44, 51). These patients 
also had more Th17 cells but not Th1 cells in peripheral 
blood, indicating that Th17 cells and serum IL-17 may 
each contribute in part to HSP and that upregulation of 
Th17 cells may perpetuate the inflammatory response 
in HSP. Immunohistochemical analysis of renal biopsy 
specimens from children with HSP demonstrated 
significantly higher IL-17 expression (42). Another 
study of 42 children with acute HSP and 30 healthy 
children also showed that plasma levels of IL-17 were 
significantly higher in patients than in healthy controls 
(48). Thus, the activation of TLR6 may be involved 
in the immunopathogenesis of HSP by upregulating 
the immune responses of Th2 and Th17 cells. Taken 
together, these studies suggest a role for Th17 cells 
in HSP.

4.4. Treg cells

Tregs are a subpopulation of T cells that 
modulate the immune system, maintain tolerance to 
self-antigens and prevent autoimmune disease. Tregs 
come in many forms, with the well-understood being 
those that express CD4, CD25 and forkhead box P3 
(FOXP3). Tregs are immunosuppressive and generally 
suppress or downregulate induction and proliferation 
of effector T cells (52). The cytokine TGF-β has 

been found to be essential for Treg differentiation 
from naive CD4+ T cells and for the maintenance of 
Treg homeostasis (53, 54). The immunosuppressive 
cytokines TGF-β and IL-10 have also been implicated 
in Treg function.

Treg cells have been implicated in a wide 
range of autoimmune disorders, such as rheumatoid 
arthritis, autoimmune liver disease, systemic lupus 
and immune-mediated diabetes (53, 55, 56). A study 
of 63 children with HSP showed that both FoxP3 and 
TGF-β1 mRNA expression was significantly lower than 
in healthy controls, indicating lowered Treg activity 
(57). Another study reported a lower frequency of Treg 
cells and reduced IL-10 concentration in HSP patients 
compared to healthy controls (51). However, further 
studies will be required to fully elucidate the role of 
Treg cells in HSP.

4.5. Tfh cells

Tfh cells are found in the periphery of B 
cell follicles and are identified by their constitutive 
expression of the B cell follicle-homing receptor, 
CXC chemokine receptor 5 (CXCR5) (58). They are 
critical for the activation of B cells, antibody class 
switching and GC formation (59). The inducible T-cell 
co-stimulator ICOS or CD278 was shown to provide a 
particularly critical signal for Tfh cells (60). It has been 
reported that ICOS induces the secretion of IL-21 by 
activated CD4+ T cells and that IL-21 plays a crucial 
role in the development of Tfh cells and GCs (61–63). 
B-cell lymphoma-6 (Bcl-6) and programmed death 
1 (PD-1) have also been identified as transcription 
factors in Tfh cells. Thus, Tfh cells are characterized 
by the expression of CXCR5, ICOS, PD-1, Bcl-6 and 
IL-21 (59). However, different studies define blood 
Tfh cells in different ways. Although some studies 
have defined circulating human Tfh cells as the total 
population of CXCR5+ CD4+ T cells, other studies have 
investigated subsets of these cells, such as CXCR5+ 

ICOS+, CXCR5+ ICOShi, CXCR5+ PD1+, CXCR5+ 

PD1hi, CXCR5+ ICOS+ PD1+, CXCR5+ CD57+ and 
CXCR5+ IL-21+ cells (64–73).

Tfh cells play crucial roles in regulating 
immune responses. Studies have shown that the 
frequency of circulating CXCR5+ CD4+ Tfh cells co-
expressing ICOS was significantly higher in children 
with acute HSP than in healthy controls, whereas 
the frequency of CXCR5+ CD4+ Tfh cells expressing 
PD-1 was not increased in these patients (74, 75). 
Moreover, serum levels of IL-21, IL-6, IgA and C3 
were also significantly higher in HSP children than in 
healthy controls. A positive correlation was observed 
between the frequency of circulating ICOS+ CXCR5+ 

CD4+ Tfh cells and the serum levels of IL-21 or IgA 
(74). Additionally, mRNA expression levels of IL-
21, IL-6 and Bcl-6 were also significantly increased 
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in peripheral blood from children with acute HSP 
compared to healthy controls (74). Following treatment, 
the numbers of CD4+ CXCR5+, CD4+ CXCR5+ PD-1+ 
and CD4+ CXCR5+ ICOS+ Tfh cells, as well as serum 
levels of IL-21 were significantly reduced (75). Taken 
together, these findings suggest that Tfh cells and their 
associated molecules may play critical roles in the 
pathogenesis of HSP, and thus can be considered as 
possible therapeutic targets.

