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1. ABSTRACT

Emergent evidence indicates that certain 
aspects of lipid synthesis, degradation and 
interorganellar transport play essential roles in 
modulating the pace of cellular aging in the budding 
yeast Saccharomyces cerevisiae. The molecular 
mechanisms underlying the vital roles of lipid 
metabolism and transport in defining yeast longevity 
have begun to emerge. The scope of this review is 
to critically analyze recent progress in understanding 
such mechanisms.

2. INTRODUCTION

Lipids are water-insoluble amphiphilic 
biomolecules; they are structurally diverse and 
generated by an intricate network of integrated 
metabolic pathways (1-6). Lipids are known to play 
key roles in the organization and function of biological 
membranes, energy homeostasis, signal transduction, 
vesicular trafficking, organelle biogenesis, and 
regulated cell death (5-14). The initial indications 
that lipids may also modulate the rate of cellular 
and organismal aging came from observations that 
longevity-extending mutations in the IGF-1 (insulin/
insulin-like growth factor 1) and TORC1 (target of 
rapamycin complex 1) signaling pathways elicit 
an increase in the concentration of storage lipids 
in the nematode Caenorhabditis elegans, the fruit 
fly Drosophila melanogaster and laboratory mice 
(reviewed in reference 15). In this review, we outline the 
important conceptual advance in our understanding of 
how lipid metabolism and transport control the pace of 

cellular aging in the yeast Saccharomyces cerevisiae. 
We critically evaluate several mechanisms underlying 
the essential roles of lipids in defining yeast longevity. 
We outline the most important unanswered questions 
and suggest directions for future research.

3. SOME LIPIDS ARE CRITICAL FOR LON-
GEVITY OF THE YEAST SACCHAROMYCES 
CEREVISIAE

3.1. Sphingolipids define yeast replicative and 
chronological lifespans

In S. cerevisiae, the de novo synthesis of 
sphingolipids begins in the endoplasmic reticulum 
(ER) where the serine palmitoyltransferase (SPT) 
protein complex catalyzes a condensation of serine 
with palmitoyl-CoA to form 3-ketodihydrosphingosine 
(Figure 1) (16-18). The activity of SPT in the ER 
can inhibited by the amino fatty acid antibiotic 
myriocin derived from certain thermophilic fungi (19, 
20). 3-ketodihydrosphingosine is transformed into 
dihydrosphingosine (DHS), which is then undergoes 
conversion into phytosphingosine (PHS) in the ER; 
DHS and PHS are sphingoid backbone bases of all 
sphingolipids (Figure 1) (17, 21, 22). An acyl-CoA 
ester of hexacosanoic fatty acid having twenty six 
carbon atoms is then used as a fatty acid donor for the 
synthesis of dihydroceramide (dhCer) or phytoceramide 
(phytoCer) from DHS or PHS (respectively) in a 
reaction that is catalyzed by ceramide synthase (CerS) 
and confined to the ER (Figure 1) (22-27). The activity 
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of the CerS protein complex in the ER can be inhibited 
by mycotoxins fumonisin B1 and australifungin (28, 
29). dhCer or phytoCer are transported from the ER 
to the Golgi apparatus by the coat protein complex II 
vesicle-mediated flow as well as by the Nvj2-facilitated 
transfer via the ER-Golgi membrane contact sites 
(Figure 1) (30-32). In the Golgi apparatus, a stepwise 
attachment of different polar groups converts dhCer 

and phytoCer into such complex sphingolipids as 
inositol-phosphorylceramide (IPC), mannosyl-inositol-
phosphorylceramide (MIPC) and mannosyl-di-inositol-
phosphorylceramide (M(IP)2C) (Figure 1) (33, 34). The 
Aur1/Kei1-dependent synthesis of IPC in the Golgi 
apparatus can be inhibited by aureobasidin A, an 
antifungal cyclic depsipeptide antibiotic (33, 35, 36). 
A vesicular flow delivers these complex sphingolipids 

Figure 1. Sphingolipid metabolism in the yeast Saccharomyces cerevisiae. 3-ketodihydrosphingosine, dihydrosphingosine and phytosphingosine (DHS 
and PHS, respectively; two sphingoid backbone bases of all sphingolipids), acyl-CoA esters of very long-chain fatty acids (including the acyl-CoA ester of 
hexacosanoic fatty acid (C26:0 FA-CoA)), as well as dihydroceramide and phytoceramide are all generated in the endoplasmic reticulum (ER). After being 
transported from the ER to the Golgi apparatus, phytoceramide undergoes conversion into complex sphingolipids, including inositol-phosphorylceramide 
(IPC), mannosyl-inositol-phosphorylceramide (MIPC) and mannosyl-di-inositol-phosphorylceramide (M(IP)2C). Following IPC, MIPC and M(IP)2C 
synthesis in the Golgi, these complex sphingolipids can be either sorted to the plasma membrane or used to regenerate ceramides in a reaction catalyzed 
by Isc1 in mitochondria. After DHS and PHS are synthesized in the ER, they can undergo phosphorylation in the cytosol. Such phosphorylation yields DHS-
1-phosphate and PHS-1-phosphate (respectively), which can be further catabolized into ethanolamine-phosphate and aliphatic aldehydes having sixteen 
carbon atoms (C16 aldehydes). Enzymes that catalyze anabolic or catabolic reactions of sphingolipid metabolism are displayed in green or red color, 
respectively. See text for more details. Abbreviations: Aur1, aureobasidin A resistance 1; Csg1 and Csg2, calcium-sensitive growth 1 and 2 (respectively); 
Csh1, CSG1/SUR1 homolog1; Dpl1, dihydrosphingosine phosphate lyase 1; ER, endoplasmic reticulum; FA, fatty acid; Ipt1, inositolphosphotransferase 
1; IPC, inositol-phosphorylceramide; Isc1, inositol phosphosphingolipid phospholipase C 1; 3-KDHS,  3-ketodihydrosphingosine; Kei1, Kex2-cleavable 
protein essential for inositol-phosphorylceramide synthesis 1; Lac1, longevity-assurance gene cognate 1; Lag1, longevity assurance gene 1; Lip1, 
Lag1/Lac1 interacting protein 1; Lcb1, Lcb2, Lcb3, Lcb 4 and Lcb5, long-chain base proteins 1, 2, 3, 4 and 5 (respectively); MIPC, mannosyl-inositol-
phosphorylceramide; M(IP)2C, mannosyl-di-inositol-phosphorylceramide; Npr1, nitrogen permease reactivator 1; Orm1 and Orm2, orosomucoid 1 and 2 
(respectively); PM, plasma membrane; Sac1, suppressor of actin 1; SPOTS, serine palmitoyltransferase, Orm1/2 and Sac1; Sit4, suppressor of initiation 
of transcription 4; Slm1/2, synthetic lethal with Mss4 protein 1 or 2; SPT, serine palmitoyltransferase; Sur2, suppressor 2 of Rvs161 and rvs167 mutations; 
Tsc3 and Tsc10, temperature-sensitive suppressors of Csg2 mutants 3 and 10; Ydc1, yeast dihydroceramidase 1; Ypc1, yeast phytoceramidase 1; Ysr3, 
yeast sphingolipid resistance 3.
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from the Golgi apparatus to the plasma membrane 
(PM) (Figure 1) (1, 37). After being synthesized in the 
Golgi apparatus, these complex sphingolipids can also 
be used to replenish the cellular pool of ceramides. 
Such replenishment occurs in mitochondria and is 
catalyzed by Isc1, an inositol phosphosphingolipid 
phospholipase C which is translocated from the 
ER to mitochondria during the post-diauxic growth 
phase (Figure 1) (38-40). Following DHS and PHS 
synthesis in the ER, these sphingoid backbone bases 
of sphingolipids can be used not only for ceramide 
synthesis in the ER but also for phosphorylation in 
the cytosol (Figure 1) (37, 41). The products of such 
phosphorylation, DHS-1-phosphate and PHS-1-
phosphate (respectively), can be then converted into 
such non-sphingolipid molecules as ethanolamine-
phosphate and aliphatic aldehydes having sixteen 
carbon atoms (42). 

