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1. ABSTRACT

Autism is a severe neurodevelopmental 
disorder which affects information processing in the 
brain as the result of an abnormally developed cortex, 
brought about in ways that are poorly understood. 
The disorder is characterized by a very early onset, 
however, neurobiological studies at such young 
ages are often precluded in humans, thus, rendering 
respective research in appropriate animal models of 
the disease invaluable. The bulk of this research has 
focused mainly on how experimental models differ 
from normal rather than on when they begin to differ. 
However, understanding the neurobiology of autism at 
its onset is important for both describing and treating 
the disorder. Moreover, modelling human behaviours 
in animals is often very difficult. Therefore, in order 

for neurobiological research of autism to proceed it 
is essential to “decompose” the disorder into simpler, 
behavior-independent biological parameters. Here, 
I propose how network dynamics of local microcircuits 
may serve such a role in order to derive developmental 
trajectories of the cerebral cortex that will allow us to 
detect and investigate the disorder at its very beginning.

2. INTRODUCTION

Autism is a neurodevelopmental disorder that 
affects 1 out of 150 children and is characterized by 
impaired social interaction and communication, absence 
or delay in language, restrictive and repetitive actions 
(stereotypy), heightened responses to sensory stimuli 
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and increased comorbidity with epilepsy (1-4). Beyond 
this unified description autism is part of a spectrum of 
related disorders/conditions known as autism spectrum 
disorders (ASDs) that ranges from mild personality traits 
to severe impairments and which affects 1 out of 68 
children (5-7). Autism has a true emotional and financial 
burden for families, society and the state. For example, 
in the United States it can cost about $3.2. million (USD) 
to take care of an autistic person over his/her lifetime 
(8) while recent estimates of the annual direct medical 
and non-medical, as well as productivity costs of autism 
sum up to an average of $268 billion (range $162–$367 
billion; 0.8.84–2.0.09 % of GDP) for 2015 and $461 
billion (range $276–$1011 billion; 0.9.82–3.6.00 % of 
GDP) for 2025 exceeding respective costs for diabetes 
or attention deficit and hyper-activity disorder (ADHD) 
(9). Moreover, besides its financial aspect, autism has a 
significant psychological cost for both the family and the 
patient himself, as well. The lack of social interaction, 
severely abnormal body use and often self-directed 
aggression render autistic patients unable to hold a job 
and make interpersonal relationships leading to a life 
dependent on caregivers. Nevertheless, despite the 
socio-economic burden of autism as well as reports 
showing that the prevalence of ASD is rising sharply 
(7), very little is still known about the neurobiology 
underlying autism.

Autism is characterized by a very early 
onset. The first symptoms of the disease are present 
already during the first couple of years of life (10-12) 
and early diagnosis and treatment have the best 
possible outcome for the child (13, 14). Despite their 
significance neurobiological studies in autistic patients 
are extremely difficult and rare at very young ages, 
condemning the majority of respective research to be 
retrospective describing autistic brains at adolescence 
or adulthood, in other words, at ages 10, 20 or even 
30 years after the onset of the disease (15)! Moreover, 
often the best and sometimes only source of 
information about molecular and cellular alterations in 
the actual patient brain come from neuropathological 
studies in post-mortem tissue. However, studies 
performed at advanced stages of a disease may 
reflect an endpoint of the disorder making it very 
difficult to distinguish between “cause, consequence, 
compensation or confound” (16), a fact that underlines 
the need to shift autism research focus from the time of 
symptoms to the time of onset. Therefore, an improved 
understanding of the neurobiology of autism would 
require longitudinal, perspective studies beginning at 
early stages of life (15). Such studies, however, are 
very difficult in humans rendering respective studies 
in appropriate animal models of the disease an 
invaluable resort to further neurobiology research and 
our understanding of autism.

In the current review I introduce the novel 
idea that spontaneous neuronal network activity 

recorded in vitro in rodent cortical slices may help 
us understand not only how local microcircuits of 
the cortex may be affected in autism, but also when. 
Pinpointing when development deviates from normal 
is important for several reasons: (1) abnormal 
excitatory and inhibitory synaptic homeostasis of 
the cerebral cortex have emerged as key cellular 
components in the pathogenesis of several psychiatric 
and neurodegenerative disorders, including ASDs, 
schizophrenia and Alzheimer’s disease (17–20) 
and it has been suggested that the unique deficits 
in cognition and behavior associated with these 
disorders depend on when dysregulation of synaptic 
structure and function occurs across the lifespan (16, 
21). (2) It may provide insight into when therapeutic 
intervention would be most effective in preventing the 
emergence of defected phenotypes (21, 22). (3) It will 
contribute to our understanding of the role of genes, 
molecules and cells in abnormal cortical development 
contributing to the perspective of mechanism-based 
therapeutics and the fulfillment of the molecular 
medicine for personalized treatment of the disorder. 
Finally, (4) understanding the underlying biology at the 
time of functional/physiological phenotype onset may 
better describe autism compared to neuropathological 
studies or descriptions performed at advanced stages 
of the disease.

