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1. ABSTRACT

Pathophysiological changes of Alzheimer’s 
Disease (AD) begin decades before clinical symptoms 
become apparent, providing an important window for 
early diagnosis and intervention. Prodromal stage of 
AD, a great opportunity for effective treatment and 
postponing the disease onset, has drawn extensive 
attention. The application of different biomarkers 
including neuroimaging, biochemical substances 
and genes makes AD-related pathology detectable 
in vivo and exploring novel biomarkers with relatively 
non-invasive and low cost has intrigued a wide range 
of interests. To identify individuals with high risk of 

conversion to AD and apply the research concept 
of prodromal AD into clinical practice, the utility of 
various biomarkers for distinguishing prodromal 
AD is evaluated in this review. Additionally, clinical 
management focusing on the stage of prodromal AD 
is summarized in this review for dementia prevention. 

2. INTRODUCTION

Alzheimer’s Disease (AD), characterized 
by progressive and irreversible cognitive decline, 
is considered as the most common form of 
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neurodegenerative disorders leading to dementia. 
AD approximately accounts for 50% of dementia (1) 
and results in globally heavy healthcare burden with 
an estimated cost of $1 trillion by 2050 (2). Previous 
studies have demonstrated that pathophysiological 
features of AD begin decades before clinical symptoms 
become apparent (3). Due to the extensive neuronal 
loss at the stage of dementia, therapeutic intervention 
for AD at this stage is too late. The prodromal stage of 
AD and even the stage prior to the clinical symptom 
onset but with AD pathophysiological changes, i.e. 
preclinical AD shall be targeted. 

Prodromal AD is a symptomatic pre-dementia 
stage and amnestic mild cognitive impairment (aMCI) 
is a transitional state between healthy elderly and AD 
dementia (4). aMCI has been initially considered as the 
prodromal AD due to its high likelihood of conversion 
to AD. The annual progression rates from aMCI to AD 
is approximately 10% to 15% (5). Previous studies 
suggested that early identification of patients with 
aMCI was of great benefits for improving the disease 
intervention outcomes and monitoring the progression 
of AD. 

Alzheimer’s pathologies include senile 
plaques made of amyloid-β (Aβ) accumulation and 
neurofibrillary tangles (NFTs) formation in multiple 
cortices (6). Currently, the application of multiple 
biomarkers derived from cerebrospinal fluid (CSF), 
positron emission tomography (PET), etc, has made 
AD-related pathologies detectable in vivo, providing 
possibilities for the diagnosis of AD at the prodromal 
stage and increasing the predictive power of aMCI 
conversion to AD (7-10). Additionally, topographical 
biomarkers, such as structural alterations, 
hypometabolism or hypoperfusion in several specific 
brain regions can indicate AD dementia, and risk genes 
can predispose to AD dementia. However, the utility of 
most biomarkers has some limitations because of their 
relative invasiveness, radioactivity and costliness. 
Therefore, more attention has been increasingly paid 
to various novel body fluid biomarkers, such as blood- 
and urine-based markers due to their accessibility and 
relatively low cost (11, 12). 

Neuroimaging and biochemical markers 
provide essential and complementary information from 
different perspectives to enhance our understanding of 
AD. Most previous studies focused on revealing the 
anatomical, functional and biochemical differences 
between patients and healthy elderly at group level 
(13). Machine learning and pattern recognition 
techniques for early identifying patients with prodromal 
AD may potentially be of significance in clinical practice 
(13-16). 

Here, we introduce the evolution of prodromal 
AD diagnostic criteria overtime. Then, we elucidate 

characteristic neuroimaging markers and CSF 
biomarkers in prodromal AD, and AD susceptibility 
genes. Meanwhile, we describe the diagnostic and 
prognostic values of these biomarkers with the 
application of machine learning methods, e.g. support 
vector machine (SVM). At the end, we summarize the 
development of pharmacologic and non-pharmacologic 
management in prodromal AD. 

3. THE DEFINITION OF PRODROMAL AD

Different recommendations for prodromal AD 
have been proposed over the past decades. Initially, 
prodromal AD was defined as the symptomatic pre-
dementia stage of AD, mainly referring to MCI (17). 
Patients with MCI are diagnosed primarily based on 
the criteria proposed by Petersen et al. in 2001, which 
are: memory loss complaint preferably confirmed by 
an informant; objective cognitive impairment in single 
or multiple domains, adjusted for age and education; 
preservation of independence in functional abilities 
and failure to meet the criteria for dementia, such 
as the Diagnostic and Statistical Manual of Mental 
Disorders, 5th edition (DSM-5) (5). However, due to the 
broad range and the absence of specific biomarkers, 
the identification of prodromal AD has relatively great 
heterogeneity. 