There are two different ways to study aging 
of the budding yeast S. cerevisiae. The first way is 
to monitor the replicative mode of yeast aging, which 
is measured as the maximum number of daughter 
cells that a mother cell can produce before becoming 
senescent (43-45). It seems that yeast replicative 
aging mirrors aging of some dividing, mitotically active 
mammalian and human cells (such as lymphocytes) 
(43, 44, 46-49) as well as aging of non-dividing cells in 
certain post-mitotic tissues of laboratory roundworms 
and humans (49-51). The second way is to examine the 
chronological mode of yeast aging, which is monitored 
as the length of time during which a cell remains viable 
by preserving a reproductive (clonogenic) ability after 
cell growth and division have been arrested (47, 52-
54). Chronological aging in yeast is believed to model 
aging of non-dividing, post-mitotic mammalian and 
human cells (such as neurons) (47, 52, 53, 55-59).

Growing evidence supports the notion that 
certain molecular species of long-chain sphingoid 
bases of sphingolipids, ceramides and/or more complex 
sphingolipids (which are formed from ceramides 
through the covalent attachment of certain polar head 
groups) may play essential roles in defining the rates 
of replicative or chronological aging in the yeast S. 
cerevisiae. Specifically, it has been demonstrated that 
some genetic or pharmacological interventions altering 
the concentrations of certain sphingolipid classes 
extend yeast replicative or chronological lifespan (RLS 
or CLS, respectively). 

For example, a single-gene-deletion mutation 
eliminating the Lag1 subunit of CerS (Figure 1) 
extends yeast RLS (23) but not CLS (60). Of note, a 
single-gene-deletion mutation eliminating a different 
subunit of CerS, Lac1 (Figure 1), does not alter yeast 
RLS or CLS (61). Two alternative explanations for the 
essential mechanistic role of Lag1 in yeast RLS have 
been proposed, namely that 1) lack of Lag1 (but not 

lack of Lac1) elicits a change in the concentrations 
of sphingosine and/or ceramide species that are 
critical for longevity of replicatively aging yeast; or 
2) Lag1 determines yeast RLS not because of its 
distinct effects on sphingosine and/or ceramide 
concentrations but because of its known physical and 
functional interactions with many proteins that do not 
interact with Lac1 and are not related to sphingolipid 
metabolism (62). The unique role of Lag1 in regulating 
longevity of replicatively aging yeast is underscored 
by the observations that both the lack of this subunit 
of CerS (23) and its moderate overexpression prolong 
yeast RLS (61), whereas its massive overexpression 
has an opposite effect on the RLS of S. cerevisiae 
(61). Thus, it is conceivable that the relative level 
of the Lag1 subunit of CerS exhibits a non-linear 
dose-response effect on the concentrations of some 
distinct sphingosine and/or ceramide species with 
the essential roles in yeast RLS but not in CLS. The 
identities of such critical species of sphingosine (DHS 
and/or PHS) and/or ceramide (dhCer and/or phytoCer) 
remain to be established, perhaps by measuring the 
concentrations of different sphingolipid metabolism 
intermediates in yeast mutant strains that exhibit a 
wide-range expression levels of Lag1 and have quite 
different RLS. 

Single-gene-deletion mutations eliminating 
Ipt1 and/or Skn1, two inositolphosphotransferases 
involved in the synthesis of M(IP)2C from MIPC (63, 64) 
(Figure 1), have been shown to extend yeast CLS (60, 
65). Each of these mutations causes an accumulation 
of excessive amounts of MIPC and impairs the 
synthesis of M(IP)2C, the most abundant and complex 
sphingolipid in S. cerevisiae (63, 64). These findings 
suggest that M(IP)2C may be an essential negative 
regulator of yeast CLS and/or MIPC may play an 
essential stimulatory role in regulating yeast CLS. 

A single-gene-deletion mutation eliminating 
Isc1, an inositol phosphosphingolipid phospholipase 
C which hydrolyzes complex sphingolipids to produce 
ceramides (38-40) (Figure 1), has been shown to 
shorten yeast CLS (66). The most prominent effects 
of the isc1Δ mutation on cellular sphingolipids include 
a decline in the concentrations of different molecular 
species of DHS and a rise in the concentrations of 
dhCer and phytoCer having twenty six carbon atoms 
(67). The CLS-shortening effect of the isc1Δ mutation 
was likely due to its demonstrated abilities to lower 
mitochondrial respiration, diminish catalase A activity, 
stimulate cellular iron accumulation, intensify oxidative 
damage to cellular macromolecules, decrease cell 
resistance to oxidative stress, enhance programmed 
apoptotic cell death, and/or activate Hog1 (a mitogen 
activated protein kinase (MAPK) of the high osmotic 
glycerol (HOG) pathway) (66-68). Importantly, the 
abilities of the isc1Δ mutation to shorten yeast CLS, 
lessen mitochondrial respiration, weaken catalase 
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A activity and decline cell resistance to oxidative 
stress can be partially suppressed by a single-gene-
deletion mutation that eliminates any of the following 
four proteins: 1) Sit4, a catalytic subunit of type 
2A ceramide-activated protein phosphatase and a 
downstream effector in the TORC1-Sit4 branch of the 
nutrient and stress signaling TORC1 pathway (67); 2) 
Hog1 (68); 3) Tor1, a nutrient-sensing protein kinase 
component of TORC1, which regulates cell growth, 
metabolism, stress response and longevity in response 
to nutrient availability and cellular stresses (69); or 
4) Sch9, a nutrient-sensing protein kinase and a 
downstream effector in the TORC1-Sch9 branch of the 
TORC1 pathway (69). It needs to be emphasized that 
both the TORC1-Sit4 and TORC1-Sch9 branches are 
modulated not only in response to nutrient availability 
but also in response to concentrations of certain 
sphingolipid species; some of these sphingolipid 
species are synthesized de novo while others are 
produced by the Isc1-driven hydrolysis of complex 
sphingolipids (17, 18, 37, 62, 70-73). Furthermore, 
the TORC1-Sit4 branch regulates some reactions of 
the de novo sphingosine and ceramide biosynthesis 
(74), whereas the TORC1-Sch9 branch controls the 
production of sphingosines, ceramides and complex 
sphingolipids both biosynthetically and hydrolytically 
(75). Moreover, the Sch9 protein component of the 
TORC1-Sch9 branch is required for the translocation of 
Isc1 from the ER to mitochondria during the post-diauxic 
growth phase (75). These findings support the notion 
that the TORC1-Sit4 and TORC1-Sch9 branches, as 
well as Hog1 and Isc1, are linked nodes of a signaling 
network that integrates nutrient and sphingolipid 
signaling to regulate longevity of chronologically aging 
yeast (37, 62, 69-75). A more detailed description of 
this signaling network is provided below in this section 
and schematically depicted in Figure 2. 