Since autism has been often associated with 
developmental delays of motor and speech skills, as 
well as excess responses to sensory stimuli, which all 
rely on intact cortical processing, the cerebral cortex 
has been the main area of focus of autism research 
(3). It has been hypothesized that autism affects 
information processing in the brain as the result of 
the altered synaptic organization of an abnormally 
developed cortex brought about, however, in ways 
that are poorly understood. This limiting gap of 
neurobiological knowledge is due to (1) the fact that 
research of mental disorders is often complicated by 
behavior, thus stressing for the need to study simpler 
(behavior independent) biological phenotypes or 
“endophenotypes” of the disorder and (2) the lack 
of such appropriate neurophysiological markers to 
study. An endophenotype is the manifestation of a 
disease at a reduced level of biological organization 
as opposed to the macro-level of behavior (23–27). 
The slice is a reduced preparation of the brain, which 
importantly preserves its ability to spontaneously 
generate activity reminiscent of the intrinsic activity of 
the intact brain. Therefore, studying local microcircuits 
in spontaneously active cortical slices may lead to 
network-based endophenotypes of autism which can 
both guide research and therapeutic interventions in 
the lab and clinic.

Cortical neurons form recurrent networks 
which synchronize individual cells and are intrinsically 
active in the form of oscillating activity, visible at 
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increasingly macroscopic neurophysiological levels: 
from single cells to local field potentials (LFPs); to 
the clinically relevant electroencephalography (EEG). 
Synchronized oscillating neuronal networks are 
viewed as the “middle ground” between single-neuron 
activity and behavior (28). Interestingly, both in vivo, 
during quiescence, but also in vitro, in the brain slice 
preparation, cortical networks are spontaneously 
active in the form of a slow oscillation in the neocortex, 
composed of periods of sustained (persistent) activity 
alternating with prolonged periods of no activity, 
namely Up and Down states, respectively (29–37). 
This spontaneous network activity of the cortex is of 
particular neurobiological, clinical and research interest 
since: (a) it consists the ‘default’ activity of the cortex, 
the activity that the cortex generates endogenously, 
in the absence of external inputs, typical of quiescent 
states of the brain such as deep, non-REM sleep, 
anesthesia and quiet wakefulness (38). (b) It reflects 
the cortex’s hardwiring as shaped by genes and 
experience, the intrinsic properties of its cells and the 
dynamics of their synapses; forming the background 
upon which incoming sensory stimuli interact in 
determining cortical responses and behavior. (c) Up 
states are network, synaptic, events that reflect the 
balance of excitation and inhibition in the cortex (37, 
39-41) which is essential for normal cortical function. 
Deviation from this important balance in the neocortex 
has been suggested to underlie the pathophysiology 
of brain disorders such as autism and epilepsy (16, 21, 
42, 43). Finally, (d) this activity is preserved from the 
intact brain down to the reduced level of the brain slice 
providing researchers with a number of experimental 
tools and approaches from less to more invasive, from 
in vivo to in vitro.

3. UP AND DOWN STATES OF THE 
CEREBRAL CORTEX

The cerebral cortex is an intricate brain area 
that has been systematically viewed in the context 
of the thalamocortical system due to its extensive 
connection with another equally complex part of 
the brain, the thalamus. Sensory information reaches 
the neocortex almost exclusively via the thalamus, 
which drives the neocortex during activated states 
such as arousal in the behaving animal (44). However, 
the neocortex can be active even in the absence of 
thalamic input, a condition typical of quiescent brain 
states such as non-rapid eye movement (non-REM) 
sleep (34, 45-47), some types of anesthesia (34, 37, 
45, 46) and in vitro in the brain slice (31, 33, 36). Under 
these conditions the default activity of neocortical 
neurons consists of slow (<1 Hz), large-amplitude 
membrane potential fluctuations known as the slow 
oscillation. The slow oscillation occurs synchronously 
among both nearby (48, 49) and distant (50) neocortical 
neurons. Therefore, when quantitatively analyzed 
these membrane potentials actually define two states 

of the neocortex: the Up state which corresponds to 
an active cortical state with prolonged (hundreds of 
milliseconds) depolarized membrane potential and 
action potential firing, interspaced by long-lasting 
(at the range of seconds) periods of the Down state 
when the cells are relatively hyperpolarized and with 
no synaptic activity. The depolarization of neocortical 
cells during the Up state to levels similar to those of 
wakefulness (35), renders the Up state reminiscent of 
the activated state of the neocortex during arousal and 
cognition. 