Recently, with the advances of distinctive 
and reliable biomarkers supportive of AD pathology, 
it is more likely to achieve the accurate diagnosis of 
prodromal AD in vivo. Two diagnostic systems have 
been proposed. According to the international working 
group (IWG) in 2007, the definition of prodromal AD 
requires the clinical symptoms and the presence 
of at least one biomarker reflecting Alzheimer’s 
pathology (4, 18). It is generally considered that 
typically episodic memory loss, together with the 
biomarker evidence from CSF or imaging (e.g., CSF 
Aβ42 or PET amyloid), will recognize AD with higher 
accuracy at the prodromal stage. Therefore, the 
renewed proposal of prodromal AD is a substantial 
improvement over the previously clinical definition 
(19). However, the revised diagnostic criteria neglect 
the classification of these supportive biomarkers. In 
2014, Dubois and colleagues further classified the 
biomarkers as diagnostic markers (pathophysiological 
markers) and progression markers (topographical or 
downstream markers), indicating that the diagnosis of 
prodromal AD in vivo requires the presence of clinical 
signs and at least one pathophysiological biomarker 
(the coexistence of decreased Aβ42 and increased 
total-tau/phosphorylated-tau in CSF or retention on 
amyloid PET or an autosomal dominant monogenic 
AD mutation) (19). Currently, studies have showed that 
it was not sufficient for individuals with isolated brain 
amyloidopathy or tauopathy to develop clinical AD 
and the combination of biomarkers involving amyloid 
and tau pathologies may substantially increase the 
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diagnostic specificity of AD. Thus, according to the 
latest criteria proposed by Dubois in 2016, individuals 
with the co-occurrence of amyloid and tau pathologies 
have the highest risk for developing AD, regardless of 
the stage (prodromal stage or even at asymptomatic 
preclinical stage) (20). The novel definition of prodromal 
AD includes the occurrence of the clinical phenotype of 
AD (either typical or atypical) with positive biomarkers 
of both amyloidopathy (A+) and tauopathy (T+).

Another diagnostic framework was proposed 
by the National Institute on Aging and the Alzheimer’s 
Association (NIA-AA) in 2011, which adopted the term 
“MCI due to AD” to refer to the symptomatic predementia 
phase of AD (21). The workgroup established two sets 
of criteria, including core clinical criteria and research 
criteria, the latter of which incorporated biomarkers 
derived from neuroimaging and CSF. It also proposed 
that the application of biomarkers contributes to 
confirm levels of certainty for the diagnosis of MCI due 
to AD. If individuals with MCI have positive biomarkers 
for both Aβ and neuronal injury, they will present the 
highest level of certainty to develop AD dementia over 
time, indicating that they are more likely to be “MCI 
due to AD”. Nevertheless, individuals with isolated 
brain amyloidopathy or a positive biomarker reflecting 
neuronal injury only have intermediate likelihood of 
conversion to AD dementia.

Taken together, both two diagnostic 
frameworks emphasize the significance of conjoint 
application of biomarkers reflecting amyloid and 
neurodegeneration in the diagnosis of prodromal AD 
or MCI due to AD. However, compared with IWG-2 
criteria, NIA-AA framework requires the decreased CSF 
Aβ42 while IWG-2 rule emphasizes the coexistence of 
tau (p- or t-tau) changes in the CSF for corroborating 
Alzheimer’s pathology (20).

4. PATHOPHYSIOLOGICAL BIOMARKERS IN 
PRODROMAL AD

4.1. CSF biomarkers

Numerous studies have detected decreased 
concentrations of Aβ42 and increased levels of total 
and phosphorylated tau in the CSF of patients with 
AD, yielding relatively high specificity in the disease 
diagnosis and possibly predicting the progression of 
MCI into AD (22-24). In MCI patients, subjects with 
greater memory complaints have increased likelihood 
of AD-related pathology, which is defined as the 
presence of low CSF Aβ42 together with high CSF 
tau or phosphorylated tau levels (25). Several studies 
suggest the application of decreased Aβ42/40 ratio 
for improving diagnostic accuracy due to its better 
correspondence to amyloid PET than Aβ42 alone 
in patients with AD (26). Additionally, the ratio of 
phosphorylated tau or total tau to Aβ42 also has great 
accuracy in detecting amyloid positive subjects with 

MCI, indicating the role of CSF biomarkers in the early 
and accurate detection of Alzheimer’s pathologies 
(27). Furthermore, combination of different CSF 
biomarkers has stronger accuracy in diagnosis of 
AD. For example, applying three CSF biomarkers, i.e. 
Aβ42, total tau and phosphorylated tau, could advance 
AD diagnosis accuracy with 93.5.% in sensitivity and 
82.7.% in specificity (8). 

The above-mentioned CSF biomarkers are 
likely to predict clinical progression of AD as well. 
Sierra-Rio et al. (7) found that MCI and subjective 
cognitive decline (SCD) individuals with pathological 
AD CSF biomarkers profile, such as abnormal Aβ42/
phosphorylated tau ratio, had a higher proportion of 
conversion to the stage of dementia during 5-year 
follow-up. However, CSF Aβ levels alone may be not 
effective for detecting MCI patients with high risk of 
developing AD (1).

4.2. Amyloid PET biomarkers

Compared with in vivo MRI techniques, 
imaging with amyloid PET could offer more important 
insight in abnormal neuropathological lesions of AD. 
Besides the reduced levels of Aβ42 in the CSF, Aβ 
deposition can be detected in brain by PET imaging 
with special tracers, such as 11C-Pittsburgh Compound 
B (PIB), 18F-florbetapir, etc (28). Studies have 
confirmed that abnormal PIB PET scans are associated 
with longitudinally cognitive decline in prodromal AD 
and even in cognitively normal elderly (29, 30). For 
example, amyloid-positive MCI patients are more 
likely to progress to AD dementia than those without 
Aβ deposition after two-year follow-up (31). Hatashita 
also found that amyloid positive patients with MCI have 
a greater increased annual rate in PIB standardized 
uptake value ratio (SUVR) than amyloid-negative MCI 
patients and are likely to develop AD dementia within 
a shorter period. Interestingly, although Aβ deposition 
is considered to initiate the AD pathological cascade, 
its load severity is not directly related to the clinical 
symptoms and the risk profile may reach a plateau as 
Aβ load is increasing (31). 

