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ABSTRACT 

Chronic non-healing wounds represent a 
growing problem due to their high morbidity and cost. 
Despite recent advances in wound healing, several 
systemic and local factors can disrupt the weighed 
physiologic healing process. This paper critically 
reviews and discusses the role of nanotechnology in 
promoting the wound healing process. Nanotechnology-
based materials have physicochemical, optical and 
biological properties unique from their bulk equivalent. 
These nanoparticles can be incorporated into scaffolds 
to create nanocomposite smart materials, which 
promote wound healing through their antimicrobial, 
as well as selective anti- and pro-inflammatory, and 
pro-angiogenic properties. Owed to their high surface 
area, nanoparticles have also been used for drug 
delivery as well as gene delivery vectors. In addition, 
nanoparticles affect wound healing by influencing 

collagen deposition and realignment and provide 
approaches for skin regeneration and wound healing.

1. INTRODUCTION

Wounds result from disruption of the normal 
anatomical epithelial lined tissue barriers and may be 
caused by trauma, tissue resection, or burns (6). Some 
wounds fail to heal in a timely fashion and become 
chronic as a result of co-existing conditions such as 
diabetes or peripheral vascular disease. Failure to heal 
might also result from post-operative wound infections 
which are estimated to affect up to 4% of patients 
who undergo surgery. Chronic non-healing wounds 
represent a growing health and economic burden 
and are associated with a high morbidity that adds 
significantly to the cost of medical care (7). The gold 
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standard for the treatment of non-healing skin wounds 
is the transplantation of autologous skin. This strategy, 
however, might not be suitable in certain cases due 
to the lack of a donor site. In such cases, engineered 
skin substitutes are an alternative to autologous skin 
transplantation. Clearly, there is a need to develop 
strategies to promote wound healing and prevent 
scarring (8).

The use of cell therapy with or without of 
growth factors in experimental models has prevailed 
some positive results, but these therapies have not 
moved to clinical setting due to complications in 
scalable fabrication and storage, high costs, regulatory 
issues, and lack of standardisation. Moreover, their 
effectiveness and safety have not been demonstrated 
fully. 

Nanotechnology is a rapidly expanding 
multidisciplinary scientific field, which combines the 
disciplines of material science and engineering. 
Nanoparticles (NPs), usually ranging in dimension 
from 1-100 nanometers (nm), have properties unique 
from their bulk equivalent. They possess unique 
physicochemical, optical and biological properties, 
which can be manipulated suitable for desired 
applications. Since ancient times, elements such 
as silver, gold, copper and titanium were used to 
treat a number of human conditions. More recently, 
researchers have developed insight in and awareness 
of nanoparticles and how these could be used for 
drug delivery, diagnostic and imaging, biosensor, 
and cosmetic purposes (9). Several nanomaterials 
for biological applications have been intensively 
investigated during the last several decades. These 
have included liposomes, dendrimers, quantum dots, 
fullerenes, carbon nanotubes, graphene, iron and 
titanium oxide, and gold and silver nanoparticles 

(Figure 1). Recently NP-based delivery of ions, such 
as calcium and oxygen has been used to promote 
angiogenesis (10). The application of nanomaterial-
based scaffold with controlled delivery of calcium ions 
or oxygen would promote differentiation of ADSC to 
endothelial cells and angiogenesis (10).

Nanoparticles can be incorporated into 
biomaterials and scaffolds to create nanocomposite 
smart materials (Figure 1), which can aid wound healing 
through their antimicrobial (1), selective anti- and pro-
inflammatory (2), and pro-angiogenic properties (3). 
They can be used as gene delivery vectors altering 
intracellular gene expression and protein synthesis 
related to the wound healing process (4). In addition, 
they can affect the wound healing process by 
influencing collagen deposition and realignment (5). 

Wound healing either occurs by primary 
intention, where the wound edges are approximated 
and sutured, or by secondary intention, where 
the wound is left open to heal by a combination of 
granulation tissue formation, contraction, and re-
epithelialisation. The wound healing process includes 
the subsequent and overlapping phases of haemostasis, 
inflammation, proliferation, and remodelling (Figure 
2) (11). Haemostasis involves vasoconstriction, the 
formation of a platelet plug, and platelet degranulation. 
Inflammation occurs in the first two to three days after 
injury and involves the release of pro-inflammatory 
factors by platelets, which enhance inflammatory cell 
proliferation and migration. The proliferation phase 
overlaps the inflammatory phase and lasts up to 4 
weeks. Here, inflammatory cells release chemo-
attractants to fibroblasts, which migrate into the wound 
to deposit ground substance, type III collagen, and 
elastin. Angiogenesis occurs simultaneously. Finally, 
remodelling can last up to a year or longer and involves 

Figure 1. Schematic depiction of nanoparticles.
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re-arrangement and organisation of collagen fibres, as 
well as replacement of type III by type I collagen. It is a 
fine equilibrium between the inflammatory, proliferative, 
and remodelling phases that results in satisfactory 
wound healing. 

Systemic and local factors that disrupt the 
weighed physiologic healing process can impede 
wound healing. Systemic factors are either congenital 
or acquired. Congenital factors include a range of 
genetic disorders associated with defective collagen 
synthesis, increased collagen degradation, defective 
elastin synthesis, prelamin an accumulation, and 
increased telomere decay. Acquired systemic 
factors include conditions such as diabetes mellitus, 
smoking, old age, vitamin deficiencies, and use of anti-
inflammatory drugs. Examples of local factors are an 
infection, radiation, trauma, and poor tissue blood and 
neural supply.

Contrarily, excessive scarring following 
injury can result from a disruption in the equilibrium 
between the different wound healing phases. Keloids 
and hypertrophic scars differ from the healthy skin by 
a rich vasculature, high mesenchymal cell density, 
and thickened epidermal cell layer (12). In addition, 
they contain an abnormally high density of fibroblasts 
and unidirectional collagen fibrils (12). A prolonged or 
excessive inflammatory phase is believed to cause the 
onset of excessive scarring. Keloid scars can cause pain, 
pruritis, contractions, and are generally unaesthetic. 
Current treatment options include massage therapy, 
pressure garments, silicone gel sheeting, intralesional 
corticosteroid/5-fluorouracil injection, laser therapy, 
cryotherapy, radiotherapy, and surgery. 