The identities of molecular species of 
mitochondrial membrane sphingolipids that may 
modulate information flow through the TORC1-Sit4/
TORC1-Sch9/Hog1/Isc1 signaling nodes remain 
to be established. These sphingolipid species may 
include DHS and PHS, two sphingoid backbone bases 
of sphingolipids whose concentrations in yeast are 
gradually increased with chronological age (76). Such 
age-related rise of DHS and PHS in mitochondrial 
membranes of chronologically aging yeast may 
shorten CLS by slowing mitochondrial fusion, eliciting 
mitochondrial fragmentation, lowering mitochondrial 
respiration and electrochemical membrane potential, 
compromising ATP synthesis in mitochondria, and 
lessening the number of mitochondrial DNA copies (76).

Another convincing evidence for the essential 
roles of sphingolipids in yeast chronological aging has 
been provided by the demonstration that yeast CLS 
can be extended by pharmacological and genetic 
interventions that weaken (but do not completely 

stop) metabolite flow through the pathway of de novo 
sphingolipid synthesis. Such weakening of metabolite 
flow through sphingolipid synthesis pathway was 
achieved via a partial inhibition of the initial, SPT-
driven step of the pathway using 1) relatively low 
concentrations of myriocin, an inhibitor of SPT 
enzymatic activity (77) (Figure 1); or 2) the tetracycline-
repressible promoter cassette to lower transcription 
of genes encoding the Lcb1 or Lcb2 subunits of the 
SPT protein complex (77) (Figure 1). By eliciting a 
partial inhibition of SPT, both these CLS-extending 
interventions have been shown to decrease the 
concentrations of DHS, PHS, DHS-1-phosphate, PHS-
1-phosphate and IPC (77) (Figure 1). Such decline in 
the abundance of sphingosine species and/or IPC is 
likely to be responsible for the observed abilities of both 
these interventions to lower protein kinase activities of 
Pkh1 (Pkb-activating kinase homolog protein 1) and 
Pkh2, two sphingolipid-activated protein kinases that 
phosphorylate a specific residue in the activation loop 
of the nutrient-sensing protein kinase Sch9 (77). Pkh1 
and Pkh2 are likely stimulated by PHS (78). Although 
the Pkh1/2-Sch9 branch of a network that integrates 
nutrient and sphingolipid signaling is the primary 
target of both these interventions, myriocin treatment 
also elicits the following pro-longevity changes in 
other pathways possibly integrated into this network: 
1) it weakens the pro-aging PKA (protein kinase 
A) pathway; 2) it attenuates the pro-aging TORC1 
pathway; 3) it activates the anti-aging Snf1 (sucrose 
non-fermenting) pathway; and 4) it stimulates the anti-
aging ATG (autophagy) pathway (79). These effects 
of myriocin treatment on different nodes and hubs 
comprising the nutrient and sphingolipid signaling 
network are believed to be responsible for the global 
changes in transcription of numerous nuclear genes 
seen in myriocin-treated yeast (79). It is presently 
unclear which of the above effects of myriocin 
treatment on signaling and transcription are due to 
the decline in the abundance of sphingosine species 
and IPC that occurs in yeast exposed to myriocin 
(62). Some of these effects could be due to the 
abilities of certain sphingolipid species to act in minor 
quantities as signaling molecules that bind to specific 
protein components integrated into the nutrient and 
sphingolipid signaling network, whereas others 
could be caused by the abilities of bulk quantities of 
sphingolipids to influence general physical properties 
of cellular membranes and/or create functionally 
distinct membrane domains (62).

In sum, emergent evidence indicates that the 
metabolic pathway for the biosynthetic and hydrolytic 
production of sphingosines, ceramides and complex 
sphingolipids is integrated into an intricate network with 
certain nutrient- and sphingolipid-sensing signaling 
pathways. This network defines yeast CLS and is 
schematically depicted in Figure 2. The nutrient and 
sphingolipid signaling network includes three hubs, 
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each representing a chemical reaction (or several 
chemical reactions) in the sphingolipid metabolism 
pathway which is linked to several nodes or branches of 
nutrient- and sphingolipid-sensing signaling pathways.

At the SPT hub of this network, the SPT protein 
complex catalyzing the initial reaction of sphingolipid 

metabolism is inhibited by non-phosphorylated forms 
of the Orm1 and Orm2 proteins (37, 73, 80-84) (Figure 
2A). This Orm1/2-dependent inhibition of SPT can be 
relieved via phosphorylation of Orm1 and Orm2 by the 
protein kinase Npr1 of the TORC1-Sit4-Npr1 branch 
of the nutrient-sensing TORC1 signaling pathway; 
the catalytic subunit of type 2A protein phosphatase 