4.3. Tau PET biomarkers

Selective tau ligands, including (18F)
THK5117, (18F)THK5351, (18F)AV1451 (T807) 
and (11C)PBB3, can mirror the distribution of tau 
protein in several neurodegenerative disorders, 
such as AD, frontotemporal dementia, progressive 
supranuclear palsy, et al (32, 33). Although Aβ may 
be the initial accelerator for the onset of AD, the 
pathological aggregation of tau has been suggested 
to have a closely direct correlation with patterns of 
neurodegeneration and cognitive impairment than 
Aβ. For example, there was a significantly negative 
association between (18F)AV1451 and 18F-FDG 
uptake in AD (34). Contrary to Aβ imaging, (18F)
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AV1451 retention in key brain regions that were 
related to memory, visuospatial function and language 
presented a strong link to neuropsychological scores. 
Moreover, there are significant associations between 
(18F)AV1451 deposition and CSF biomarkers, 
notably for total tau and phosphorylated tau181, 
possibly suggesting the consistency of CSF and PET 
in measuring tau protein (9). 

5. TOPOGRAPHICAL BIOMARKERS IN PRO-
DROMAL AD

5.1. Structural MRI biomarkers

Currently, the relationship between the 
pathological cascade of AD and the emergence of 
clinical symptoms has been elucidated in numerous 
studies, most of which confirm clinical symptoms 
closely in parallels with progressive worsening 
of neurodegeneration, such as the formation of 
phosphorylated tau, neural dysfunction and brain 
atrophy, rather than Aβ accumulation (3). The 
distribution of neurofibrillary pathology initially appears 
in the medial temporal regions (11, 35, 36), subsequently 
leading to significant gray matter atrophy and further 
disrupting the processing of episodic memory. Using 
structural MRI, researchers have reported a significant 
volume reduction of the medial temporal cortices in AD 
patients, which is strongly correlated with memory loss 
(11, 37, 38). Additionally, a similar spatially distribution 
patterns of brain atrophy, primarily on medial temporal 
regions (e.g., hippocampal and entorhinal cortex), 
have also been demonstrated in patients with aMCI 
(39, 40). Furthermore, for individuals with positive PIB 
PET scans, hippocampal atrophy can predict shorter 
time-to-progression from MCI to AD (31). In summary, 
there is a general consistency of the brain structural 
changes in individuals with AD or aMCI, and structural 
MRI is a promising tool to assist in the detection of 
prodromal AD. 

5.2. FDG-PET biomarkers

Previous studies based on (18F) 
fluorodeoxyglucose PET (FDG-PET) have confirmed 
hypometabolism in multiple brain regions in patients 
with MCI, such as posterior cingulate, inferior parietal 
lobe and medial temporal cortices, which are identical 
to the abnormal metabolic mechanism occurred in AD 
(41-43). As mentioned in prior studies, the progressive 
accumulation of Aβ, detected by decreased CSF Aβ 
levels or positive amyloid PET, is not capable of tracking 
progression to AD dementia. In contrast, tau-related 
neurodegeneration may be useful for this prediction. 
Higher baseline concentrations of tau protein in 
the CSF are more predictive of decline in cerebral 
glucose metabolism, further leading to subsequent 
cognitive impairment (44). Thus, FDG-PET has been 
recommended as a strong predictor of progression 
from MCI to AD. Using FDG-PET, posterior precuneus 

and cingulate are thought to be the brain regions with 
potential value for predicting AD progression from MCI 
(45, 46). Additionally, hypometabolism in posterior 
cingulate, combined with Alzheimer’s Disease 
Assessment Scale-Cognitive (ADAS-Cog) Total Mod 
and Mini-Mental State Exam (MMSE) scores could 
improve the progressive prediction from MCI to AD 
with a sensitivity of 96.4.% and a specificity of 81.2.% 
(45). In conclusion, special metabolic changes in 
FDG-PET probably increase with progression to AD 
dementia and determine the risk of progression.

5.3. Functional MRI biomarkers

The advance of functional MRI, indirectly 
mirroring neuronal activities, provides a promising 
technique that allows to non-invasively investigating 
intrinsic brain functional characteristics in AD. The 
presence of abnormal focal brain activity and disrupted 
functional connectivity within default mode network 
(DMN) has been shown in both AD and MCI patients 
(47-49). However, most of previous studies have not 
recruited prodromal individuals with biomarkers of AD 
pathologies. 

Recently, the association between 
amyloidogenesis and neuronal dysfunction has been 
investigated. Zhou et al. found that there was significant 
correlation between amyloid load and fractional 
amplitude of low frequency fluctuation (fALFF) (50). 
It is also reported that amyloid-positive patients 
with MCI exhibit increased hippocampal activation 
during an associative face-name memory encoding 
task both at baseline and over 36-month follow-up, 
which may reflect the employment of compensatory 
strategies in the early stage of AD and/or amyloid 
induced excitoxicity (51). Early MCI (EMCI) patients 
with positive amyloid might present more widespread 
disruption of functional connectivity within DMN than 
those without amyloid deposition (52), while other 
studies revealed no association between the DMN 
connectivity and amyloid deposition (53). Therefore, 
further studies are needed to confirm whether 
amyloid deposition contributes to aberrant functional 
connectivity. Moreover, the alterations of functional 
connectivity in aMCI, such as the enhanced functional 
connectivity between parahippocampus and middle 
frontal gyrus, have the potentially predictive value for 
future episodic memory decline, which is independent 
of amyloid deposition (54). Consequently, functional 
MRI has the potential to elucidate the characteristics 
of prodromal AD and Aβ pathology may be linked to 
changes of brain functional activity. 