Activation of the cortex is known to be gated 
by diffusely projecting neuromodulatory systems 
that stem from the brainstem and the basal forebrain 
(51, 52), which fire intensively during brain arousal 
(53, 54). However, Up/Down states emerge in the 
absence of neuromodulators, thus the short epochs 
of persistent activity during the Up states must have a 
different mechanism of generation. It has been shown 
that Up/Down states are intracortically generated (46); 
they are subjected to neuromodulation (55–57); they 
involve large ensembles of neurons both excitatory and 
inhibitory from all cortical layers (33, 34, 58); they recruit 
cells in repeatable spatiotemporal sequences (36, 59); 
they originate in layer V (40) and they propagate 
along the cortex (60) via upper layers (49, 61) and to 
cortical targets such as the thalamus (45, 58), striatum 
(62) and upper brain stem core structures (63).

There are two simple ways to view Up/Down 
states in regard to their generation: either Down 
states are imposed on sustained Up states or, vice 
versa, Up states emerge from sustained Down states, 
and there are mechanisms that can support these 
alternative scenarios. For example, neuromodulators 
act by alleviating cells from hyperpolarization 
imposed to them by outward potassium currents (as 
previously reviewed (64, 65)). Following Up states, 
the activation of repolarizing intrinsic currents could 
generate Down states that are imposed on Up states. 
On the other hand, Up states could originate from 
spontaneous subthreshold synaptic events amplified 
by a potent intrinsic inward current activated when 
such synaptic inputs synchronously impinge on a cell 
(66). An example of such a current is the Na+-mediated 
persistent current (INaP). Therefore, if the cell has a 
strong INaP then only a few spontaneous subthreshold 
synaptic events are required to generate an Up state 
in the cell and subsequently in the network. The 
presence, for example, of a stronger INaP conductance 
in layer V cells compared to cells in other layers, could 
explain why slow oscillations originate in this deep 
layer (40). 

3.1. Up and down cortical states in vitro 

Initially the knowledge and technology 
available confound neuroscientists to simply watch 



Cortical Up states in autism development 

1468 © 1996-2018

and describe brain oscillations, and correlate them to 
behavior. However, the advent of the in vitro technique 
allowed researchers to create these rhythms under 
controlled conditions and, thus, study and understand 
the underlying cellular and network mechanisms for 

Figure 1. Detection and quantification of the local field potential (LFP) 
Up state. (A) Continuous LFP recording (1–200Hz) of spontaneous Up/
Down state activity from a cortical slice. (B) Top panel: Automatically 
detected LFP Up states of the signal in (A) are outlined by gray 
rectangles. Bottom panel: Signal at high magnification provides view 
of individual Up state. Gray line is the automatically detected onset 
and offset of the event, based on which duration is calculated. (C) 
Rectified signal (absolute valued signal) of the Up state, from which 
the rectified area is calculated. Reproduced with permission and 
modified from (115).

their generation. The slice preparation preserved in vitro 
provides a steady and easily controllable environment 
which optimizes combined electrophysiological and 
pharmacological studies. 

Work in vitro, in brain slices has significantly 
contributed to our understanding of the neurobiology 
of pathological synchronized brain activity, such 
as epilepsy (67-73). Physiological cortical network 
rhythms, for example theta or gamma oscillations, 
have also been studied in brain slices. However, these 
studies were largely confounded to the hippocampus 
and they presupposed a pharmacological manipulation 
to induce the activity (74-76) (but see (77, 78)). On the 
other hand, in vitro work of neocortical, non-paroxysmal, 
network activity was limited, and in all cases neocortical 
oscillations were pharmacologically prompted and 
highly localized (79, 80). In general, the consensus 
was that such a reduced brain preparation, as the slice, 
could not support unconditioned, spontaneous, long-
range cortical oscillations similar to that seen in vivo, 
due to the lack of a complete neuronal network (81). 
However, Sanchez-Vives and McCormick in 2000 (40) 
showed that neocortical slices made from ferret brain 
produced spontaneous slow oscillations or Up/Down 
states when bathed with a buffer that closely mimicked 
the natural cerebrospinal fluid instead of solutions 
that had been traditionally used till then. Later work 
of ours reproduced spontaneous Up/Down states in 
neocortical slices of the mouse brain and mapped their 
presence throughout the whole cortex (73). Therefore, 
what is currently available is an in vitro model of Up/
Down states that provides us the means to investigate 
the mechanisms of its generation at both a network and 
cellular level from various cortical regions (Figure 1).