Figure 2. Sphingolipid metabolism, nutrient-sensing signaling and sphingolipid-controlled signaling pathways are integrated into a network. This 
network includes three hubs. Each hub is a chemical reaction (or several chemical reactions) of sphingolipid metabolism linked to several nodes or 
branches of nutrient-sensing and sphingolipid-controlled signaling pathways. (A) The SPT hub of this network links the initial reaction of sphingolipid 
metabolism to the TORC1-Sit4-Npr1, TORC2-Ypk1/2 and Pkh1/2-Ypk1/2 branches of nutrient- and sphingolipid-dependent signaling. (B) The CerS/
Ydc1/Ypc1/Sur2 hub of this network links reactions of sphingosine and ceramide metabolism to the TORC2-Ypk1/2, Pkh1/2-Ypk1/2, TORC1-Sch9, 
Pkh1/2-Sch9 and TORC1-Sit4-Npr1 branches of nutrient- and sphingolipid-dependent signaling. (C) Enzymes involved in the synthesis and hydrolysis of 
complex sphingolipids constitute a network hub linked to the TORC1-Sit4-Npr1, TORC1-Sch9 and Pkh1/2-Sch9 branches of nutrient- and sphingolipid-
dependent signaling. Inhibiting or activating phosphorylations are displayed in red or blue color, respectively. See text for more details. Abbreviations: 
CerS, ceramide synthase; CK2, casein kinase 2; dhCer, dihydroceramide; DHS, dihydrosphingosine; FA, fatty acid; HOG, high osmotic glycerol; IPC, 
inositol-phosphorylceramide; Isc1, inositol phosphosphingolipid phospholipase C 1; 3-KDHS,  3-ketodihydrosphingosine; MIPC, mannosyl-inositol-
phosphorylceramide; M(IP)2C, mannosyl-di-inositol-phosphorylceramide; Npr1, nitrogen permease reactivator 1; Orm1 and Orm2, orosomucoid 1 
and 2 (respectively); PHS, phytosphingosine; phytoCer, phytoceramide; Pkh, Pkb-activating kinase homolog; PM, plasma membrane; PP2A, protein 
phosphatase type 2A; PP2B, protein phosphatase type 2B; Pkh, Pkb-activating kinase homolog; Sit4, suppressor of initiation of transcription 4; Slm1/2, 
synthetic lethal with Mss4 protein 1 or 2; SPT, serine palmitoyltransferase; Sur2, suppressor 2 of Rvs161 and rvs167 mutations; TOR, target of rapamycin; 
TORC1, TOR complex 1; TORC2, TOR complex 2; Ydc1, yeast dihydroceramidase 1; Ypc1, yeast phytoceramidase 1; Ypk1/2, yeast protein kinase 1 or 2
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Sit4, another component of this branch, can be 
inhibited by TORC1 and activated by phytoCer (37, 
67, 73, 83, 84) (Figure 2A). Orm1 and Orm2 can 
also be phosphorylated (and SPT inhibition can be 
relieved) via partially overlapping TORC2-Ypk1/2 
and Pkh1/2-Ypk1/2 signaling branches; a common 
component of these branches, the protein kinase 
Ypk1/2, phosphorylates Orm1 and Orm2 at sites that 
differ from sites phosphorylated by the protein kinase 
Npr1 of the TORC1-Sit4-Npr1 branch (37, 73, 82-84) 
(Figure 2A). Both the TORC2-Ypk1/2 and Pkh1/2-
Ypk1/2 branches are modulated by sphingolipids. 
The TORC2-Ypk/2 branch of the TORC2 signaling 
pathway is activated if a decline in the abundance of 
complex sphingolipids increases tension of the PM; 
this allows the phosphatidylinositol-4,5-bisphosphate 
binding proteins Slm1 and Slm2 to move from the 
MCC (membrane compartment containing Can1)/
eisosome domain of the PM to the MCT (membrane 
compartment containing TORC2) area of the PM, 
where they activate Ypk1/2 phosphorylation by the 
PM-associated TORC2 complex (37, 73, 82, 85, 86) 
(Figure 2A). The Pkh1/2-Ypk1/2 branch is activated 
by PHS, a sphingoid base of sphingolipids which 
stimulates both protein components of this signaling 
branch (37, 78) (Figure 2A). The TORC1-Sit4-Npr1-, 
TORC2-Ypk1/2- and Pkh1/2-Ypk1/2-dependent 
phosphorylations of Orm1 and Orm2 can be offset 
(and SPT inhibition can be restored) by the complex 
between Cdc55 and Pph21/Pph22, a regulatory 
and catalytic subunits (respectively) of yeast protein 
phosphatase 2A (PP2A) (37, 73, 87) (Figure 2A). 
Altogether, these findings indicate that the SPT hub 
of the nutrient and sphingolipid signaling network 
is modulated by three feedback loops. One of these 
feedback loops acts in a negative manner (i.e. SPT 
is indirectly inhibited by complex sphingolipids), 
whereas two others are positive feedback loops (i.e. 
SPT is indirectly activated by PHS and phytoCer) 
(Figure 2A). It is conceivable that these three feedback 
loops orchestrate a delicate tuning of SPT activity in 
response to the availability of nutrients and the extent 
of cellular stress (which is exhibited in part as changes 
in sphingolipid concentrations), thus defining longevity 
of chronologically aging yeast.

Another hub of the nutrient and sphingolipid 
signaling network includes the CerS protein complex, 
ceramidases Ydc1 and Ypc1, and the sphinganine 
C4-hydroxylase Sur2 (Figure 2B). These proteins and 
protein complexes are involved in the synthesis of 
dhCer and phytoCer from DHS and PHS, hydrolysis of 
dhCer and phytoCer to DHS and PHS, and conversion 
of DHS into PHS (respectively) (Figure 1). At the CerS/
Ydc1/Ypc1/Sur2 hub, CerS is activated in response 
to phosphorylation at different sites by 1) Ypk1/2, a 
common component of partially overlapping TORC2-
Ypk1/2 and Pkh1/2-Ypk1/2 signaling branches (88, 
89); and 2) casein kinase 2 (CK2), a Ser/Thr protein 

kinase with many cellular functions (90, 91) (Figure 
2B). The TORC2-Ypk1/2 branch is attenuated by 
complex sphingolipids, whereas both components of 
the Pkh1/2-Ypk1/2 branch are activated by PHS (37, 
78, 73, 82, 85, 86) (Figure 2B). The TORC2-Ypk1/2 
branch is also weakened by calcineurin, a Ca2+/
calmodulin-regulated type 2B protein phosphatase 
(PP2B) which stimulates the dephosphorylation of 
CerS sites phosphorylated by Ypk1/2 (88, 89) (Figure 
2B). Ceramidases Ydc1 and Ypc1 are components of 
the CerS/Ydc1/Ypc1/Sur2 hub whose abundance can 
be decreased if the nutrient-sensing protein kinase 
Sch9 represses transcription of the YDC1 and YPC1 
genes (75) (Figure 2B). Sch9 is a common component 
of the partially overlapping TORC1-Sch9 and Pkh1/2-
Sch9 signaling branches; it can be activated if 
concomitantly phosphorylated at different sites by 
nutrient-sensing TORC1 and PHS-dependent Pkh1/2 
(77, 79, 82, 92-94) (Figure 2B). The Sur2 component 
of the CerS/Ydc1/Ypc1/Sur2 hub can be activated 
by Sit4, a catalytic subunit of PP2A which can be 
inhibited by nutrient-sensing TORC1 and stimulated 
by phytoCer (37, 67, 73, 74, 83, 84) (Figure 2B). Thus, 
the CerS/Ydc1/Ypc1/Sur2 hub of the nutrient and 
sphingolipid signaling network is under control of the 
following four feedback loops: 1) a positive feedback 
loop in which CerS is indirectly activated by PHS; 2) 
a negative feedback loop in which CerS is indirectly 
inhibited by complex sphingolipids; 3) a negative 
feedback loop in which Ydc1 and Ypc1 are indirectly 
inhibited by PHS; and 4) a positive feedback loop in 
which Sur2 is indirectly activated by phytoCer (Figure 
2B). It is tempting to speculate that these four feedback 
loops allow to coordinate the synthesis and breakdown 
of DHS, PHS, dhCer and phytoCer in response to the 
intracellular nutrient and stress status, thereby being 
essential for regulating longevity of chronologically 
aging yeast.