Both lack of appropriate healing and 
excessive scarring remain a common concern and 

an on-going challenge for clinicians. The incidence 
of refractory wounds is rising as a consequence 
of the ageing population, making the improvement 
of wound treatment a major healthcare issue (13). 
Current advances in wound healing aim to enhance 
regeneration and decrease scarring. 

Nanotechnology has the potential to 
revolutionise the treatment of wounds through 
therapeutically active wound dressings using 
nanoparticles for the delivery of drugs, growth factors 
and pro-angiogenesis compounds such as calcium 
ions. Table 1 summarises recent studies investigating 
in vivo application of NPs in wound healing.

2. NANOPARTICLES IN WOUND HEALING

2.1. Nanoparticles with antimicrobial properties

Challenges facing the management of 
refractory wounds are often associated with microbial 
contamination and infection. The eradication of these 
is crucial for timely wound healing (33). The rise of 
multi-drug resistant pathogens has led to increasing 
use of nanoparticle-based anti-microbial remedies. 

Currently, the metallic nanoparticles are 
thoroughly explored and extensively investigated as 
potential antimicrobials. The antimicrobial activity 
of the nanoparticles is known to be a function of the 
surface area in contact with the microorganisms.

2.1.1. Anti-microbial activity of silver nanoparti-
cles (AgNP) 

The most vastly investigated nanoparticle 
with antimicrobial properties is silver. Several studies 
have confirmed the efficacy of AgNP and biomaterial 

Figure 2. The four stages of wound healing; haemostasis, inflammation, proliferation, and remodelling.
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composites against bacterial contamination and 
infection (34-39). In terms of assessing the antibacterial 
efficacy of AgNPs of different sizes and surface 
conditions against Escherichia coli, Ag-resistant E. 
coli, Staphylococcus aureus, methicillin-resistant S. 

aureus (MRSA), and Salmonella sp, AgNP synthesized 
by base reduction with unmodified surfaces (sizes: 20, 
50 and 80 nm) are toxic to all bacterial strains. AgNPs 
synthesised by base reduction followed by phosphate 
buffer washes (sizes: 20, 50 and 80 nm) and carbon-

Table 1. Nanoparticles and wound healing preclinical studies.

Nanoparticle/
Nanoscaffold

Preclinical 
model

Wound Procedure Outcome

PLA nanosheets with 
AgSD

Mouse Partial-thickness 
burns

Antimicrobial properties and cell viability 
assays

AgSD significantly reduced MRSA 
contamination both in vivo and in 
vitro

Pectin/copper 
exchanged faujasite

Rat and NIH3T3 
fibroblast cell 
line

Burns Assessment of membrane morphology, 
thermal stability, swelling and degradation

Cell viability of 89% was achieved, + 
improvement in wound healing & re-
epithelialisation

NAC-SNO-NPs Mouse Burns Histological examination of burn wounds 
for collagen deposition 

Acceleration of the transition from 
inflammatory to proliferative wound 
healing 

Quantum dots Mouse Laceration In vivo optical system for assessment of 
wound healing.

Effective system for visualisation of 
wound healing. 

Gold NPs
 (Au NPs) 

Rat Burns Wound healing with Au NPs with 
microcurrent 

Improved tissue repair due to 
enhanced mitochondrial function 

Gelatin NPs Rat Full thickness 
laceration

Collagen and hyaluronic acid nanofibrous 
skin equivalent, with controllable release 
of angiogenetic factors

Acceleration of wound closure rate 
and elevated collagen deposition

AgNPs Rat Excision wound Microwave irradiation of Naringi crenulata 
leaf extracts to synthesise bioactive 
AgNPs 

Very effective wound repair and 
potential for tropical wounds

AgNPs coated with 
BC nanofibers 

Rat Partial thickness 
wound 

Investigation of AgNP-BC for antibacterial 
properties and cytocompatibility 

Reduction in inflammation and 
promotion of scald wound healing

Hypericin 
nanoparticles 
(HYNPs) 

Rat Infected excision 
wound

Antibacterial activity of hypericin Improved epithelialisation, 
keratinisation, collagen deposition

Gelatin nanofibres Rat Excision wound Development of gelatin nanofibrous mat 
loaded with epigallocatechin gallate /
polyvinyl alcohol hydrogel 

Significant increased in 
angiogenesis, re-epithilialisation and 
collagen synthesis

Pirfenidone NPs Rat Alkali burn in 
cornea

Assessment of corneal re-epithelialisation, 
haze and collagen deposition 

Reduced collagen synthesis, 
prevented scarring/fibrosis, 
+improved corneal healing

Copper and zinc NPs Rat Soft tissue full 
layer excision 
wound

Wounds were either aseptic or infected Regeneration attributed to 
antibacterial properties 

Fibrin NPs coated with 
chitosan

Rat Excision wound Swelling, biodegradation, porosity, platelet 
activation and blood clotting

Faster wound healing and re-
epithelialisation

AgNPs in alginate 
fibres

Mouse Excision wound 
(2cm) 

Investigation of AgNPs alone and AgNPs 
in alginate fibres with regards to wound 
healing

AgNPs in alginate fibres promoted 
fibroblast migration to the wound and 
increased epidermal 

Elastin-like peptides & 
KGF (self-assembly) 

Mouse Excision wound Assessment of efficacy of NPs in wounds 
of diabetic mice

These NPs offer a beneficial effect on 
chronic wounds 

Fullerenes (carbon 
nanospheres) 

Mouse & human 
skin, ex vivo

Skin irritation Anti-inflammatory and anti-oxidant 
properties of fullerenes

Cell migration mediated human 
wound closure. Accelerated wound 
healing 

AgNPs as a dressing Dog Severe burns 
(50% of TBSA) 

AgNPs along with VAC dressing were 
assessed in wound healing 

VAC and AgNPs successfully treated 
the dog

Mesoporous Silica 
NPs (MSN) 