6. OTHER BIOMARKERS IN PRODROMAL AD

6.1. DTI biomarkers

White matter tract alterations have been 
consistently described in AD. It has been confirmed 
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that white matter (WM) degeneration is concomitant 
with gray matter loss, further influencing the 
information communication between distributed 
brain regions (55). Diffusion tensor imaging (DTI) is 
sensitive to WM ultrastructural damage and has been 
used in studying neurodegenerative disorders. For 
aMCI patients, studies have confirmed the reduced 
fractional anisotropy (FA) and increased mean 
divusivity (MD) in several fiber bundles, such as the 
cingulum bundles, the parahippocampal cingulum and 
long-distance association fascicles. Reduction of white 
matter FA in the uncinate fasciculus was in parallel with 
hippocampal atrophy and might specifically contribute 
to early impairment in episodic memory (56). Given that 
high-level cognitive processes depend on interaction 
among distributed brain regions, DTI equipped with 
graph theoretical approach can further elucidate the 
topological properties from a systematic perspective. 
The decreased global efficiency and weakened small-
worldness of WM structural networks have been found 
in aMCI patients (57-59). 

White matter lesion load (WMLL) strongly 
correlates with amyloid load (50). In MCI and SCD 
cohorts, the axial diffusivity (DA), radial diffusivity 
(DR), and MD in WM hyperintensities (WMHs) are 
significantly higher for Aβ+ individuals compared with 
Aβ- individuals, suggesting that amyloid deposition 
may be associated with disrupted structural integrity 
(60). Additionally, WMHs had a negative effect on 
hippocampal volume in individuals with abnormal 
CSF Aβ42 levels (61). Furthermore, reduction in white 
matter integrity is greater in MCI patients with higher 
level of CSF total tau (62). In short, DTI parameters 
provide the information of white matter lesions in 
prodromal AD, which may reflect the underlying AD-
related pathologies.

6.2. Blood-based biomarkers

Compared to PET and CSF biomarkers, 
the utilization of blood-based biomarkers is relatively 
non-invasive and economical in assisting the disease 
diagnosis and prognosis (12). Among numerous 
candidate biomarkers in blood, plasma clusterin has 
been proposed as a potentially peripheral biomarker 
of AD. Clusterin is found overexpressed in the brain 
of AD patients (63, 64). MCI patients have higher 
plasma clusterin levels compared to controls, which 
is confirmed as a strong risk factor for conversion to 
AD dementia (65). The potential mechanisms may be 
that clusterin levels in plasma is associated with the 
longitudinally structural atrophy for patients with MCI 
(66). 

Plasma tau is another candidate for the early 
diagnosis of AD. High plasma tau was associated with 
low CSF Aβ42, accelerated worsening of cognitive 
impairment, brain atrophy, and cortical hypometabolism 

(67). However, Mattsson et al. thought that plasma tau 
was not sufficient to be an AD biomarker because it 
just partly reflected the AD-related pathology (67). 
Moreover, plasma Aß42 and plasma Aβ42/Aβ40 ratio 
have the possibility for identifying AD dementia with a 
sensitivity of 86%, further suggesting their potential to 
be the diagnostic biomarkers (1).

Besides, a number of studies have shown 
numerous other blood-based biomarkers, such as the 
plasma APLP1-derived Aβ-like peptides 28 (APL1β28), 
hyperhomocysteinemia levels, leptin, et al (12, 68, 69). 
To date, blood-based biomarkers present a limited 
value for the diagnosis and prognosis of AD mainly 
due to lack of thorough study and methodological 
issues (20). Further studies are needed to investigate 
their use for screening prodromal AD. 

6.3. Urine biomarkers

Alzheimer-associated neuronal thread 
protein (AD7c-NTP) is found overexpressed in brains 
with AD (70). Studies in vitro have investigated that 
overexpression of AD7c-NTP in transfected neuronal 
cells promotes neuritic sprouting and apoptotic cell 
death, which are two primary abnormalities associated 
with AD-related neurodegeneration (70). Besides 
elevated AD7c-NTP levels in cortex and brain tissues 
during the early stages of AD, its levels in CSF have 
been shown relatively high and increased AD7c-NTP 
was positively correlated with CSF tau within the AD 
group (71, 72). It is also widely considered that the 
level of AD7c-NTP is correlated with the severity of 
dementia (72). Therefore, researchers speculate that 
AD7c-NTP has the potential to be a biomarker of AD. 
Subsequently, Ghanbari et al. detected and measured 
AD7c-NTP in urine, which had the same molecular 
weight as AD7c-NTP in brain tissue and CSF and was 
found significantly higher in the AD group than the non-
AD group (73). Besides patients with AD, Ma L et al. 
(74) further confirmed that the urinary levels of AD7c-
NTP in the MCI group were significantly higher than 
those of healthy controls, suggesting that AD7c-NTP 
in urine has the potential to be a promising biomarker 
for identifying the individuals with high risk factor at 
prodromal stage of AD. 