The third hub of the nutrient and sphingolipid 
signaling network includes enzymes involved in the 
synthesis and hydrolysis of complex sphingolipids 
(Figure 2C). The synthesis of complex sphingolipids 
in the Golgi apparatus is activated by phosphorylated 
forms of the Orm1 and Orm2 proteins; a mechanism 
of such activation remains unknown (84) (Figure 2C). 
Orm1 and Orm2 are phosphorylated by the protein 
kinase Npr1 of the TORC1-Sit4-Npr1 signaling branch; 
the Sit4 component of this branch can be suppressed 
by nutrient-sensing TORC1 and can be stimulated by 
phytoCer (37, 74, 84) (Figure 2C). The hydrolysis of 
complex sphingolipids in mitochondria is catalyzed by 
Isc1, whose translocation from the ER to mitochondria 
during the post-diauxic growth phase requires the 
nutrient-sensing protein kinase Sch9 (75). The Sch9-
driven stimulation of complex sphingolipids hydrolysis 
is under positive control of the TORC1-Sch9 and 
Pkh1/2-Sch9 signaling branches, as nutrient-sensing 
TORC1 and PHS-dependent Pkh1/2 can activate 
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Sch9 by phosphorylating different sites of this protein 
(77, 79, 82, 92-94) (Figure 2C). Besides their essential 
roles in regulating the synthesis and hydrolysis of 
complex sphingolipids (as well as other reactions of 
sphingolipid metabolism; see Figures 2A and 2B), the 
TORC1-Sit4 and TORC1-Sch9 branches are nodes of 
a signaling subnetwork that modulates mitochondrial 
functionality in response to nutrient status and phytoCer 
concentration (Figure 2C). This signaling subnetwork 
integrates the TORC1-Sit4 and TORC1-Sch9 branches 
with Hog1 (a MAPK which is phosphorylated by Sch9) 
and Isc1, thereby coordinating sphingolipid metabolism 
and mitochondrial function and regulating longevity of 
chronologically aging yeast (37, 62, 69-75) (Figure 
2C). Together, these findings indicate that the third hub 
of the nutrient and sphingolipid signaling network is 
controlled by a positive feedback loop which indirectly 
activates complex sphingolipid synthesis by phytoCer, 
as well as by a positive feedback loop which indirectly 
stimulates complex sphingolipid hydrolysis by PHS 
(Figure 2C). By coordinating complex sphingolipid 
metabolism and mitochondrial functionality in 
response to the intracellular nutrient and stress status, 
these feedback loops are likely to play essential role 
in regulating longevity of chronologically aging yeast. 

3.2. Triacylglycerol metabolism is a longevity 
assurance process

Triacylglycerols (TAGs) are uncharged (and 
therefore called ″neutral″) lipids synthesized in the 
ER and then deposited in lipid droplets (LDs) (72, 95, 
96). The hydrolytic degradation of TAGs stored in LDs 
can provide free fatty acids (FFAs) and diacylglycerols 
(DAGs) for the production of energy, synthesis of 
phospholipid and sphingolipid constituents of cellular 
membranes, and generation of some signaling lipids 
(7, 72, 95-99). 

The metabolic pathways of TAG synthesis 
and degradation in yeast cells are well known (95, 96, 
98, 99); they are schematically depicted in Figure 3. The 
de novo synthesis of TAGs begins in the ER where two 
glycerol-3-phosphate/dihydroxyacetone phosphate 
(Gro-3-P/DHAP) acyltransferases, Sct1 and Gpt2, 
catalyze the formation of lysophosphatidic acid (LPA) 
or acyl-DHAP from fatty acyl-CoA esters (FA-CoAs) 
and Gro-3-P or DHAP, respectively (100, 101) (Figure 
3). FA-CoAs, which serve as co-substrates in these 
Sct1- and Gpt2-driven reactions, are synthesized de 
novo from acetyl-CoA by the cytosolic acetyl-CoA 
carboxylase Acc1 and FA synthase complex Fas1/
Fas2 (102-107) (Figure 3). LPA can also be formed 
from acyl-DHAP in an Ayr1-driven reduction reaction 
(108) (Figure 3). The LPA acyl-transferases Slc1, Slc4, 
Loa1 and Ale1 catalyze the conversion of LPA to PA 
in an acyl CoA-dependent reaction (109-113) (Figure 
3). PA can then be used as a substrate in two different 
reactions, each yielding a distinct precursor molecule 

for a biosynthetic pathway that contributes to TAG 
formation de novo. One of these reactions is catalyzed 
by the cytidine diphosphate (CDP)-DAG synthase 
Cds1; this reaction converts PA to CDP-DAG, which 
is then used for the synthesis of the phospholipids 
phosphatidylserine (PS), phosphatidylcholine (PC) 
and phosphatidylinositol in the ER and also of the 
phospholipid phosphatidylethanolamine (PE) in 
mitochondria (95-99, 114) (Figure 3). The other 
reaction is catalyzed by the PA phosphatases Pah1, 
App1, Dpp1 and Lpp1; this reaction converts PA to DAG 
(115-117) (Figure 1). DAG is then acylated to TAG in 
the following two reactions: 1) an FA-CoA-dependent 
reaction catalyzed by Dga1, Are1 and Are2 (118, 119); 
and 2) a phospholipid (mainly PE and PC)-dependent 
reaction catalyzed by Lro1 (120) (Figure 3). After being 
de novo synthesized in the ER, TAGs are deposited in 
LDs. To provide FFAs and DAGs needed to support 
growth and division of rapidly proliferating yeast, these 
TAGs can undergo hydrolysis which is catalyzed by 
the TAG lipases Tgl1, Tgl3, Tgl4, Tgl5 and Ayr1; all 
these TAG lipases reside in LDs (121-125) (Figure 
3). DAGs can also be hydrolyzed, likely by Tgl3, to 
yield monoacylglycerols (MAGs) (124) (Figure 3). The 
lipolytic degradation of MAGs in LDs is catalyzed by the 
MAG lipase Yju3 (126) (Figure 3). FFAs generated in 
LDs as the products of TAG, DAG and MAG hydrolysis 
can be reactivated to FA-CoAs by the long chain acyl-
CoA synthetases Faa1, Faa4 and Fat1, which form a 
complex in LDs (72, 127-129) (Figure 3). After being 
formed in LDs, these FA-CoAs can undergo beta-
oxidation in peroxisomes, which associate with LDs in 
rapidly proliferating yeast cells (72, 130-137) (Figure 
3). Peroxisomal oxidation of these FA-CoA species 
produces acetyl-CoA, which can then be used for 1) 
energy production in mitochondria; and/or 2) FA-CoAs 
formation and its subsequent utilization for the de novo 
synthesis of TAGs and phospholipids in the ER (72, 
98, 99, 131, 133) (Figure 3). In addition, the FA-CoA 
and DAG species formed in LDs can be used for the 
synthesis of membrane and signaling lipids in yeast 
cells that undergo rapid growth and division (7, 72, 95, 
97, 98, 138-141) (Figure 3).

The intensities of lipid fluxes via metabolic 
pathways for TAG synthesis and degradation in 
yeast cells are modulated by different mechanisms, 
controlled in space and time, and altered in response 
to certain changes in environmental, nutritional and 
developmental conditions. Indeed, many reactions 
of TAG synthesis and degradation are catalyzed 
by partially redundant enzymes that have different 
substrate specificities (Figure 3); this may allow to 
modulate the cellular concentrations of TAGs, DAGs, 
phospholipids and FFAs under different internal and 
external conditions (95, 97-99). Also, some enzymes 
involved in TAG synthesis (i.e. Gpt2, Ayr1, Slc1, Loa1 
and Dga1), TAG hydrolysis (i.e. Tgl1 and Yju3) and 
FFA reactivation (i.e. Faa1, Faa4 and Fat1) in yeast 



Lipid metabolism and aging

1173 © 1996-2018

cells exhibit dual localization to the ER and LDs; this 
may also be used as a mechanism for adapting the 
anabolic and catabolic branches of TAG metabolism 
to certain changes in intracellular and extracellular 
conditions (72, 95, 98, 99). In addition, the ER and LDs 
form physical contacts and share lipid intermediates of 
TAG metabolism with many other cellular structures, 
including mitochondria, peroxisomes, vacuoles, the 
nucleus, the Golgi apparatus and the PM; this allows 
to maintain lipid homeostasis of the entire cell under 
different environmental, nutritional and developmental 
conditions (134-137, 140-149). Furthermore, TAG 
lipolysis supplies (while TAG synthesis removes) 
certain TAG metabolism intermediates that in yeast 

cells play essential roles in cell cycle progression 
and cytokinesis; these pathways of TAG metabolism 
1) are controlled by the cyclin-dependent kinases 
Pho85-Pho80 and/or Cdc28 at two different cell-
cycle checkpoints, and 2) modulate the intracellular 
concentrations of lipid species that control cell-cycle 
progression activities of the phosphatase PP2ACdc55 
and morphogenesis checkpoint kinase Swe1 (138-
140, 150-153). Moreover, TAG synthesis in yeast 
cells is under the tight control by such key nutrient-
sensing protein kinases as Tor1, PKA and Snf1; this 
allows to sustain cellular homeostasis of lipids under 
different conditions of nutrient availability (72, 95, 97, 
153-157).