3.2. The significance of up and down cortical 
states 

Up/Down states are intrinsic features of the 
cortex, since the cortex spontaneously generates them 
in the absence of sensory input during quiescence. 
Large amplitude Up states and prolonged Down 
states are what underlie slow oscillations, the 
electroencephalographic hallmark of non-REM sleep 
(35). In addition, cortical slow oscillations play a 
pivotal role in brain activity during sleep since they 
are extensively synchronized over the cortex (50) and 
they organize and group other sleep rhythms, such as 
spindles and delta (82). Interestingly, the amplitude 
of Up states, as reflected in the amplitude of slow 
oscillations, correlates positively with sleep pressure 
(83) and depth of sleep (84). Thus, understanding how 
Up states are generated could provide us with valuable 
insight into cortical sleep physiology. In addition to 
spontaneous Up/Down states during quiescence, the 
cortex can generate Up states when being evoked either 
from within the cortex (41, 84) or from the thalamus 
(31, 36), its main input. Evoked cortical Up states are 
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identical to those that occur spontaneously (31, 36), 
which probably indicates the priority of intrinsic cortical 
dynamics over extrinsic inputs during quiescent states. 
Therefore, taken to their extreme, uncontrolled for Up 
states may underlie aspects of the pathophysiology 
of paroxysmal or hallucinative cortical activity during 
epilepsy (68, 85) and schizophrenia (86) resulting in a 
suppressed or distorted consciousness (87). 

Up/Down states can be maintained in cortical 
slice preparations, in the absence of sensory inputs 
or active neuromodulation, indicating that they are 
chiefly the outcome of intrinsic properties of local net-
works and hence reflects the ‘default’ activity of the 
cortex (38). Moreover, while Down states are periods 
of relatively low input conductance, Up states consist 
high-conductance states of cortical neurons both in 
vitro and in vivo (88-90). Therefore, Up states may 
provide the context to study and understand normal 
firing relationships between different types of neu-
rons. The fact that cortical Up states can be sustained 
in the absence of sub-cortical or long range inputs, 
has fuelled studies of Up state activity, in vitro, in 
brain slices as a model of the basic operation of the 
cortex whose mechanisms may form the substrate for 
cognitive functions during attention (91).

4. THE ENDOPHENOTYPE 

Research of mental disorders is often 
hindered by complex behaviors, which underlines 
the necessity to study simpler, behavior independent, 
biological markers or “endophenotypes” of the 
disorder. By definition, an endophenotype is the 
biological manifestation of a disease at a reduced 
level of biological organization as opposed to the 
macro-level of behavior (23-27), justifying the 
term’s etymology of a hidden (“endo”, in Greek) 
from the un-aided eye phenotype. Thus, in order for 
biological research of mental disorders to proceed, it 
is essential to ‘decompose’ the disorder into simpler, 
measurable biological parameters that can serve as its 
endophenotypes. The idea of the endophenotype was 
introduced within the context and the perspective of 
genetic analysis of diseases as an alternative method 
to measure phenotypic changes in order to ease the 
detection of the underlying genes responsible for 
the hereditary traits of these changes. In this sense 
endophenotypes can be viewed as intermediates 
between genotypes and phenotypes: some being 
closer to genes and others closer to behavior. 
Endophenotypes more proximal to the effects of 
genetic variation aid attempts to link genes to disorders 
and such endophenotypes fulfill a number of criteria 
in order to be useful in genetic analyses (92). In this 
review, however, I will use the term endophenotype at 
its broader definition: the biological manifestation of a 
disease at a reduced level of organization. The slice is 
a reduced preparation of the brain, which importantly 

preserves its ability to spontaneously generate activity 
reminiscent of the intrinsic activity of the intact brain. 
Therefore, studying local microcircuits in spontaneously 
active cortical slices may lead to network-based 
endophenotypes of autism which can both guide and 
be evaluated by respective efforts in the clinic. For 
example, Up/ Down states are cellular correlates of the 
slow-oscillation, the electroencephalographic (EEG) 
hallmark of quiescent states of the brain such as deep, 
non-REM sleep, anesthesia and quiet wakefulness 
(rest) (34, 93), and recordings of spontaneous network 
cortical activity during rest are currently employed in 
the clinic for the discovery of biomarkers of autism, 
schizophrenia and Alzheimer’s disease (94-97). The 
quest for a functional/electrophysiological biomarker 
of neurodevelopmental disorders of the brain, can be 
inspired and informed by the history and potential of 
epilepsy research.