6.4. Microbiota biomarkers

A large body of studies suggested that 
chronic bacterial infections might contribute to the 
pathogenesis of AD. Variant secretory molecules 
from microbes, such as amyloids, rhamnolipids (RL), 
lipopolysaccharides, et al., have been reported to be 
closely correlated with AD pathologies. Andreadou and 
colleagues found elevated RL levels in sera and CSF 
of patients with AD and MCI compared with healthy 
controls, which were also related to the severity of 
the disease (75). Additionally, emerging evidences 
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indicated that gut microbiota plays an important 
role in modulating brain plasticity and cognitive 
function in ageing (76). The pathway of information 
communication between brain and gut might exist, 
further modulated by plenty of microbiota, like bacteria, 
fungi and viruses. The dysfunction of “microbiota-
gut-brain axis” might be associated with AD-related 
pathogenesis (77). Previous studies have shown 

that the initial inflammation caused by the microbial 
infection may drive amyloidosis and the deposition of 
Aβ in the brain may serve as a protective response to 
microbial affection (78-80). Currently, however, there 
are few studies involving the characteristics of gut 
microbiota and the relationship between gut microbiota 
and cognition in patients with prodromal AD. Summary 
of biomarkers for prodromal AD is listed in Table 1. 

Table 1. Summary of biomarkers for prodromal AD

Classification Parameters/Measures Features References

Pathophysiological 
biomarkers

CSF 1 Aβ42, total tau, p- tau, 
Aβ42/40 ratio, Aβ42/p-tau 
ratio, etc

(1) There are decreased concentrations of Aβ42 and elevated levels of 
tau in prodromal AD; (2) The combination of different biomarkers in the 
CSF will advance the diagnostic accuracy; (3) Prodromal individuals 
with pathological AD CSF biomarkers have higher risk of conversion to 
dementia.

(7, 8, 23, 27)

Amyloid PET 11C-Pittsburgh Compound 
B (PIB), 
18F-flutemetamol, 
18F-florbetaben, 

18F-florbetapir, etc

(1) Amyloid PET can detect Aβ deposition in vivo before the appearance 
of typical AD symptoms; (2) Aβ deposition is associated with longitudinally 
cognitive decline but without relation to Aβ load severity.

(10, 30)

Tau PET (18F)THK5117, (18F)
THK5351, (18F)
AV1451(T807), (11C)
PBB3, etc

(1) The distribution of tau has a closely direct correlation with patterns 
of neurodegeneration and cognitive impairment than Aβ; (2) There are 
associations between tau deposition and CSF biomarkers.

(9,33)

Topographical 
biomarkers

Structural MRI Volume, cortical thickness, 
sulcal depth, metric 
distortion, mean curvature, 
etc 

(1) Similar spatially patterns of brain atrophy have been presented in aMCI 
2 and AD patients; (2) Longitudinally, for individuals with Aβ+, atrophy in 
medial temporal regions can predict shorter time-to-progression from MCI 
to AD.

(40,102)

FDG-PET 3 Fluorodeoxyglucose 
metabolism

(1) Hypometabolism of multiple brain regions in MCI (e.g., posterior 
cingulate, medial temporal cortices) is nearly identical to the abnormally 
metabolic manifestations occurred in AD; (2) FDG-PET is a strong predictor 
of progression from MCI to AD.

(42, 46, 47)

Functional MRI Amplitude of low frequency 
fluctuation (ALFF), 
fractional ALFF (fALFF), 
regional homogeneity 
(ReHo), functional 
connectivity strength, etc

(1) MCI has abnormal local brain activity and disrupted functional 
connectivity in multiple brain regions similar to AD; (2) Aβ pathology may be 
associated with aberrant functional activity.

(48, 51, 52)

Other biomarkers

DTI 4 Fractional anisotropy (FA), 
mean diffusivity (MD), 
radial diffusivity (RD), 
efficiency, betweeness 
centrality, etc.

(1) MCI has similar white matter alterations of AD, which are associated 
with cognitive dysfunction; (2) There are correlations between white matter 
lesion load (WMLL) and AD-related pathology.

(57, 58, 61, 
63)

Blood Plasma clusterin, tau, 
Aβ42/Aβ40 ratio, Aß42, 
APL1β28 5, leptin, etc

(1) Plasma clusterin levels are higher in MCI and have association with 
cognitive performances; (2) Plasma tau just partly reflected the AD-related 
pathology, while plasma Aß42 and Aβ42/Aβ40 ratio may be the potentially 
diagnostic biomarkers.

(1, 66, 68)

Urine AD7c-NTP 6 (1) AD7c-NTP is associated with AD-related neurodegeneration; (2) The 
urinary levels of AD7c-NTP in MCI may be a potential biomarker.

(71, 75)

Microbiota Secretory products (e.g. 
amyloids, rhamnolipids, 
lipopolysaccharides), gut 
microbiota (e.g. bacteria, 
fungi and viruses)

Elevated RL levels in sera and CSF of patients with AD and MCI. (76)

Abbreviations: 1 cerebrospinal fluid; 2 amnestic mild cognitive impairment; 3 fluorodeoxyglucose positron emission tomography; 4 diffusion tensor 
imaging; 5 APLP1-derived Aβ-like peptides 28; 6 Alzheimer-associated neuronal thread protein.
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7. GENETIC CONTRIBUTIONS TO  
PRODROMAL AD

Currently, AD is divided into early-onset 
AD (EOAD), who presents typically AD symptoms 
before 65 years, and late-onset AD (LOAD). It is 
generally recognized that AD is strongly associated 
with genetic mutations. EOAD is caused by mutations 
of autosomal dominant inheritance involving amyloid 
precursor protein (APP), presenilin 1 (PSEN1), and 
presenilin 2 (PSEN2), while LOAD or sporadic AD, has 
a strong genetic and environmental influence, such as 
educational years, cognitive reserve, diet, diabetes, 
etc (81).