Rat Achilles tendon 
injury

The effect of PDGF administration via 
MSN

Significant faster healing with PDGF 
incorporation

Lecithin NPs Rat Burns Dihydroquecetin immobilised with lecithin 
NPs for healing of burns

Limitation of secondary necrotic 
zones in wounds and improvement of 
skin regeneration

Abbreviations: AgSD, silver sulfadiazine; PLA, poly (lactic acid) ; NPs, nanoparticles; NAC-SNO-NPs, N-acetylcysteine S-nitrosothiol nanoparticles; 
KGF, keratinocyte growth factor; VAC, vacuum assisted closure; TBSA, total body surface area; HA, hyaluronic acid.; BC, bacterial cellulose.
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coated AgNPs (sizes: 25 and 35 nm) are toxic to all 
bacterial strains except Ag-resistant E. coli (40). 
Stable silver nanoparticles (AgNPs) generated via the 
active involvement of Bryonia laciniosa have shown 
antibacterial activity against both Gram negative 
and positive bacteria with no cytotoxicity observed in 
vitro (41). In addition, they lead to effective cytokine 
modulation. Preclinical wound healing showed AgNPs 
induced improved wound contracting ability in rats (41). 
Furthermore, AgNPs and carboxymethylcellulose gel 
formulation prepared by the reduction of silver nitrate 
in situ examined in simulated wound experiments 
showed that the gel was effective against the growth 
of both Gram-negative and positive strains including 
methicillin-resistant Staphylococcus aureus (MRSA) 
(42). Proliferation studies of human skin cells confirmed 
cytocompatibility of the composite (42). 

In addition to anti-bacterial properties, AgNPs 
have also been shown to be effective against viral and 
fungal pathogens, including hepatitis B and HIV viruses 
(43-47). It is generally believed that various forms 
of Ag inactivate viruses by denaturing enzymes via 
reactions with carboxyl, amino, sulfhydryl, phosphate, 
and imidazole groups (48-52).

2.1.2. AgNPs combined with matrices as topical 
wound dressings

Silver-based dressings are currently in clinical 
use and have been evaluated thoroughly, including 
Ag-alginates, Ag-collagen preparations, Ag-hydrogels, 
Ag-hydrocolloids, Ag-fabrics, Ag-foams, and Ag 
creams and powders. However, the type of silver in 
many of these dressings is not specified. Several use 
ionic Ag whereas Acticoat uses nanocrystalline Ag. A 
retrospective analysis of burn wounds managed with 
Acticoat in humans showed a significant reduction in 
wound healing times for deep partial thickness burns 
compared to conventional paraffin gauze dressings 
(53). Generally, AgNP based dressings have shown 
superior results to more traditional Ag dressings 
such as Ag sulfadiazine cream (36, 54). Due to their 
beneficial antimicrobial activity and cytocompatibility, 
AgNPs often combined with hydrogels as silver 
nanocomposites have been widely investigated as 
antimicrobial wound dressings. 

The use of nanocrystalline silver dressing 
(Acticoat) for the management of microbial 
contamination in cultured skin substitutes grafted to 
full-thickness wounds in athymic mice suggested that 
Acticoat may be suitable as a protective dressing to 
reduce contamination of cultured skin substitutes 
(55). AgNP polyvinyl alcohol (PVA) nanocomposite 
fibres for wound healing purposes showed significant 
inhibition of Gram-positive and negative bacteria 
(56). Preclinical studies combining AgNPs with a 
wide range of electrospun biomaterials as wound 

dressing materials have confirmed the antimicrobial 
properties of these constructs, as well as their positive 
effects on expediting the wound healing process. 
Electrospun poly (dopamine methacrylamide-co-
methyl methacrylate) nanofibres functionalised with 
AgNPs through catechol redox chemistry showed 
effective AgNPs size and amount control with the 
minimum degree of aggregation. These dressings 
showed desirable antimicrobial activity against Gram-
positive and negative bacteria. Following a rapid AgNP 
release in the first 24 hours, a sustained release was 
observed in the next 5 days. Preclinical study of the 
nanocomposite in full thickness skin wounds in rats 
showed expedited healing compared to controls (57). 
AgNP incorporated in the electrospun scaffold of a 
copolymer blend showed that a nanofibre membrane 
with good hydrophilicity and high porosity considerably 
facilitates in vivo wound healing especially at the early 
healing stage (58). Fibrous mats of electrospun poly 
(vinyl alcohol), chitosan oligosaccharides, and AgNP 
were also shown to accelerate in vivo wound healing 
over that of control gauze (37).

In addition to elecrospinning, scaffolds 
fabricated using other techniques combined with 
AgNPs have been evaluated preclinically. Silver and 
chitosan nanocomposite dressings, fabricated using 
a nanometre and self-assembly technology, tested 
on rats with deep partial thickness wounds showed 
significantly increased the rate of wound healing 
compared to Ag sulfadiazine with lower Ag levels in 
blood and tissues (59). Cellulose-chitosan-AgNP 
composite wound dressing showed faster wound 
healing in experimental wounds of rats compared to 
untreated control (60). Comparison between ionic and 
nanocrystalline silver and distilled water dressings 
showed increased wound contracture in rats treated 
with silver-based dressings (61). Similarly, guar 
gum alkylamine impregnated with AgNPs evaluated 
in rodents showed faster healing compared to a 
commercially available silver alginate cream (62). The 
nano biomaterial was observed to promote wound 
closure by inducing proliferation and migration of the 
keratinocytes at the wound site (62). Topical application 
of silver nanoparticles prepared from Naringi crenulata 
leaf extracts and evaluated preclinically in rats showed 
accelerated healing (20). AgNP-containing activated 
carbon fibres exhibited good biocompatibility in vitro 
and improved healing and collagen and granulation 
tissue deposition of infected wounds in vivo (38). AgNP 
incorporated into alginate fibres were shown to promote 
fibroblast migration, reduce inflammation, and improve 
wound healing both preclinical and in vitro (27). In 
vivo evaluation of AgNPs for wound healing showed 
these to exhibit antimicrobial properties in addition to 
the reduction in wound inflammation and modulation 
of fibrogenic cytokines (39). Biosynthesis of AgNPs 
using the Phytophthora infestans microorganisms 
showed stability and enhanced wound contraction 
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ability in an in vivo excision wound model compared 
to Ag sulfadiazine (54). Synthesis of AgNPs using two 
glycosaminoglycans (chondroitin sulfate and acharan 
sulfate) as reducing agents supported the stability of 
these composites without any noticeable aggregation. 
A murine model of wound healing demonstrated that 
topical application of these nanocomposites stimulated 
wound closure and accelerated the deposition of 
granulation tissue and collagen at much lower Ag 
concentrations than commercial Ag sulfadiazine 
(36). Incorporation of silver-clay nanohybrid in 
poly (sulfobetaine) resulted in high, sustained, and 
diffusion-controlled antimicrobial activity of the silver-
eluting polymer with antifouling properties resisting 
protein adsorption (63).