4.1. Spike and wave discharges: an endopheno-
type of epilepsy

An important contribution of the EEG in 
epilepsy research was that it allowed neuroscientists 
to correlate epileptic behavior (e.g. myoclonic 
seizures) to the brain’s electrical activity. A classical 
distinction that neurologists make as far as the 
electroencephalographic expression of seizure activity 
is concerned is between interictal and ictal activity (98). 
The interictal phase is demonstrated in the EEG as a 
series of sporadic epileptiform discharges and is not 
accompanied by obvious behavioural manifestations 
of the seizure. From time to time an interictal event will 
give its place to an ictal period, characterized by a more 
continuous series of multiple EEG discharges and 
associated with a stereotyped behavioral disturbance. 
Each interictal event is typically composed of a 
negative discharge or “spike” followed by a more long-
lasting positive “wave” (spike and wave discharges, 
SWDs). 

In turn, this behavior-EEG link enabled 
investigators to study seizures electrographically, 
independently of behavior, in anesthetized animals 
in order to understand the underlying neurobiology. 
In 1870 Hughlings Jackson had predicted that focal 
epileptiform activity is characterized by intense and 
synchronous activity in large groups of neurons 
within the cortex (99). However, it was only less than 
a century later that Ajmone-Marsan and colleagues 
first demonstrated the correlation of EEG surface 
recordings with recurrent intracellular and extracellular 
recordings from a given epileptic focus and found that 
the cellular correlate of the electrographic seizure is 
a large and prolonged depolarization (the paroxysmal 
depolarization shift (PDS)) followed by a long-
lasting hyperpolarization (100-102). Therefore, the 
alternation of the depolarizing shift and the following 
hyperpolarizing potential, respectively, gives rise to 
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the “spike and wave” electroencephalographic pattern. 
Later work in vivo furthered our understanding of cells 
and networks responsible for the development and 
control of seizures (85, 103-106).

Although such in vivo models of epilepsy 
gave us important insight to the brain circuitry 
underlying ictogenesis, studying the respective 
cellular and molecular mechanisms requires long-
lasting intracellular recordings and pharmacological 
manipulations, which are not easily applied in vivo. 
This prompted investigators to model and study 
epileptic activity in vitro and indeed since the end 
of the 1970’s, work in slices has brought about 
groundbreaking progress in our understanding of 
epilepsy (67-73). However, early in vitro attempts were 
hampered by the fact that epileptiform events had to be 
induced artificially, either by electrical stimulation or by 
significantly altering the ionic composition of the bath 
solution, since brain slices were not spontaneously 
active. Thus, studying seizures in vitro required 
conditions that deviated from normal. Something more 
than 15 years ago, it was discovered that this problem 
could be circumvented by bathing the slices in a buffer 
(artificial cerebrospinal fluid, aCSF) that closely mimics 
the cerebrospinal fluid in vivo. Under these conditions 
the cortex generates spontaneous slow (<1Hz) 
oscillations (31, 32, 40) which can turn into paroxysmal 
SWDs after suppression of GABA-mediated inhibition 
(71-73), similarly to in vivo results (85, 107). Therefore 
years of electrophysiological research have lead to an 
in vitro model of electrographic seizures, generated 
spontaneously in the reduced preparation of the brain 
slice. This model provides the context to understand 
at the cellular and molecular level the neurobiology of 
seizures, the action of current anti-epileptic drugs and 
the development of new ones. Following I will provide 
two examples from previous work of ours of how an in 
vitro model of epileptic activity can be used to address 
clinically relevant questions.

4.1.1. Comparing ictogenesis in the cortex and 
studying mechanisms of epileptic activity 

Comparing cortical ictogenesis, i.e. which 
cortical areas and/or layers are more susceptible 
than others to generate seizures, is of critical clinical 
importance since not all cortical regions are equally 
epileptogenetic. For example, secondary generalized 
epileptic seizures begin locally from an epileptic focus 
and soon after generalize to the rest of the cortex 
and the brain. It is therefore important to pinpoint and 
study those cortical areas that are more susceptible to 
seizures in order to design targeted treatments of or to 
pharmacologically prevent seizures. Using the in vitro 
preparation in order to study cortical ictogenesity has 
several advantages: cortical areas can be studied in 
isolation; the researcher has easy access to different 
cortical layers; and since the in vitro condition provides 

a steady and well-controlled environment the slice 
preparation optimizes prolonged-pharmacological 
and intracellular studies providing insight to cellular 
and molecular mechanisms. The development of 
those conditions under which cortical slices would be 
spontaneously active in the form of the slow oscillation 
and subsequently the transformation of this normal 
activity into abnormal (paroxysmal) epileptiform activity 
(i.e. SWD) after suppression of cortical inhibition, has 
allowed us to study the intrinsic ictogenesity of distinct 
cortical areas (72, 73).