The specific Alzheimer’s pathologies are likely 
to be present before clinical symptoms become apparent 
in autosomal dominant Alzheimer disease mutation 
carriers (82, 83). For example, in a cross-sectional 
study, cognitively unimpaired PSEN1 E280A mutation 
carriers had significantly decreased hippocampal 
volume, hypometabolism in precuneus, lower Aβ1-42 
and higher total tau /phosphorylated tau181 in CSF 
compared with noncarriers (82). However, there are 
few studies involving the effect of these genes (APP, 
PSEN1, PSEN2) on prodromal AD. One study enrolled 
fourteen mutation carriers (presenilin-1 and amyloid 
beta precursor protein) and fifty healthy controls. It 
showed that compared with noncarriers, asymptomatic 
and MCI subjects with mutation had decreased 
cerebral perfusion, which were also associated with 
increasing cerebral amyloid deposition and declined 
cognitive function (84). Therefore, we propose that 
in individuals with autosomal dominant Alzheimer 
disease, characteristically structural, functional and 
pathological changes would be present at the stage of 
preclinical and prodromal AD.

The possession of the apolipoprotein E 
(APOE) ε4 allele is generally thought to be a high risk 
factor for developing late-onset AD and its presence 
is related to increased levels of Aβ senile plaques, the 
critical component of Alzheimer’s pathology (85-87). 
For patients with AD, APOE ε4 carriers, especially 
those with two e4 alleles have significantly more neuritic 
plaques and neurofibrillary tangles (NFTs) in cerebral 
cortices than those with either one or no ε4 alleles (85). 
Individuals with MCI ε4+ also displayed lower levels 
of CSF Aβ42 than those with MCI ε4- (88). The link 
between APOE ε4 allele and episodic memory loss 
has some inconsistencies. Several studies suggested 
that APOE ε4 allele was only associated with memory 
decline in subjects with cognitive impairment, but not 
in cognitively normal controls (89, 90). However, in a 
longitudinal study for cognitively intact elderly, APOE 
ε4 allele carriers had a higher rate of cognitive decline 
and slower information processing speeds after 6 
years (91). To date, although several genes associated 
with AD have been found, APOE ε4 is still the core 

genetic risk factor of progression to LOAD (20, 92-94). 
Common genes associated with AD in Chinese and in 
Caucasian population are summarized below (Table 
2) (81, 82, 93-95), and those genes encoded protein 
products are related to several molecular pathways 
leading to AD (Figure 1) (81, 92).

8. DISCRIMINATIVE ANALYSIS FOR IDENTI-
FYING PRODROMAL AD

Although special biomarkers derived from 
neuroimaging techniques and biochemical methods 
have provided important information for accurate 
diagnosis and disease monitoring, most of these 
findings focus on revealing the group differences and 
have limited clinical translation (13). To improve the 
identification of prodromal AD, thus, several studies 
increasingly highlight the machine learning and 
pattern recognition techniques, such as support vector 
machine (SVM), which is a specifically supervised 
machine learning method mainly for classifying 
between groups (95-97). Through these approaches, 
structural, functional and biochemical features can be 
employed to discriminate prodromal AD from healthy 
controls (96, 98-100). 

Structural MRI has been considered to have 
relatively high validity for assisting clinicians in detecting 
AD due to the specific atrophy patterns in multiple 
brain regions, such as hippocampus. The volume of 
hippocampus is an effective biomarker for identifying 
AD from healthy controls with high accuracy, but a 
relatively lower discriminative power between MCI 
patients and controls. Given CA1 field, one subfield 
of hippocampus, has more apparent atrophy than the 
whole volume of hippocampus, structural changes in 
CA1 field have higher accuracy for identifying patients 
with MCI (100). Based on hippocampal shape features 
extracted from 23 aMCI and 25 healthy controls, 
Emilie et al. found that the classification rate for aMCI 
and controls was 83%, with about 83% sensitivity and 
84% specificity, respectively (100). The region with the 
most significantly discriminative power approximately 
corresponded to CA1 subfield. Moreover, previous 
studies have presented that patients with aMCI also 
have characteristically cortical morphological changes. 
Li et al. selected 24 aMCI and 26 controls, then 
extracted six cortical features for each aMCI subject 
and further identified abnormally spatial patterns via 
multivariate pattern classification. This study showed 
that different surface features had various contributions 
in discriminating patients with aMCI, predominately 
distributed in the medial temporal lobe and parietal 
regions (101). 

Studies also demonstrate the potential 
classification value based on resting-state functional 
MRI (99, 102). In a longitudinal resting-state study, 
26 aMCI patients were enrolled and Bai et al. found 
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that a high recognition accuracy of aMCI converters 
from non-converters was obtained by investigating 
the longitudinal changes of hippocampal sub-region 
functional networks (both the sensitivity and specificity 
were 83.3.%) (99). Another study further integrated 
multiple network topological and connectivity properties 
and reported significant classification improvement with 
an accuracy of 91.9.% (102). However, the number of 
aMCI patients involved in this study was only twelve. 