A matter that should be considered in the 
field of antimicrobial nanocomposite dressings is 
the selectivity towards microbes versus cytotoxicity 
to host cells and tissue. Silver preparations (55, 
64), antimicrobial peptides (65), and antimicrobial 
photodynamic therapy (66) have been investigated for 
possible cytotoxicity towards human cells. AgNPs like 
other biocides are non-specific in action and cytotoxic 
to both microbial and human cells. They have been 
shown to be cytotoxic at high concentrations in 
vitro. The mechanisms underlying this cytotoxicity 
are believed to be agglomeration in cell nuclei and 
cytoplasm with induced intracellular oxidative stress 
(67), induced apoptosis via a mitochondrial pathway 
through ROS and JNK (68, 69), and DNA-repair gene-
up regulation suggesting associated DNA damage 
(70, 71). Hence, dose regulation by entrapment in a 
matrix that utilises special drug carrier systems, as well 
as slow-release drug delivery systems may be useful 
in preventing their agglomeration. An in vitro study 
combining Ag sulfadiazine loaded lipid nanoparticles 
with chitosan found no cytotoxicity toward dermal 
fibroblasts and keratinocytes, suggesting that lipid 
encapsulation of Ag sulfadiazine prevents cytotoxicity 
(72). Similarly, polymeric micelles obtained by self-
assembling of chitosan developed as carriers for 
Ag sulfadiazine showed a marked increase of Ag 
sulfadiazine concentration in micelle dispersion and 
reduced cytotoxicity (73). Nevertheless, it should 
not be neglected that several in vitro studies have 
attempted to approximate lethal and sublethal doses 
of silver solutions for keratinocytes, and values 
ranging from 7x10-4% to 55x10-4% in solution have 
been reported as toxic (74). A widely accepted 
mechanism of toxicity includes the release of Ag+ 
which readily interact with functional groups in 
proteins and can lead to enzymatic dysfunction and 
membrane damage, which manifest as nascent 
toxicity, symptomatically (75). Therefore, ensuring the 
dose is safe is equally important with administering 
a therapeutic dose, and the demonstrated cytotoxic 
potential of silver nanoparticles at higher doses 
should not be neglected. 

Additionally, several preclinical studies have 
evaluated the toxicity of AgNPs. Toxicity studies of 
Acticoat in athymic mice with full-thickness wounds 
showed Acticoat to be toxic within 1 day, but in vivo 
exposure for a week did not injure the skin substitute or 
inhibit wound healing (55). A study looking at the safety 
of silver dressings including nanocrystalline silver in the 
treatment of MRSA-infected full thickness wounds in 
Sprague-Dawley and streptozotocin-induced diabetic 
rats showed that silver dressings induced slight liver 
damage in the diabetic rats (76). Although changes in 
serum chemistry caused by silver were observed, this 
did not indicate silver deposition in the organs and the 
hazards of silver-containing dressings were thought to 
be insignificant (76).

2.1.3. Recent Nanoparticles with antimicrobial 
properties

In addition to AgNPs, several other 
nanoparticles have been demonstrated to possess 
antimicrobial properties. Copper (Cu), graphene 
oxide, graphene, titanium oxide (TiO2), fibrin, 
polycationic NPs, and zinc oxide (ZnO) are amongst 
these nanoparticles (1, 77-83) often combined with 
biocompatible scaffolds as wound dressings (Figure 
3). Photothermal treatment with the aid of NPs has also 
been described in the literature (22, 84), highlighting 
the efficacy of these constructs as antibiotic-free 
antimicrobial remedies promoting wound healing.

Graphene-based nanoparticles, in particular, 
have shown to promote wound healing through 
their antimicrobial properties (84-86). In addition to 
these properties, they can be combined with other 
materials to form nanocomposites, used for stem cell 
and/or growth factor delivery (87, 88), to enhance 
the bioactivity of materials (89-91), and to promote 
angiogenesis (92, 93). The intracellular formation 
of reactive oxygen and nitrogen species as well 
as activation of phospho-eNOS and phospho-Akt 
are believed to be the underlying mechanisms for 
graphene induced angiogenesis and antimicrobial 
properties (93). The results of these studies confirm 
the important role graphene NPs can play in wound 
healing. 

2.2. Nanoparticles and angiogenesis

Angiogenesis, the formation of new blood 
vessels, plays a vital role in several physiological and 
pathological processes in the body. Angiogenesis 
is imperative for wound repair because new vessels 
provide nutrients and oxygen to support the actively 
proliferating cells.

Although several studies have suggested 
that gold nanoparticles (AuNPs) have anti-angiogenic 
properties (94-96), more recently, AuNPs have been 
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synthesised following a green chemistry approach, 
demonstrating their high stability and biocompatibility, 
as well as their excellent pro-angiogenic activity, 
through a series of in vitro and in vivo assays. 
Formation of reactive oxygen species and activation 
of p-Akt were believed to be the probable mechanism 
of angiogenesis (3). Similarly, the combination of 
AuNP, epigallocatechin gallate, and α-lipoic acid 
significantly accelerated diabetic cutaneous wound 
healing through angiogenesis regulation and anti-
inflammatory effects (97). The combination led to an 
initial increase in vascular endothelial growth factor 
(VEGF) and angiopoietin-2 but not angiopoietin-1 
expression (97). 