Since SWDs consist the electrographic 
hallmark of the epileptic brain we compared the 
capability of distinct cortical areas such as the granular 
(e.g. primary somatosensory) and the agranular (e.g. 
primary motor) cortex (72) or of the neocortex (namely 
the somatosensory cortex) and the evolutionarily more 
primitive paleocortex (namely the piriform cortex) 
(73), to generate spontaneous SWDs as a measure 
of their epileptogenesity. GABA is the major inhibitory 
neurotransmitter of the brain which acts on two main 
types of receptors: the fast, ionotropic, GABA-A 
receptors and the slower, metabotropic, GABA-B 
receptors (108, 109). The generation of epileptiform 
activity in the brain by suppression of GABA-A 
mediated inhibition is a widely applied model for the 
study of epileptic seizures (69, 85). Both in vivo and 
in vitro, suppression of GABA-A inhibition transforms 
cortical slow oscillation into recurring SWDs (72, 
73, 85). Therefore, when we compared in vitro the 
epileptiform activity of the neocortex with that of the 
paleocortex, we found that the latter generates SWDs 
at significantly higher frequencies (73). In addition, 
total suppression of cortical inhibition by blocking both 
GABA-A and GABA-B types of receptors, leads to the 
development of 10Hz afterdischarges in the agranular 
(motor) but not the granular (somatosensory) cortex 
(72). These differences in the excitability of distinct 
cortical areas likely demonstrate differences in the way 
that underlying neuronal circuits are organized due to 
their different cytoarchitecture.

Recording spontaneously active cortical 
slices is an experimental model that allows the 
study and comparison of the intrinsic activity of 
distinct cortical areas. We were actually the first in 
the field to describe this kind of activity in the adult 
mouse brain (72) opening new ways to study the 
cellular and molecular mechanisms of the cortex’s 
epileptiform activity and to better understand and treat 
it pharmacologically in the mature brain in a focused 
manner. The epileptic 10Hz afterdischarge activity 
that the agranular (motor) cortex develops during 
disinhibition is a good example of such a focused 
approach. Afterdischarges are of particular clinical 
interest since they correspond electrophysiologically 
to the ictal periods of seizures during which myoclonus 
takes place (107). In particular, during tonic-clonic 
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seizures the EEG is composed of periods of small 
amplitude, higher-frequency activity (the ictal period) 
interrupted by large amplitude but low-frequency 
discharges (the interictal period). Interestingly, ictal 
periods of the EEG are behaviorally demonstrated 
as myoclonus, while in the absence seizures type 
of epilepsy (common among children) the EEG is 
dominated by interictal discharges, of the SWD type. 
Thus in our in vitro preparation the SWD discharges 
corresponds to the interictal period of a seizures, while 
10 Hz activity belongs to the ictal period of an epileptic 
episode (Figure 2).

Interestingly, it seems that the 10 Hz activity 
is the intrinsic oscillation (resonance) of the motor 
cortex’s excitatory network since the same frequency 
can be generated not only under the condition of 
disinhibition but also in other widely used experimental 
models of epilepsy such as the activation of NMDA 
receptors in low extracellular Mg2+ which we also 
applied in our in vitro preparation (71, 110). Therefore, 
combining the appropriate electrophysiological and 
pharmacological experiments we found that the 10 
Hz afterdischarges: (a) are produced purely by a 
network of excitatory neurons without the involvement 
of inhibitory neurons, (b) they are generated by the 
synaptic network rather than pace-makers, (c) they are 
generated in the superficial layers of the cortex, and 
(d) they depend on both synaptic currents but also on 
intrinsic currents cortical neurons such as both inward 
currents like the persistent Na+ current (INaP) as well as 
outward currents like the M-type of potassium current 
(IM) (71, 72).

4.1.2. Screening for new antiepileptic drugs 

Despite the years of epilepsy research the 
drugs currently available in order to treat seizures are 
still more or less those introduced decades ago with 
often unknown mechanisms of action and significant 
side effects. Moreover, treatment of epilepsy in children 
is largely based on reduced doses of antiepileptic 

drugs used for adults according to the false view of 
the immature brain as a “smaller adult brain”. The 
promise of molecular medicine for the treatment 
of epilepsy in the future is the discovery of drugs of 
(1) known molecular mechanisms of action, with (2) 
region-specific and (3) age-specific effects within the 
brain. In this perspective research in experimental 
animals is instrumental and recording spontaneously 
active cortical slices of the mouse brain could be used 
as an experimental model that will allow us to test and 
study new antiepileptic drugs according to the scheme 
described in Figure 2. In this example, in an acute model 
of epilepsy (namely disinhibition) in vitro, in mouse brain 
slices, the agranular (motor) cortex develops SWDs 
followed by afterdischarges at the 10 Hz range which 
are abolished by phenytoin, a well-known antiepileptic 
drug. Similar work can be employed as a first, high-
throughput screening of the efficacy and potency of 
novel antiepileptic drugs or of antiepileptic drugs with 
discrete mechanisms of action. Further extracellular 
and intracellular recordings combined with appropriate 
pharmacological experiments would provide insight to 
the microcircuit, cellular and molecular mechanisms of 
action of the antiepileptic drug. 