Figure 3. Pathways for the synthesis of phospholipids in the endoplasmic reticulum (ER) and mitochondria partially overlap with the anabolic branch of 
TAG (triacylglycerol) metabolism in the ER. The catabolic branch of TAG metabolism is confined to lipid droplets (LDs) and peroxisomes. Enzymes that 
catalyze anabolic or catabolic reactions of TAG metabolism are displayed in green or red color, respectively. See text for more details. Abbreviations: 
Acc1, acetyl-CoA carboxylase 1; Ale1, acyltransferase for lysophosphatidylethanolamine 1; App1, actin patch protein 1; Are1/2, acyl-coenzyme A: 
cholesterol acyl transferase-related enzymes 1 and 2; Ayr1, acyl-dihydroxyacetone-phosphate reductase 1; CDP, cytidine diphosphate; Cds1, CDP-
diacylglycerol synthase 1; Cho1/2, choline requiring 1 and 2; DAG, diacylglycerol; Dga1, diacylglycerol acyltransferase 1; Dgk1, diacylglycerol kinase 
1; Dpp1, diacylglycerol pyrophosphate phosphatase 1; DHAP, dihydroxyacetone phosphate; Faa1/4, fatty acid activation 1 and 2; FA-CoA, fatty acyl-
CoA ester; Fas1/2, fatty acid synthetases 1 and 2; Fat1, fatty acid transporter 1; FFA, free fatty acid; Fox1/2/3, fatty acid oxidation 1, 2 and 3; Gpd1/2, 
glycerol-3-phosphate dehydrogenases 1 and 2; Gpt2, glycerol-3-phosphate acyltransferase; Gro, glycerol; Gro-3-P, glycerol-3-phosphate; OMM, outer 
mitochondrial membrane; IMM, inner mitochondrial membrane; Loa1, lysophosphatidic acid: oleoyl-CoA acyltransferase 1; Lpp1, lipid phosphate 
phosphatase 1; LPA, lysophosphatidic acid; Lro1, lecithin cholesterol acyl transferase related open reading frame 1; MAG, monoacylglycerol; Opi3, 
overproducer of inositol 3; PA, phosphatidic acid; Pah1, phosphatidic acid phosphohydrolase 1; PC, phosphatidylcholine; PE, phosphatidylethanolamine; 
PS, phosphatidylserine; Psd1, phosphatidylserine decarboxylase 1; Sct1, suppressor of choline-transport mutants 1; Slc1/4, sphingolipid compensation 
1 and 4; Tgl1/3/4/5, triglyceride lipases 1, 3, 4 and 5.
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Given that TAG metabolism in S. cerevisiae 
is spatially and temporally integrated into many 
vital cellular processes confined to different cellular 
compartments and controlled by some key signaling 
pathways in response to specific changes in intracellular 
and extracellular conditions, it is not surprising that 
TAG synthesis and degradation have been shown 
to define longevity of chronologically aging yeast. It 
seems that there are two different ways of delaying 
yeast chronological aging by differently altering the 
age-related dynamics of changes in intracellular TAG 
concentration. These two ways are described below.

One of these ways of aging delay has been 
discovered by studies of yeast cultured in a nutrient-
rich liquid medium initially containing 2% glucose (158, 
159). Under these so-called non-caloric restriction 
(non-CR) conditions yeast cells are not limited in the 
supply of calories (47, 160, 161). In non-CR yeast, 
the intracellular concentration of TAGs is substantially 
increased during logarithmic (L), diauxic (D) and post-
diauxic (PD) phases (161). After entering stationary 
(ST) phase, yeast cells cultured under non-CR 
conditions gradually consume TAGs accumulated 
in LDs during the preceding L, D and PD phases of 
growth (161). It has been found that in non-CR yeast 
1) single-gene-deletion mutations eliminating the TAG 
lipases Tgl3 and/or Tgl4 increase TAG concentration 
and extend CLS; 2) a simultaneous lack of DAG 
acyltransferases Dga1 and Lro1 in the dga1Δlro1Δ 
mutant strain decreases TAG concentration and 
shortens CLS; and 3) the overexpression of the DAG 
acyltransferase Dga1 rises TAG concentration and 
prolongs CLS (158). It was therefore concluded that 
an increase in the abundance of TAGs seen in tgl3Δ, 
tgl4Δ, tgl3Δtgl4Δ and Dga1 overexpressing cells under 
non-CR conditions is responsible for the extension 
of their CLS (158, 159). A ″radical sink″ mechanism 
may underlie the ability of increased concentration 
of TAGs to serve as a longevity assurance factor in 
chronologically aging non-CR yeast (Figure 4) (159). 
In this mechanism, an age-related accumulation 
of reactive oxygen species (ROS) in non-CR yeast 
elicits oxidative damage to different kinds of biological 
macromolecules, especially to unsaturated FFA 
known to be highly susceptible to such damage (159). 
Genetic manipulations that increase an incorporation 
of unsaturated FFA into TAGs (i.e. the tgl3Δ and/or 
tgl4Δ mutations or Dga1 overexpression) may intensify 
the flow of these susceptible to oxidative damage 
unsaturated FFA into LDs, where TAGs are stored. 
This may decrease the abundance of unsaturated FFA 
in cellular membranes, thereby lowering the extent 
of an age-related oxidative damage to membrane 
lipids and proteins (and perhaps to water-soluble 
macromolecules, such as proteins, DNA and RNA) 
and extending the CLS of non-CR yeast (Figure 4) 
(159). Moreover, because genetic manipulations that 
increase the incorporation of unsaturated FFA into 

TAGs may sequester the major target molecules of an 
age-related oxidative damage inside the hydrophobic 
core of LDs, this is expected to limit the distribution 
of oxidative damage to water-soluble molecules 
outside LDs and thus to prolong the CLS of non-
CR yeast as well (Figure 4) (159). The ″radical sink″ 
mechanism, which has been proposed to explain 
how the accumulation of bulk quantities of TAGs by 
non-CR cells of some yeast mutants may extend 
CLS, provides a framework for future studies aimed 
at testing its validity. It remains to be established if 
TAGs stored in LDs of these long-lived mutant cells 
amass oxidatively damaged unsaturated FFA. Another 
challenge is to assess if membrane-associated and/
or water-soluble macromolecules in these mutant 
cells exhibit a lowered extent of oxidative damage. In 
the future it would be also interesting to investigate if 
pharmacological interventions that can extend yeast 
CLS under non-CR conditions may (akin to the aging-
delaying tgl3Δ, tgl4Δ and tgl3Δtgl4Δ mutations or Dga1 
overexpression) elicit an accumulation of excessive 
TAG quantities. 