It is highly likely that AuNPs modulate 
angiogenesis in healing wounds. Further preclinical 
studies are needed to draw conclusions about their 
angiogenic effects. Beside inherent angiogenic 
properties of NPs, these materials can also be used 
as drug delivery vectors for various factors, including 
some stimulating angiogenesis (98). 

2.3. Nanoparticles and drug delivery

Nanoparticles have become potent 
drug delivery systems that have attracted much 
attention and interest as efficient carriers for various 
active compounds. The specific characteristics 
of nanoparticles make their use as drug delivery 
systems an interesting and suitable strategy. It is 
well established that growth factors (GFs) and other 
bioactive compounds play an important role in wound 
healing, inducing cell proliferation and migration, 
angiogenesis, and collagen deposition (99). There is 

a substantial potential for combining these factors and 
appropriate cells to treat wounds. 

The majority of NP-based drug delivery 
systems aim to deliver growth factors to the wound 
site. Several studies have designed and described the 
effects of NP vectors that deliver VEGF, recombinant 
human epidermal growth factor (rhEGF), platelet-
derived growth factor (PDGF), basic fibroblast growth 
factor (bFGF), granulocyte colony stimulating factor 
(GCSF), keratinocyte growth factor (KGF), and platelet-
rich plasma (PRP), which contains an array of GFs. 

Constructs incorporating VEGF, EGF, bFGF, 
and PDGF either directly embedded in collagen-
hyaluronic acid (HA) nanofibrous matrices or 
encapsulated in gelatin NPs have also been made. 
Collagen-HA-gelatin NP constructs had similar 
mechanical properties to the human skin. In addition, 
the design of a particle-in-fibre structure allowed a slow 
controlled release of the GFs for up to 1 month. In vitro, 
these constructs stimulated the growth and maturation 
of endothelial cells. Application of these composite 
GF delivery systems on wounds of diabetic rats was 
associated with accelerated closure rate, together with 
elevated collagen deposition and enhanced maturation 
of vessels (19). Similarly, poly (ether) urethane-
polydimethylsiloxane/fibrin scaffolds containing poly 
(lactic-co-glycolic acid) (PLGA) NPs loaded with VEGF 
and bFGF accelerated wound closure in genetically 
diabetic mice compared to scaffolds without growth 
factors or containing unloaded PLGA NPs. However, 
the closure rate was similar to that observed in mice 
treated with scaffolds containing free VEGF and bFGF. 
Both scaffolds containing growth factors induced 

Figure 3. Nanomaterials incorporated into scaffolds for use in biomedical applications.
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complete re-epithelialization, with enhanced granulation 
tissue formation and maturity and collagen deposition 
compared to the other groups (100). Others designed a 
dual GF delivery system based on electrospun chitosan 
and poly (ethylene oxide) matrices loaded with VEGF 
and embedded with PDGF encapsulated poly (lactic-
coglycolic acid) (PLGA) NPs. In vitro studies revealed 
that the nanofibrous composites delivered VEGF 
quickly and PDGF in a delayed manner. They supported 
fibroblast growth, exhibited anti-bacterial activities, and 
preclinical significantly accelerated wound healing by 
promoting angiogenesis, increasing re-epithelialization 
and controlling granulation tissue formation. For later 
stages of healing, evidence also supported quicker 
collagen deposition and earlier remodelling (101). 
Mohandas et al. developed VEGF-loaded fibrin NPs, 
incorporated into chitosan-HA sponges as dressings 
for diabetic wounds. The nanocomposites combined 
with human umbilical vein endothelial cells induced 
capillary-like tube formation in vitro, which was absent 
in control sponges, suggesting that the VEGF-fibrin 
NP-chitosan-HA constructs have the potential to induce 
angiogenesis (102).

PLGA-rhEGF NPs showed a controlled 
release of rhEGF encapsulated in the NPs and 
enhanced rhEGF effects on cell proliferation whilst 
shortening preclinical wound healing time in diabetic 
rats when compared to controls (free EGF, NPs, and 
phosphate-buffered saline (PBS). The PLGA-EGF NPs 
were uniform and dispersible and EGF release lasted 
for 24 hours (103). A similar topical delivery system 
composed of lipid NPs and rhEGF showed excellent 
bioactivity in vitro even higher than that of free rhEGF. 
In vivo examination in both diabetic mice and a porcine 
model showed improved healing evidenced by the 
number of arranged microvasculature, fibroblast 
migration and proliferation, collagen deposition and 
evolution of the inflammatory response, whilst rhEGF 
plasma levels were almost undetectable (104-106). 

KGF, combined with elastin-like peptides 
fabricated using self-assembly to form a fusion 
protein and applied to wounds of diabetic mice, was 
associated with enhanced re-epithelialisation and 
granulation compared to controls (28). Another study 
utilised GCSF-loaded dextran NPs coated with PLGA 
and spray-painted on haemostatic gauze as a scaffold 
for application in post tumour resection wounds and 
demonstrated enhanced haemostasis and blood 
neutrophil counts in vivo (107). PRP contains many GFs 
and can also be used to enhance wound healing and 
GF delivery. PRP combined with heparin-PLGA NPs 
and fibrin gel was associated with a prolonged PDGF 
release compared to PRP and fibrin gel alone (108). 
Examination of the construct in a murine model resulted 
in much faster wound closure, as well as dermal and 
epidermal regeneration compared with PRP-fibrin gel 
and heparin-PLGA fibrin gel. Heparin-PLGA-fibrin gel 
PRP also accelerated angiogenesis (108).

In the same way, other bioactive molecules 
and compounds can be incorporated into NPs for 
sustained release at the wound site. These compounds 
may include antibiotics, analgesics, and peptides. A 
system based on HA and lipid NPs for the delivery of 
Astragaloside IV, the active compound of Astragali 
Radix (the root of Astragalus membranaceous plant) 
was used to accelerate wound healing and reduce 
scars (109). This construct enhanced the migration and 
proliferation of keratinocytes and increased drug uptake 
on fibroblasts in vitro (p < 0.01). It strengthened wound 
healing and inhibited scar formation in vivo by increasing 
wound closure rate (p < 0.05) and contributing to 
angiogenesis and collagen remodelling (110). 