5. USING SPONTANEOUS CORTICAL UP/
DOWN STATES TO DEFINE CRITICAL PERI-
ODS FOR THE DEVELOPMENT OF AUTISM 

Understanding and treating autism is 
intrinsically related with defining the onset of the 
disease. To this end, functional/ neurophysiological 
phenotypes may be more appropriate than structural 
deficits since dysfunction often occurs without 
apparent changes in structure. Accumulating evidence 
suggests that mental disorders such as Alzheimer’s 
disease, schizophrenia, or autism but also depression 
and bipolar disorders can arise from abnormal intrinsic 
activity in specific brain circuits in the absence of 
detectable structural lesions (26, 111-114). In autism 
research clinical investigators stress the need for 
functional longitudinal studies of the brain (functional 

Figure 2. The effect of phenytoin on afterdischarges in vitro. Reproduced with permission and modified from (72).
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magnetic resonance imaging, fMRI) in human infants, 
toddlers and children at high age resolution in order 
to define the ontogeny of the disease (15). However, 
such technologically advanced and complex studies 
are often difficult or practically precluded at very young 
ages, rendering research in appropriate animal models 
an imperative alternative. 

Animal models have proven to be essential 
for understanding the neurobiology of brain disorders 
and for preclinical testing of potential therapeutics. 
Indeed, animal research of autism neurobiology has 
led to an abundance of published information on the 
genetic, molecular, cellular and synaptic changes 
that take place in the disordered brain, however, 
much less is known on whether, to what extent and 
how these changes actually contribute to higher 
levels of organization such as the neuronal network, 
as a common final functional pathway that defines 
the pathophysiology of the disease and ultimately 
respective behavior. Moreover, to present, animal 
studies of autism neurobiology target ages and cortical 
areas of largely the investigators’ choice in a rather 
“top-down” manner and are usually limited each time 
to a single age, a specific cortical area and to males. 
Finally, the bulk of currently available research has 
essentially focused on how the brains of animal models 
of autism differ from normal, rather than on when they 
begin to differ. Alternatively, network dynamics of local 
microcircuits i.e. Up/Down states recorded in vitro in 
spontaneously active, acute brain slices prepared from 
appropriate animal models of autism could be used as 
a neurophysiological measure of brain maturation in 
order to draw and compare developmental trajectories 
of the autistic and normal brain. Such an approach 
would allow us to pinpoint and study the neurobiological 
onset of autism in distinct subareas of the developing 
cortex. In recent work of ours we showed that 
spontaneous Up states recorded in cortical slices by 
means of local field potentials can be used to draw the 
lifetime trajectory of network dynamics of the mouse 
neocortical microcircuit (115) and preliminary results of 
ours from a mouse model of autism indicate that Up 
states may also reflect differences in the development 
of normal and disordered cortical networks (116). 
Therefore, recording spontaneous Up/Down states in 
vitro could allow us to investigate those developmental 
periods and cortical areas that will prove to be 
significant for the ontogeny of autism as highlighted in 
a “bottom-up” manner by tracing the development of 
multiple areas of the autistic cortex. 

5.1. The Fmr1KO rodent model of autism

Rodents have been instrumental in the 
neurobiology research of autism. Since mice are more 
amenable to genetic manipulations than rats, rodent 
models of autism currently fall into two main categories: 
genetic models in mice and environmental models in 
rats. The Fmr1KO mouse, which is an excellent animal 

model of the fragile X syndrome (FXS), the most 
common inherited form of intellectual disability and 
an identified monogenetic cause of autism in humans; 
has been widely employed as an animal model for 
autism research (117-119). The fragile X syndrome 
is due to the silencing of a single gene, the fragile X 
mental retardation 1 (Fmr1) gene, located on the X 
chromosome. Mutations in the FMR1 gene lead to 
loss of expression or function in the protein it encodes, 
FMRP, a suppressor of translation present in synapses 
(120, 121). FXS has a traceable line of neurobiology 
from genes and molecules to cells, from synapses and 
circuits to behavior; a fact that renders the Fmr1KO a 
highly promising animal model for the understanding of 
neurodevelopmental disorders from genes to behavior 
and their treatment (22). Indeed several studies have 
described changes of cortical development in FXS and 
autism at the level of cellular and synaptic structure 
and dynamics (18, 21, 94, 122-129). An alternative 
rodent model of autism was developed mainly in rats 
and involves their exposure to the antiepileptic drug 
valproic acid (VPA) during gestation. The VPA-model 
is considered to be an environmental animal model 
for autism (130) for which molecular, cellular, synaptic 
and network alterations in neural tissue have been 
reported (131-137). 