The other way of delaying yeast chronological 
aging by altering the age-related dynamics of TAGs has 
been discovered by studies of yeast placed on a CR 
diet; this diet was imposed by culturing S. cerevisiae 
in a nutrient-rich liquid medium initially containing 
0.2.% or 0.5.% glucose (161, 162). CR is a dietary 
intervention that delays aging not only in yeast (47, 58, 
161) but also in multicellular eukaryotes across phyla 
(163-167). In yeast cultured under CR conditions, the 
intracellular concentration of TAGs is increased during 
L and D phases to reach a significantly lower steady-
state level than that in yeast cultured under non-CR 
conditions (161). CR yeast cells completely consume 
TAGs during the subsequent PD phase, unlike non-CR 
yeast cells that maintain a relatively high concentration 
of TAGs through the entire CLS (161). Yeast cells 
cultured under non-CR conditions (but not yeast 
cells cultured under CR conditions) amass ethanol 
(131, 161). This product of glucose fermentation has 
been shown to decrease yeast CLS (168), however 
a mechanism by which ethanol shortens longevity 
of chronologically aging yeast remains unknown. 
Ethanol accumulated by yeast cells cultured under 
non-CR conditions has been shown to suppress the 
synthesis of Fox1, Fox2 and Fox3, all of which are the 
core enzymes of peroxisomal beta-oxidation of FFAs 
(169, 170). Because of the resulting low efficiency of 
FFA oxidation in peroxisomes of prematurely aging 
non-CR yeast cells, they accumulate FFAs (161). 
Moreover, it has been shown that 1) a close physical 
association of peroxisomes with LDs promotes 
the lipolytic degradation of TAGs within LDs, thus 
providing bulk quantities of FFAs for beta-oxidation 
in yeast peroxisomes (130, 131, 135, 136); and 2) 
lack of peroxisomal Fox1, Fox2 or Fox3 in the fox1Δ, 
fox2Δ or fox3Δ mutant strain elicits an accumulation 
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of electron-dense arrays of FFAs (which are called 
″gnarls″), as well as a deposition of bulk quantities 
of TAGs, within yeast LDs (130, 135, 136). Based on 
all these findings, a mechanism has been proposed 
for how a CR diet may extend yeast CLS by altering 
the spatiotemporal dynamics of TAG synthesis in the 
ER, TAG lipolysis in LDs and beta-oxidation of TAG-
derived FFAs in peroxisomes (10, 131, 161, 171-173). 
This mechanism is schematically depicted in Figure 5. 

In this mechanism, yeast cells grown under non-CR 
conditions amass ethanol. The accumulated ethanol 
weakens peroxisomal oxidation of FA-CoAs because 
it represses the synthesis of Fox1, Fox2 and Fox3 (10, 
131, 161, 171, 172) (Figure 5). The ensuing build-up of 
FA-CoAs in peroxisomes creates a negative feedback 
loop which attenuates the transport of FA-CoAs from 
associated LDs, where these FA-CoAs are formed 
from TAG-derived FFAs. This elicits an accumulation of 

Figure 4. A ″radical sink″ mechanism may explain how the accumulation of triacylglycerols (TAG) by non-CR cells of some yeast mutants may extend 
yeast chronological lifespan (CLS). (A) An age-related accumulation of reactive oxygen species (ROS) in non-CR cells of wild-type (WT) strain elicits 
an oxidative damage to water-soluble molecules (i.e. DNA, RNA, proteins and metabolites) as well as to membrane proteins and lipids, and also to 
unsaturated free fatty acids (FFA) that are incorporated into TAG stored in lipid droplets (LD). The substantial oxidative damage to water-soluble and 
membrane-associated molecules elicits a massive oxidative damage to the entire cell, thereby accelerating yeast chronological aging. (B) The tgl3Δ, 
tgl4Δ and tgl3Δtgl4Δ mutations as well as Dga1 overexpression (OE) increase the incorporation of unsaturated FFA into TAG, thereby intensifying the 
flow of these unsaturated FFA (which are very susceptible to oxidative damage) into LD. This may decrease the abundance of unsaturated FFA in 
cellular membranes, thus lowering the extent of oxidative damage to membrane proteins and lipids as well as to water-soluble DNA, RNA, proteins and 
metabolites. This, in turn, lowers the extent of oxidative damage to the entire cell and decelerates yeast chronological aging. The thickness of black 
arrows is proportional to the extent of oxidative damage to various molecules, degree of oxidative damage to the entire cell or efficiency with which 
chronological aging is accelerated. Arrows next to the boxes showing names of affected processes denote those of them that are intensified (red arrows) 
or weakened (blue arrows). See text for more details.
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arrays of FFAs (gnarls) within LDs of non-CR yeast, thus 
initiating several negative feedback loops that weaken 
TAG lipolysis in LDs, TAG transport from the ER to LDs 
and TAG synthesis from DAGs in the ER (10, 131, 161, 
171, 172) (Figure 5). The resulting build-up of FFAs 
and DAGs in the ER and LDs shortens the CLS of non-
CR yeast because these two lipid classes are known to 
elicit an age-related form of liponecrotic programmed 
cell death (PCD) (10, 173) (Figure 5). Because yeast 
cells grown under CR conditions do not accumulate 
ethanol (161), they are not susceptible to liponecrotic 
PCD and thus live longer than non-CR yeast (10, 131, 
161, 171-173). In the above mechanism, age-related 

liponecrotic PCD shortens longevity of non-CR yeast. 
Because proteins that execute this mode of PCD in 
chronologically aging yeast have been identified (10, 
173), it would be interesting to investigate if single-
gene-deletion mutations eliminating these proteins 
can extend longevity of yeast cultured under non-CR 
conditions. 

3.3. Some mitochondrial membrane phospholip-
ids define yeast chronological lifespan

A high-throughput chemical genetic screen 
for low molecular weight chemical compounds capable 

Figure 5. A mechanism through which a build-up of ethanol by chronologically aging yeast cells grown under non-CR conditions may shorten their 
longevity by altering the spatiotemporal dynamics of triacylglycerol (TAG) synthesis in the endoplasmic reticulum (ER), TAG lipolysis in lipid droplets (LD) 
and beta-oxidation of TAG-derived free fatty acids (FFA) in peroxisomes. Yeast cells under non-CR conditions accumulate ethanol, which then represses 
the synthesis of Fox1, Fox2 and Fox3. This elicits a build-up of fatty acyl-CoA esters (FA-CoA) in peroxisomes, thereby initiating several negative 
feedback loops that weaken TAG lipolysis in LD, TAG transport from the ER to LD and TAG synthesis from diacylglycerol (DAG) in the ER. The resulting 
build-up of FFA and DAG in the ER and LD shortens yeast CLS because these two lipids trigger an age-related form of liponecrotic programmed cell 
death (PCD). Red arrows next to the names of lipid classes denote those of them whose concentrations are increased in non-CR yeast. Inhibition bars 
displayed in red color signify negative feedback loops. See text for more details.
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of prolonging yeast CLS has identified lithocholic bile 
acid (LCA) as one of such geroprotectors (162). Yeast 
cells do not produce LCA or other bile acids, all of 
which are synthesized and released into an ecosystem 
by animals and humans (174-177). If LCA is added 
exogenously to yeast cultured in a liquid medium, this 
highly hydrophobic bile acid enters the yeast cell, is 
delivered to mitochondria, accumulates mainly in 
the inner mitochondrial membrane (IMM) and also 
associates with the outer mitochondrial membrane 
(OMM) (178). A body of evidence supports the notion 
that LCA slows down yeast chronological aging because 
it instigates specific changes in the concentrations of 
mitochondrial membrane phospholipids (178-183). 
This evidence has recently been thoroughly discussed 
(184-188). We therefore briefly summarize below the 
data confirming that certain LCA-dependent changes in 
mitochondrial membrane phospholipids play essential 

roles in the ability of LCA to extend yeast CLS. These 
data are integrated into a model presented in Figure 6.