Delivery of topically applied opioids using 
NP can lead to efficient pain reduction. Opioids 
encapsulated in lipid and dendritic NPs yielded 
enhanced load delivery compared to unloaded NPs 
and free morphine (111). Interestingly, transforming 
growth factor beta1 (TGF-β1) was taken up by 
dendritic NPs. Opioid-lipid NPs enhanced keratinocyte 
migration, whereas opioid-dendritic NPs did not inhibit 
this. Another morphine-lipid NP delivery system tested 
in a human-based 3D-wound healing model showed 
accelerated re-epithelialisation and wound healing, 
suggesting that in addition to analgesic effects, opioids 
may improve wound healing (112).

LL37, an endogenous human host defence 
peptide that modulates wound healing and angiogenesis 
and has anti-microbial properties, encapsulated in 
PLGA NPs displayed antimicrobial activity against 
Escherichia coli (113). In vivo examination of the 
nanocomposite showed that treatment with PLGA-LL37 
NPs significantly accelerated wound healing compared 
to PLGA or LL37 alone. PLGA-LL37 NP-treated 
wounds were characterised by advanced granulation 
tissue formation with higher collagen deposition, re-
epithelialisation and neovascularisation (113). PLGA-
LL37 NP improved angiogenesis, significantly up-
regulated IL-6 and VEGF expression and modulated 
the inflammatory wound response (113).

Nanocarriers comprised of clarithromycin 
encapsulated in chitosan NPs are biocompatible in 
vitro, as well as able to increase the concentration of 
clarithromycin compared to a saturated water solution 
(114). 

In conclusion, NPs can be effectively used for 
the targeted and sustainable delivery of several drugs, 
GFs, and other bioactive compounds, which can play 
an important role in the wound healing process. 

2.4. Nanoparticles and immunomodulation

Cell populations and the complex signalling 
pathways that regulate the stages of wound healing 
depend on an intact and functional immune system. 
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Macrophages are pivotal cells in orchestrating 
the healing of wounds (115, 116). They debride 
unhealthy tissue and phagocytose invading bacteria. 
Macrophages are further activated within the wound 
to secrete a variety of cytokines that recruit other cells 
and enhance their proliferation, thereby promoting 
regeneration. Injection of activated macrophages into 
wounds of patients was reported to promote wound 
healing (117). Essential to wound healing, depletion 
of wound T lymphocytes decreases wound strength 
and collagen content, while selective depletion of the 
CD8+ suppressor subset of T lymphocytes enhances 
wound healing (118). Lymphocytes also exert a down-
regulating effect on fibroblast collagen synthesis via 
several secreted lymphokines (interferon gamma 
(IFN-γ), tumour necrosis factor alpha (TNF-α), and 
interleukin-1 (IL-1) and by cell-to-cell contact. Fine-
tuning of the immune system response can aid 
the process of wound healing. Nanoparticles that 
modulate the immune response and inflammation 
phase of wound healing have been vastly studied in 
the literature. 

AuNPs are among the NPs studied for their 
immunomodulatory properties. Silica–gold core–shell 
NPs (SiO2-Au) applied to wounds in vivo promoted 
wound healing, which was potentially related to the 
anti-inflammatory and anti-oxidation properties of 
AuNPs (119), although an exact mechanism was not 
detailed. In vitro evaluation did not show any cytotoxicity 
of the composites (119). A similar study examining 
the effect of AuNPs combined with epigallocatechin 
gallate, and α-lipoic acid on wound healing in diabetic 
mice showed that the nanocomposites significantly 
accelerated diabetic wound healing through 
angiogenesis regulation and anti-inflammatory effects 
(97). Immunoblotting showed a significant decrease of 
CD68 expression whilst VEGF significantly increased 
following treatment (97). 

In addition to AuNPs, AgNPs also play an 
anti-inflammatory role in wound healing. Treatment of 
porcine wounds with nanocrystalline Ag significantly 
increased induction of apoptosis in the inflammatory 
cells present in the dermis (120). Additionally, 
decreased levels of pro-inflammatory cytokines TNF-α 
and IL-8, and increased levels of anti-inflammatory 
cytokine IL-4, EGF, KGF, and KGF-2 were observed 
(120). A similar study investigating dendrimers, as 
well as AgNPs,  showed that both these NPs had anti-
inflammatory properties. When combined in the form 
of dendrimer-AgNP composites the anti-inflammatory 
properties were further augmented, resulting in faster 
wound healing in vivo (2). Others (121) describe that 
nanocrystalline Ag dressing decreases adversely 
high levels of matrix metalloproteinases (MMP) -9, a 
proteolytic enzyme involved in wound healing. High 
MMP-9 levels promote TNF-α, IL-8, and TGF-β, all 
associated with exaggerated ongoing inflammation. 

Low levels impede keratinocyte migration (121). When 
used in a situation of minimal inflammation, these 
dressings may undesirably decrease the low levels of 
MMP-9 and adversely affect epithelialization. 

Several other NPs have been investigated 
for their immunomodulatory effects. These include 
dendrimers (122), TiO2 NPs (80, 123), fullerenes (29), 
curcumin (124), tea tree oil NPs (125), and Cu NPs 
(83). As described previously, NPs can also be used 
as drug delivery tools loaded with immunomodulatory 
compounds such as α-gal (126) and indomethacin 
(127). 