Given different biomarkers reflect pathological 
characteristics of AD from diverse perspectives, 

integration of multiple biomarkers appears to achieve 
more effective diagnosis of prodromal AD. For 
instance, patients with aMCI could be distinguished 
from healthy controls with a classification accuracy of 
83.5.9% via combining gray matter volume and white 
matter features, such as FA and MD (103). Long et 
al. adopted multi-level features from 29 aMCI and 33 
controls, such as the Hurst exponent (HE), amplitude 
of low-frequency fluctuations (ALFF), regional 
homogeneity (ReHo) and gray matter density (GMD), 
achieving a high classification accuracy of 96.7.7%, 
with a sensitivity of 93.1.0% and a specificity of 100% 

Table 2. AD causative and susceptibility genes

Gene Location Encoded protein Function Mechanism Onset of AD

APP 21q21.3. amyloid precursor protein Neuronal growth, Synaptic formation 
and repair, Aβ production

Proteolysis of APP 
in the amyloidogenic 
pathway

EOAD1/Familial 
AD

PSEN1 14q24.3. PSEN1 transmembrane 
protein

Regulate γ-secretase activity and Aβ 
production

Proteolysis of APP 
in the amyloidogenic 
pathway

EOAD/Familial 
AD

PSEN2 1q31-q42 PSEN2 transmembrane 
protein

Regulate γ-secretase activity and Aβ 
production

Proteolysis of APP 
in the amyloidogenic 
pathway

EOAD/Familial 
AD

APOE ε4 19q13.2. APOE protein Promote neuroinflammation, inhibit Aβ 
clearance, be involved in cholesterol 
metabolism, synaptic function 

Cholesterol metabolism LOAD2

SORL1 11q23.2.-q24.2. Sortilin Related Receptor 
1/ Neuronal APOE 
Receptor

Mediate APP processing and Aβ 
production

Cholesterol metabolism LOAD

Clusterin 
(CLU)

8p21-p12 Clusterin/apolipoprotein 
J (APOJ)

Aβ deposition, lipid transport, apoptosis, 
immunoregulation, 

Cholesterol and immune 
metabolism

LOAD

ABCA7 19p13.3. ATP-binding cassette 
subfamily A member 7

Cholesterol homeostasis, 
immunoregulation, Aβ accumulation, 
phagocytosis,

Cholesterol and immune 
metabolism

LOAD

CR1 1q32 C3b/C4b receptor Immunoregulation, neuroprotective 
effect, Aβ clearance

Immune metabolism LOAD

CD33 19q13.3. Transmembrane receptor Clathrin-independent endocytosis, cell 
growth regulation

Immune metabolism LOAD

BIN1 2q14.3. Myc box-dependent-
interacting protein 1

Clathrin-independent endocytosis, 
modulate tau-related pathology, 
immunoregulation

Endocytosis metabolism LOAD

CD2AP 6p12 CD2-associated protein Cytoskeleton regulation, receptor-
mediated endocytosis

Endocytosis metabolism LOAD

PICALM 11q14 Phosphatidylinositol 
binding clathrin assembly 
protein

Clathrin-mediated endocytosis Endocytosis metabolism LOAD

IL-83 
gene 
–251T>A 

4q13–21 a CXC chemokine Neurons damage, Aβ-induced 
proinflammatory responses

Inflammatory response LOAD

PSEN1 
(K311R)

Hydrophilic loop 
(HL) domain of 
the C-terminal 
cytoplasmic 
loop

PSEN1 transmembrane 
protein

Affect Aβ production and tau 
phosphorylation

APP processing and tau 
phosphorylation

Familial LOAD

TOMM40 19q13.3.2 Translocase of outer 
mitochondrial membrane 
40 (TOMM40)

Import protein precursors into 
mitochondria

Protein transport LOAD

Abbreviations: 1 early-onset AD; 2 late-onset AD; 3 Interleukin-8
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(104). Furthermore, features derived from PET, CSF 
and APOE have also been integrated for improving 
the discrimination ability (96, 105). However, it is 
worthwhile to note that employing more biomarkers 
do not necessarily contribute to the improvement of 
classification accuracy (96). 

At the end, imaging features for classifying 
prodromal AD from healthy controls are briefly 
summarized (Table 3) (106, 107). Given that most 
of studies are based on the small clinical cohorts 
without brain autopsy confirmation, and the relatively 
low diagnostic accuracy (about 70%-85%), it is not 
fully reliable to directly apply these results in the 
clinical practice currently. The discriminative results 
derived from big data analysis are likely to have higher 
reliability and accuracy in assisting in the diagnosis of 
prodromal AD. 

9. CLINICAL INTERVENTION AT PRODRO-
MAL STAGE OF AD

 It has been widely accepted that 
pharmacologic treatment and nonpharmacologic 
management are the two critical components of AD 
management. Nowadays, neurotransmitter regulation, 
based on three cholinesterase inhibitors (i.e. donepezil, 
rivastigmine and galantamine) and memantine, is 
mainly used to relieve AD clinical symptoms, but 
it still has great difficulty to reverse the disease 
progression (108). Therefore, researches involved in 
drugs targeting Aβ or tau protein in the treatment of 
AD, such as vaccines, antibodies or modulators of 
γ- and β-secretase, have been generally developed 
in order to intervene the whole process of AD (109). 
Recently, however, most of such clinical trials failed. 
The possible reason may be that the stage selected 

for disease-modifying therapies focuses on dementia 
stage, in which vast majority of neurons have lost. 
Consequently, effective strategies for the onset of 
preventing AD dementia should be managed in the 
prodromal or preclinical AD. We have listed some 
completely clinical trials targeting Aβ and tau pathology 
for MCI or early AD over the years in Table 4 (110-117). 

Given that AD has complexly 
pathophysiological mechanisms and multiple 
factors, such as nutritional supplement, cognitive 
training, physical exercise, etc., nonpharmacologic 
management may be of great significance for AD 
prevention and intervention. For example, early 
cognitive training (or cognitive rehabilitation) is thought 
to be very important for the treatment of patients with 
MCI and mild dementia (118). 