 
After being sorted to a double membrane 

delimiting mitochondria, LCA elicits three major 
changes in the abundance and composition of 
mitochondrial membrane phospholipids. These major 
changes are depicted in Figure 6 and outlined beneath. 

First change: LCA significantly increases the 
phospholipid/protein ratio of mitochondrial membranes; 
this rise in the abundance of all membrane phospholipid 
classes in mitochondria causes a substantial 
enlargement of these organelles (178) (Figure 6). 

Second change: LCA considerably augments 
the relative concentration of PA, likely by activating its 
transfer from the ER to the OMM via mitochondria-

Figure 6. Exogenously added lithocholic bile acid (LCA) enters the yeast cell, accumulates in a double membrane delimiting mitochondria, and elicits 
major changes in the abundance and composition of mitochondrial membrane phospholipids. These changes in mitochondrial membrane phospholipids 
initiate a cascade of downstream events that gradually develop an anti-aging cellular pattern, thus extending longevity of chronologically aging yeast. 
See text for more details. Abbreviations: CDP-DAG, cytidine diphosphate-diacylglycerol; Cl, cardiolipin; ER, endoplasmic reticulum; OMM, outer 
mitochondrial membrane; IMM, inner mitochondrial membrane; IMS, intermembrane space; MLCL, monolysocardiolipin; PA, phosphatidic acid; PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PS, phosphatidylserine; PGP, phosphatidylglycerol-phosphate
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ER contact sites and the ensuing movement of PA 
from the OMM via the intermembrane space (IMS) 
to the IMM (178, 183). PA is a so-called ″fusogenic″ 
lipid class known to stimulate a fusion of two or more 
small mitochondria into a single mitochondrion (182). 
This LCA-driven increase in the relative concentration 
of PA causes a substantial decline in the number of 
mitochondria (178) (Figure 6).

Third change: LCA differently affects the 
relative concentrations of different phospholipid classes 
as follows: a) it causes a rise in PS, phosphatidylglycerol 
(PG) and PC; and b) it causes a decline in PE, 
cardiolipin (CL) and monolysocardiolipin (MLCL) (178, 
183) (Figure 6). These effects of LCA are believed to be 
instigated by an LCA-dependent attenuation of Psd1 
and Crd1, which catalyze the conversion of PS into PE 
and of PG into CL (respectively) (178, 183) (Figure 6). 
These LCA-driven changes in different phospholipids 
not only decrease the relative concentrations of the 
non-bilayer forming classes of phospholipids but also 
increase the relative concentrations of the bilayer 
forming classes of phospholipids (178, 183) (Figure 
6). The non-bilayer forming classes of phospholipids 
are known to enhance membrane curving for the IMM, 
whereas the bilayer forming classes of phospholipids 
have the opposite effect on IMM curving (178, 189-
192). Because LCA elicits these divergent effects on 
the non-bilayer forming and bilayer forming classes 
of phospholipids, many cristae in mitochondria of 
yeast treated with LCA are disconnected from the 
IMM and amass within mitochondrial matrix as flat 
bilayers (178, 184, 186, 188) (Figure 6). Moreover, 
because LCA increases the phospholipid/protein ratio 
of mitochondrial membranes (see above), this bile acid 
also rises the abundance of such disconnected cristae 
inside mitochondria (178, 184, 186, 188) (Figure 6).

Taken together, these data indicate that 
the LCA-driven changes in mitochondrial membrane 
phospholipids play a causal role in enlarging 
mitochondria, lessening mitochondrial number, and 
increasing the abundance of mitochondrial cristae that 
are disconnected from the IMM and accumulate within 
mitochondrial matrix as flat bilayers (178, 184, 186, 
188) (Figure 6).

The above changes in the abundance and 
morphology of mitochondria in LCA-treated yeast 
lead to significant changes in the concentrations of 
many mitochondrial proteins; these mitochondrial 
proteins have been implicated in such longevity-
defining processes as the tricarboxylic acid cycle, 
glyoxylate cycle, electron transport chain, amino acid 
synthesis, heme synthesis and attachment, iron-sulfur 
clusters synthesis and assembly, NADPH synthesis, 
ROS detoxification, protein import and folding, stress 
response and protection, mitochondrial division, 
mitochondrial DNA replication and maintenance, 

and synthesis and translation of mitochondrial RNA 
(181, 183) (Figure 6). The LCA-driven changes in 
mitochondrial proteome of LCA-treated yeast alter the 
age-related chronology of several longevity-defining 
mitochondrial processes, including mitochondrial 
respiration, membrane potential preservation, ROS 
homeostasis maintenance and ATP synthesis (178, 
183) (Figure 6). These LCA-dependent alterations 
in mitochondrial functionality allow mitochondria to 
operate as signaling platforms that a) orchestrate a 
longevity-extending transcriptional program for many 
nuclear genes that are controlled by a discrete set 
of ten transcriptional factors, thus altering the entire 
cellular proteome; b) promote changes in the lipidomes 
of cellular organelles other than mitochondria; and c) 
elicit changes in the concentrations of certain water-
soluble metabolites located outside of mitochondria 
(178, 181, 183, 188) (Figure 6). 

In sum, the LCA-driven changes in 
mitochondrial membrane phospholipids trigger a 
cascade of downstream events that gradually lead to 
the development of a cellular pattern extending yeast 
CLS. In the future it would be interesting to investigate 
mechanisms through which LCA-dependent changes 
in mitochondrial functionality prompt changes in 
membrane lipidomes and water-soluble metabolomes 
outside of mitochondria. Another challenge is to assess 
the timetable of events that, in response to LCA-driven 
changes in mitochondrial membrane phospholipids, 
lead to the development of a pro-longevity pattern of 
the entire yeast cell. 

4. SUMMARY AND PERSPECTIVE

Recent studies have provided an important 
conceptual advance in our understanding of the 
mechanisms that underlie the vital roles of sphingolipids, 
TAGs and mitochondrial membrane phospholipids 
in controlling the pace of cellular aging in the yeast 
S. cerevisiae. The essential mechanistic role of lipid 
metabolism and transport in defining longevity of this 
unicellular eukaryote further supports the notion that 
some aspects of the maintenance of lipid homeostasis 
are essential for healthy aging in evolutionarily distant 
organisms. These eukaryotic organisms include not 
only laboratory strains of budding yeast, roundworms 
(15, 193-213), fruit flies (214-223) and mammals (208, 
224-241), but also humans (208, 232-235, 241-246). 
The major challenge now is to get a greater insight 
into the mechanisms through which lipid metabolism 
and transport define lifespan and healthspan in 
multicellular model organisms and humans. 
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