2.5. Nanoparticles and collagen deposition 

AgNPs impregnated polyelectrolyte multilayer 
(PEM) have been shown to be non-cytotoxic yet 
bactericidal in vitro. A full-thickness, excisional murine 
wound healing model in both normal and spontaneously 
diabetic mice showed mildly increased collagen 
deposition in the silver dressing treated animals 
(128). Other studies have shed light to the excellent 
structural alignment of the collagen, as well as its 
increased deposition in improving tensile properties 
of tissues such as skin, after administration of silver 
nanoparticles post-wound healing (5). Silver is not the 
only nanoparticle able to induce collagen synthesis. 
Calcium-based nanoparticles also cause contracture of 
collagen lattices and stimulate fibroblast activity (129). 
This may show great potential and it will not be unlikely 
to see calcium nanoparticles used for wound healing 
in the future. Returning to the realm of the metals, with 
a more noble approach, one should not overwrite gold 
nanoparticles (AuNPs) from the scene. AuNPs have 
been used particularly for imaging of scars, as they 
are adept at accumulating at those sites, particularly 
large myocardial scars (130). In combination with 
other nanoparticles from this immense arsenal, these 
localisers of scars may prove very promising in the 
near future. Some managed to develop a platform of 
sustained release of nitric oxide, using nanoparticles, to 
achieve a reduction in inflammation, along with a marked 
increase in collagen deposition, accelerating wound 
healing (131). Other interesting designs have produced 
similar effects; carbon nanotube on polystyrene and 
polyaniline copolymer increased collagen gelation in 
a dose-dependent manner, whilst leaving D-periodicity 
and average fibril diameter of this immense protein, 
largely unchanged (132). An appreciation of the size 
of collagen molecules, along with the cross-linking 
required, results in more justice to the complexity of the 
process and the role of nanoparticles.

2.6. Gene delivery with nanoparticles for accelera-
tion of wound healing

Nanoparticles have also been used in studies 
of genes for acceleration of wound healing. Several 
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groups have tried different methods, with vascular 
endothelial growth factor (VEGF) transfection being 
the most common one. Viral vectors have been 
used to administer VEGF to diabetic patients and an 
effect in wound healing was observed as soon as 6 
days post-transfection (133). Viral vectors, despite 
the amount of attenuation or other measures which 
reduce the likelihood of generating an immune 
response, should always be treated with caution. As a 
result, most groups focused on non-viral transfections, 
using nanoparticles; Peng et al. introduced VEGF into 
bone mesenchymal stem cells, using β-cyclodextrin 
linked polyethyleneimine. The results were more than 
promising, as wound closure and increased collagen 
formation were observed 72hours post transfection 
(134). They also looked at the effects of VEGF in a 
gelatin scaffold in terms of skin re-epithelialisation 
and collagen synthesis, both of which were increased 
(135). Another way to facilitate wound closure apart 
from inducing angiogenesis is to minimise local motility 
in the cellular level. Fidgeting-like 2 is a severin enzyme 
involved in this process, and inhibition with target 
delivery of siRNA using nanoparticles accelerates 
healing (4, 136). Intradermal delivery of key genes such 
as the sonic hedgehog has been performed, as well. The 
mode was biodegradable cationic poly (β-amino ester) 
nanoparticles, which resulted in greater transfection 
compared to the commonly used Lipofectamine 2000 
(137). Other carriers, such as β-cyclodextrin and poly 
(amidoamine) dendron atoms have also been tested 
and proven successful in promoting wound healing 
in streptozocin-induced diabetic mice (138). Finally, 
hypoxia inducible factor (HIF-1α) has been entrapped 
in fibrin to improve the healing process in full thickness 
wounds, by being a potential inducer of VEGF (139). 
Although the evidence in this field is recent and limited, 
some fundamental questions regarding the safety and 
efficacy of this technique shall be elucidated in the 
years to come.

2.7. The role of nitric oxide nanoparticles in 
wound healing

The presence of Nitric Oxide (NO) plays a 
significant role in the wound healing process through 
modulation of angiogenesis, collagen deposition, and 
keratinocyte proliferation (131, 138-140). NO, and its 
reactive nitrogen species derivatives are effective in 
killing pathogens (141, 142) and potentially form a 
useful preventive and therapeutic strategy against skin 
infections (140). 

NO synthetase (NOS) knockout mice have 
shown impairments in the wound healing processes 
that were only ameliorated after the addition of 
excess L-arginine substrate or re-introduction of the 
NOS gene through transfection (143). NO-releasing 
hydrogels and nanocomposites have shown significant 
antimicrobial activity with an acceleration of infected 

wound healing both ex and in vivo (144, 145). NO 
release decreases suppurative inflammation (131) 
and collagen degradation, minimises the bacterial 
burden (145), and inhibits fibroblasts to a lesser 
extent than clinically administered concentrations 
of antiseptics like povidone iodine (144). NO 
nanoparticles significantly accelerate wound healing 
(146) through modification of leukocyte migration and 
increasing tumour growth factor-β production with a 
subsequent promotion of angiogenesis (122, 139), 
leading to increased fibroblast migration and collagen 
deposition (131, 146). In infected wounds, stained 
NO nanoparticle-treated tissue depicts decreased 
neutrophil infiltrate and bacterial load, as well as rapid 
healing (145, 147-148). 

Consequently, the fact that NO nanoparticles 
greatly expedite wound healing is not surprising. 
Together, these data suggest that NO nanoparticles 
have the potential to serve as a novel category of 
applied antimicrobials for the treatment of infected 
wounds and may also function as a novel wound 
healing strategy in the setting of immunocompromised 
states associated with defective wound healing. 