10. FUTURE DIRECTIONS

The application of various biomarkers is 
valuable and necessary to offer some persuasive 
evidences for the accurate diagnosis of prodromal 
AD. Nowadays, evolving researches are focusing 
on the key stage before the occurrence of the first 
clinical phenotype, including the stage of preclinical 
AD and the situation at risk of AD. Current research 
suggests that not all individuals with Aβ deposition 
will develop cognitive symptoms, so the classification 
for ‘asymptomatic at-risk state has been proposed. 
According to the updated conception, subjects of 
asymptomatic at risk for AD can be detected in 
cognitively normal individuals exhibiting an isolated 
AD pathophysiological biomarker (eg, amyloidopathy 
or tauopathy) (20). The risk of developing AD is also 
determined by some established factors, such as 
age, cognitive reserve, APOE genotype, and so forth. 

Figure 1. Molecular pathways involved in AD-related genes.
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Among them, years of education is one of the proxies 
of cognitive reserve, which is found to be associated 
with the increased functional connectivity in the left 
frontal cortex (119). Cognitively normal elderly people 
with two APOE ε4 alleles have a very great risk of 
conversion to AD (20). Additionally, it’s worth noting 
that although SCD is an indicator of subsequent 
cognitive decline in some studies, it is not a proxy 
for preclinical AD due to not necessarily imply a 
progression to clinical symptoms (120). In summary, 
stratifying high-risk or low-risk individuals would 
facilitate the selection of a biomarker “threshold” of 
AD changes that may be beneficial for designing 
specific studies (20). Currently, combining machine 
learning techniques with biomarkers stemmed from 
neuroimaging and biochemical methods contributes 
to the prediction of conversion into AD from those 

with prodromal symptoms. In the future, further 
computational algorithms are required to advance 
the precision of identifying the earliest and very 
subtle abnormalities of the individuals even in the 
asymptomatic at-risk stage (20). Given the limited 
distinguishing power in recent studies mainly caused 
by the absence of big sample, additional researches 
will be needed to fully resolve this critical issue. 
Meanwhile, launching longitudinal studies would 
have greater significance and prospect for elucidating 
the whole progression of AD.

11. CONCLUSION

Neuroimaging, biochemical and genetic 
markers play a crucial role in characterizing and 
identifying prodromal AD. Recently, although several 

Table 3. Imaging features for classification of prodromal AD

Techniques Subjects Parameters/Measures Discriminative 
performance

Features References

Structural MRI

23 aMCI1, 
25 controls

Spherical harmonics 
(SPHARM)
coefficients

83% accuracy, 83% 
sensitivity, 84% specificity.

The medial part of the head 
of the hippocampus, and CA1 
subfield.

(101)

24 aMCI, 
26 controls

Cortical thickness, sulcal 
depth, surface area, gray 
matter volume, metric 
distortion, mean curvature

76% accuracy in the left 
hemisphere and 80% 
accuracy in the right 
hemisphere using all six 
cortical feature.

The left medial temporal lobe, 
supramarginal and right inferior 
parietal lobes.

(102)

122 aMCI,
130 controls
130 AD

Cortical thickness/
Normalized thickness index 
(NTI)

76% accuracy in predicting 
the conversion from aMCI 
to AD according to the 
baseline NTI.

Right medial temporal, left 
lateral temporal, right posterior 
cingulated.

(107)

Functional MRI

26 aMCI
18 controls

Functional connectivity 83.3.% sensitivity and 
83.3.% specificity in 
classifying aMCI converters 
from non-converters.

Hippocampus subregional 
networks

(100)

12 MCI,
25 controls

Local connectivity and 
global topological properties

91.9.% accuracy Amygdala, parietal gyrus, 
temporal pole, superior frontal 
region, and lingual gyrus

(103)

20 AD, 
15 aMCI,
20 controls

Large-scale network (LSN) 
indexes

95% receiver operating 
characteristic curve (AUC), 
93% sensitivity, 90% 
specificity 

The global LSN connectivity (108)

Multi-modal 
MRI

79 aMCI, 
204 controls

Subcortical volumetrics and 
Fractional anisotropy (FA)

71.0.9% accuracy, 51.9.6% 
sensitivity,78.4.0% 
specificity.

Right lateral ventricle volume 
and FA value for the right crus of 
the fornix.

(96)

64 aMCI, 
64 controls

Gray matter volume (GMV), 
fractional anisotropy (FA),
and mean diffusivity (MD)

83.5.9% accuracy Medial temporal lobe, 
precuneus, cingulate gyrus, 
parietal lobe, and frontal lobe.

(104)

29 aMCI,
33 controls

Hurst exponent (HE), ALFF, 
regional homogeneity 
(ReHo), gray matter density 
(GMD)

96.7.7% accuracy, 93.1.0% 
sensitivity, 100% specificity

Default mode regions and 
subcortical regions such as 
lentiform nucleus and amygdala

(105_
ENREF_96)

Abbreviations: 1 amnestic mild cognitive impairment
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new body fluid biomarkers have lots of advantages, 
there are few biomarkers with higher sensitivity and 
specificity in diagnosing AD, especially in the early 
stage of the disease. Thus, in the future study, linking 
multiple biomarkers, combined with novel machine 
learning techniques, may be an effective approach 
for accurately screening prodromal AD and further 
providing opportunities for clinical intervention.
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