Taken together, increasing numbers of Th1, 
Th2 and Tfh cells, together with decreasing Treg cell 
numbers may contribute in part to the pathogenesis of 
HSP. Further research into the differentiation of Th cells 
can be expected to provide more information regarding 
the pathogenesis of HSP and to identify novel targets 
for disease control and prevention.

5. KEY FACTORS AFFECTING CD4+ T CELL 
DIFFERENTIATION AS THERAPEUTIC 
TARGETS

The various functions of mature CD4+ T cells 
are achieved through the differentiation of naive CD4+ 

T cells following stimulation by their cognate antigens 
presented by competent antigen-presenting cells. This 
results in the formation of subsets of effector and/
or memory cells with specialized phenotypes. Our 
knowledge of Th cells has expanded greatly. T cell 
heterogeneity and plasticity open new opportunities 
for targeting or redirecting specific subsets of cells 
in autoimmune and allergic diseases. These targets 
may become clinically feasible when we more fully 
understand the regulation of Th cell subsets and their 
relationship to one another.

Cytokines play critical roles in determining 
Th cell differentiation. The distinctive differentiated 
states of the various CD4 effector/regulatory 
subpopulations are determined largely by the set of 
transcription factors they express and the genes they 
transcribe. The induction of distinctive patterns of 
gene expression may be achieved in several ways, 
but in vitro, the major determinants of the differentiated 
state of the cell are the set of cytokines present during 
the TCR-mediated activation process. A combination 
of cytokines is required for the differentiation of each 
lineage: IL-12 and IFN-γ for Th1; IL-4 and IL-2/IL-7/
thymic stromal lymphopoietin for Th2; TGF-β and 
IL-6/IL-21/IL-23 for Th17; TGF-β and IL-2 for Treg; 
and IL-6 and IL-21 for Tfh cells (Figure 1). One of the 
effector cytokines produced by each subset of Th cells 
further promotes the differentiation process, providing 
a powerful positive amplification loop. The IL-1 family 
of cytokines may also participate in inducing TCR-
independent effector-cytokine production by Th cells, 
including IL-18 for Th1, IL-33 for Th2 and IL-1 for 
Th17 cells.

Master transcription factors and STAT proteins 
are indispensable for Th cell fate determination and 
cytokine production. GATA3, the Th2 master regulator, 
was the first master regulator to be identified (76, 77). 
GATA3 expression is upregulated or downregulated 
during Th2 or Th1 differentiation, respectively (77–79). 
Deleting Gata3 from fully differentiated Th2 cells by 
the introduction of retrovirally-encoded Cre has only 
a modest effect on IL-4 production but completely 
blocks the production of IL-5 and IL-13, consistent with 
GATA3 binding directly to the IL-5 (80) and IL-13 (81, 
82) promoters, but only binding IL-4 enhancers (83). 
T-bet is a major factor for inducing IFN-γ production 
and Th1 cell differentiation (84). T-bet induces IFN-γ 
partly through remodeling the Ifng gene and by 
upregulating IL-12Rβ2 expression, thus promoting both 
IFN-γ expression and selective Th1 cell expansion in 
response to IL-12 (85, 86). The differential requirement 
for T-bet in IFN-γ production by CD4 and CD8 T cells 
may be explained by the heightened expression of 
another T-box family member, Eomesodemin (Eomes), 
in CD8 T cells (87). IL-21 inhibition of Th1 cell IFN-γ 
production may be mediated by suppression of Eomes 
but not by suppression of T-bet (88), suggesting that 
Eomes is also upregulated during Th1 differentiation 
and is involved in optimal IFN-γ production by CD4 
T cells. Foxp3 has been reported to be the master 
transcriptional regulator for Tregs (89, 90). Continuous 
expression of Foxp3 in Tregs is required to maintain the 
suppressive activity of these cells (91). Limiting Foxp3 
expression appears to divert cells that would have 
differentiated into Tregs into becoming Th2-like cells, 
implying a close relationship between the Th2 and 
Treg lineages (92). Th17 cells do not express GATA3 
or T-bet. Instead, they express high levels of RORγ 
(50, 93, 94). RORγt is the master regulator of Th17 
cells, and RORγt-deficient mice are partially resistant 
to experimental autoimmune encephalomyelitis (95). 
Bcl-6 is a transcriptional repressor. It is frequently 
translocated and hypermutated in diffuse large B cell 
lymphoma and is critical for GC B cell differentiation 
and thus GC formation (96). Bcl-6 is also expressed 
in Tfh cells and is critical for Tfh cell differentiation. 
It is necessary and sufficient to induce Tfh-related 
molecules, including CXCR5, PD-1, IL-6R and IL-21R 
(97–99). Bcl-6 also suppresses the expression of Th1, 
Th2 and Th17 cytokines.