2.8. Stem cell delivery with the aid of nanoparticles

This field is certainly one occupying high 
ambitions and hopes in the horizon. The domain is 
two-sided, as seen from the studies discussed below 
since nanoparticles can be used to guide stem cells, 
but so can the latter be utilised as a medium to deliver 
nanoparticle properties. Researchers have tried 
different combinations of various stem cell types with 
nanoparticles and managed to achieve localised drug 
delivery, inhibit neovascularisation where appropriate 
(e.g. diabetic retinopathy) and reconstruct trauma-
distorted surfaces (e.g. ocular reconstruction) (149). 
Another group injected human MSCs with quantum 
dot NPs and seeded them onto a fibrin suture. When 
applied to the myocardium of rats, fibrosis was greater 
in non-hMSC seeded sutures, and the quantum dots 
provided a satisfactory media for imaging in both 
cases (150). Apart from soft tissue, success with stem 
cells and nanoparticles has also been recorded in 
bone. Ferucarbotran labelled MSCs guided with an 
extracorporeal device were successfully guided to the 
site of a rat bone fracture (151). Furthermore, PLGA 
has been used to deliver a plasmid for expression of 
bone morphogenetic protein into rabbit adipocytes 
(152). The technique offered significant healing 
advantage to the treated rats over the control group, in 
terms of chondrogenesis. Others modified adipocyte 
stem cells to express VEGF in a murine hindlimb 
model of ischaemia. The transfection was through 
nanoparticles, making them here the “therapeutic 
substance” delivered to the tissue of interest (153). 
This is possible due to the well described migratory 
properties of stem cells. However, it is noteworthy 
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to consider the limitations in this field; although 
application of nanoparticles offers great potential, 
the closer interaction with stem cells requires further 
investigation. Some nanoparticles, indeed, interfere 
with gene expression amongst other intracellular 
process in stem cells and thus, further research is 
required in this field to optimise the delivery. For 
instance, Au- and Ag- based nanoparticles affect the 
growth of embryonic neuronal stem cells (154).  More 
specifically, whilst Au- based nanoparticles could 
be considered for delivering stem cells, they have 
been widely utilised to induce effects of interest in 
stem cells; an example being altered osteogenesis 
when culturing human mesenchymal stem cells 
with gold nanoparticles in vitro (155). In summary, 
different nanoparticles can have different effects 
on the proliferation and differentiation of stem cells 
and this has been exploited by scientists in previous 
experiments (156). However, it needs to be taken into 
consideration when attempting to deliver stem cells via 
nanoparticles and intend to avoid such interactions. 

Perhaps an even better way to demonstrate 
the two-way relationship between stem cells and 
nanoparticles is through two eminent studies in the 
field. More specifically, one group have controlled 
the migration of mesenchymal stem cells (MSCs) 
magnetically, via filling them with Si-, Au- and Fe-
nanoparticles. This technique allowed for very effective 
magnetic guiding to the site of atherosclerosis, and 
using photothermal therapy, the results were superior 
to conventional stenting (157). Finally, Peng et al. 
reveal the other side of the same spectrum, in a 
study of wound healing in the skin. By transfecting 

epidermal stem cells with β-cyclodextrin linked to 
polyethyleneimines, they managed demonstrated 
acceleration of hair follicle regeneration, skin re-
epithelialisation, dermal collagen synthesis and VEGF 
synthesis, therefore concluding how nanoparticles 
can be integrated into stem cells for use as a gene 
reservoir in wound healing applications (137). 

3. CLINICAL TRIALS OF NANOPARTICLES IN 
WOUND HEALING

A brief list of clinical trials in patients using 
AgNPs is summarised in Table 2, focusing on one 
major study for the different types of wounds. 

Whilst the amount as well as the variety of the 
studies conducted in randomised patients (i.e. RCTs) 
is still not significant compared to preclinical studies, 
the results so far are promising. In particular, silver 
nanoparticles are undoubtedly at the core of human 
research due to their therapeutic properties. However, 
their potential for cytotoxicity shall be taken into 
consideration when tailoring treatment to a particular 
patient. Studies to come will shed more light on other 
candidates used in preclinical trials. The latter may 
serve a major role alongside AgNPs in the years to 
come, enriching the armamentarium for wound healing.

4. CONCLUSION AND FUTURE PERSPECTIVES

The field of nanotechnology as applied to 
wound healing is moving at a rapid pace. With further 
advances, it is likely that breakthroughs in nano-inspired 
treatments will significantly improve wound healing 

Table 2. Clinical trials of nanoparticles in wound healing

Nanoparticle/
Nanoscaffold

Type of Wound Procedure Outcome Year/ref

AgNPs and AgSD Partial thickness burns RCT of AgNPs compared to AgSD 
in 54 pts 

AgNP was superior to topical 
AgSD for wound healing

2014 (158)

Aquacel Ag dressing Venous leg ulcers Multi-centre RCT comparing Aquacel 
Ag to Urgotul in 281 pts

Better wound healing progression 
with Aquacel Ag

2012 (159)

Ag nylon (Silverlon) Colorectal surgical 
wound

Prospective RCT comparing Ag with 
gauze dressings in pts undergoing 
colorectal op

Silverlon was safe and three 
times more effective

2011 (160) 

AgNPs (nanocrystaline 
silver) 

Leg ulcers RCT of AgNPs compared with 
cadexomer iodine in 281 pts 

Similar antibacterial properties. 
Healing within 2 weeks AgNPs

2010 (161) 

Ag hydrofibre Pilonidal sinus RCT of Ag hydrofibres compared to 
sponge dressings in 43 pts

Ag hydrofibre is more cost-
effective & wound healing

2010 (162) 

AgNP (Acticoat) Freshly grafted burn RCT of Acticoat compared to the 
standard management in 20 pts

Acticoat was cheaper & the effect 
on wound healing was similar

2007 (163) 

AgNPs Partial thickness burn RCT of AgNPs compared to 1% 
AgSD in 191 pts

Similar bacterial colonisation. 
AgNPs significantly reduced 
healing time

2006 (164) 

AgNPs Superficial burn wounds 120 patients were randomised to 
receive: AgNPs/carbon fibre/hydrogel/
Vaseline gauze dressings

Water retention capacity was 
significantly higher in carbon fibre 
dressing 

2007 (165) 

Abbreviations: Pt, patient; AgNP, silver nanoparticles; AgSD, silver sulfadiazine; op, operations
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in the foreseeable future. Perhaps the most exciting 
aspects of nanotechnology, as applied to wounds, 
would be advances in NP-based growth factors 
delivery systems for angiogenesis, as well as NPs’ 
inherent anti-microbial properties resulting in efficient 
skin regeneration. Therefore, it can be reasonably 
concluded that nanotechnology-based remedies will 
be the next frontier poised for breakthroughs in unmet 
clinical needs of skin regeneration and wound healing. 
The ideal wound dressing should have good flexibility, 
good mechanical strength, large porosity, and be 
non-adherent to the wound surface. They should also 
provide a cooling sensation and a moist environment, 
whilst acting as a barrier to microbes. This is a multi-
billion pound industry with a large number of companies 
as well as academics working towards accelerating 
wound healing products based on nanotechnology.
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