As mentioned above, the major signaling 
pathway triggered by cytokines is the activation of the 
STAT family of proteins. STATs play critical roles in the 
differentiation and expansion of Th cells. Activation 
of STAT1 by IFN-γ is important for the induction of 
T-bet during in vitro Th1 differentiation (100, 101). The 
existence of a positive feedback loop—in which IFN-γ, 
acting through T-bet, induces more IFN-γ—indicates 
that STAT1 serves as a critical mediator for the 
amplification of in vitro Th1 responses. STAT2 forms 
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a heterodimeric complex with STAT1 in response to 
type I IFNs. IL-6, IL-21 and IL-23 cytokines that are 
involved in Th17 cell differentiation, amplification 
and maintenance also induce TCR-independent, 
cyclosporine A-independent IL-17A production through 
the activation of STAT3 (102–105). STAT3 binds 
to IL17 (106) and IL21 (107) and is responsible for 
the induction of RORγt and IL-23R (103, 108, 109). 
STAT4 expression is higher in Th1 compared to Th2 
cells (117). Activated STAT4 can directly induce IFN-γ 
production and the expression of IL-12Rβ2 and T-bet 
during Th1 differentiation (54, 117). Low levels of 
STAT5 activation are sufficient for cell proliferation and 
survival; however, strong STAT5 signaling is required 
for Th2 differentiation (110, 111). STAT5 activation by 
IL-2 is also critical for Treg development (112–114). 
STAT5 may contribute to Foxp3 induction by binding to 
its promoter (114, 115). STAT5 activation also regulates 
the activity of the Bcl6 promoter in B cells (116). In view 
of the expression of Bcl-6 in Tfh cells, this regulation 
raises the possibility that such an effect may be 
important for Tfh cell differentiation. STAT6 is the major 
signal transducer in IL-4-mediated Th2 differentiation 
and expansion (117–119). In vitro, STAT6 activation 
is necessary and sufficient for inducing high levels of 
expression of the Th2 master regulator gene, GATA3 
(120, 121).

In summary, a collaboration exists between 
the master regulators and STAT family members in T 
cell differentiation and expansion: T-bet and STAT4 for 
Th1; GATA3 and STAT5 for Th2; RORγt and STAT3 for 
Th17; Foxp3 and STAT5 for Treg; and Bcl-6 and STAT5 
for Tfh (Figure 1). Other transcription factors are either 
secondary to master regulators and STAT proteins or 
are responsible for the induction of master regulators; 
these include Runx family members (Runx1, Runx2, 
and Runx3) (122–125), IFN regulatory factor family 
members (IRF4 and IRF1) (126, 127), Gfi-1 (128, 129), 
Ikaros family members (Ikaros, Helios, Aiolos, Eos, 
and Pegasus) (130), c-Maf (131), and others like Hlx 
(a transcription factor induced by T-bet) (85), Ets-1 (a 
cofactor for T-bet during Th1 differentiation) (132, 133) 
and Blimp-1 (an important transcription factor induced 
in Th2 cells) (134, 135). 

6. CONCLUSIONS 

Like most human illnesses, HSP is an 
etiologically-complex disease. Although the prognosis 
is generally good, the failure to find effective treatment 
strategies for HSP remains a key problem. The 
immune system is believed to play a role in targeting 
the blood vessels involved. In recent years, the role 
of T cells in the pathogenesis of HSP has become a 

Figure 1. Differentiation of Th cells and their role in B cell function. Upon TCR activation triggered by antigen-presenting cells, naive CD4 T cells 
differentiate into distinct Th lineages in the context of combinations of cytokines. The differentiation processes involve upregulation of master transcriptional 
regulators and activation of STAT proteins. With the help of different Th cells, B cell is activated and migrates into the germinal center and proliferates, 
followed by differentiation further to memory B cells or antibody secreting plasma cells. Plasma B cells then secret IgA which mediates HSP.
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focus of research, but information regarding Th cell 
involvement in HSP is still incomplete. Many signaling 
molecules and transcription factors shown to be critical 
for Th cell differentiation in mouse models are also 
defective in human diseases related to abnormal Th 
cell differentiation. Linking animal models with clinical 
studies should provide greater insight into the details 
of Th cell differentiation. As abnormalities in Th cell 
differentiation are present in HSP, it is important to 
elucidate pathologies in Th cell differentiation to fully 
understand this disease.
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