The arrival of the Fmr1KO rat model of 
autism consists a recent advance in the field (138). 
Prior to the advent of genetic manipulations in mice, 
the rat was the animal of choice in neurobiology 
since it shows a more complex behavioral repertoire 
than the mouse, and its larger brain permits more 
sophisticated electrophysiological recordings. 
Recent developments, however, in genomic editing 
technologies have facilitated the ability to manipulate 
the rat genome, thus renewing interest in the rat as 
a model for genetically linked disorders. Although rats 
are sometimes falsely perceived as larger versions of 
mice, the evolutionary distance between rats and mice 
may actually be as great as that between humans and 
Old World monkeys (139). Therefore, the Fmr1KO rat 
model is of special interest for autism research since 
it will allow researchers to compare, combine and 
reconcile findings from mice and rats; from genetic and 
environmental animal models of autism. 

5.2. The developmental delay and 
heterochronicity of autism

Autism and mental retardation are clinically 
manifested by a developmental delay of motor 
and speech skills, as well as excess responses to 
sensory stimuli, all of them functions that require 
intact cortical processing (140). Since the cognitive 
deficits associated with these disorders first arise 
during childhood, they likely result from the altered 
development of neuronal networks of the cerebral 
cortex. Normal development of functional cortical 
networks requires the coordination of many precisely 
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timed events at the molecular, cellular and synaptic 
level (141-143). Deviations in the timing of these events 
will alter the precision of neuronal connectivity which 
in turn may lead to changes in network dynamics and 
ultimately the emergence of cognitive and behavioral 
dysfunctions. Moreover while normal cortical function 
requires the dynamic balance between excitation 
and inhibition, there is evidence that in the Fmr1KO 
cortex this balance is tipped in favor of excitation 
rendering its networks hyperexcitable (144-147). It 
has been suggested that impairment of this balance 
may be responsible for a shifted critical period of 
cortical development in autism (42) which, in turn, 
could be manifested as a shift/delay in developmental 
trajectories between normal and autistic cortices (22). 

Although clinically justified and conceptionally 
anticipated such a developmental delay in the 
developing autistic cortex has yet to be experimentally 
demonstrated. To this end network-based developmental 
trajectories may have several advantages. In particular, 
understanding how the absence of FMRP affects 
individual components of the network is important but 
not sufficient to predict their effect on the function of the 
network. It is likely that entirely new properties emerge 
at higher levels of neuronal organization (networks) 
compare to those of the constituent parts (molecules, 
cells and synapses) (148, 149). For example, drawing 
developmental trajectories based on individual cells 
or molecules may differ significantly from respective 
trajectories of functional networks. Therefore not 
only can cortical microcircuits not be understood 
in terms of a mere extrapolation of the properties of 
their particles, but rather the understanding of their 
function will lead to new directions of integrative 
knowledge. In this perspective, studying the activity of 
local cortical microcircuits may serve to fill the cell and 
molecules to behavior gap in our understanding of the 
patholophysiology underlying autism. In recent work of 
ours we showed that spontaneous Up states recorded 
in cortical slices by means of local field potentials 
can be used to draw the lifetime trajectory of network 
dynamics of the mouse neocortical microcircuit (115), 
which closely follows changes in synaptic density in 
the cortex over the lifespan (150). We have also found 
that Up states-based developmental trajectories can 
differentiate the development of distinct cortices (115). 
The cerebral cortex is not uniform but instead it consists 
of functionally and structurally distinct areas which 
develop at different rates. As opposed to the intact brain 
where long-range connectivity synchronizes different 
cortical areas (50), in the brain slice preparation distinct 
types of cortices can be separated into different slices 
and the network dynamics of their local microcircuits 
can be studied in isolation from each other. This way 
we can derive developmental trajectories that are 
intrinsic to different types of cortices and thus test 
whether changes in the autistic brain occur earlier and/
or more severely in some cortical areas compared 

to others suggesting that they are more vulnerable 
to autism. This is of particular interest since clinical 
data suggest that the development of autism does not 
involve equally and simultaneously the entire cortex, 
but instead its effect on different cortical areas of the 
developing brain is characterized by heterochronicity 
(15). Therefore spontaneous Up states at the reduced 
level of the brain slice may serve as a neurophysiological 
measure to draw developmental trajectories, and 
thus mathematically describe and compare the 
development of distinct cortical areas in the normal 
and the Fmr1KO rat. We have recently published as 
part of a conference proceedings the comparison of Up 
states-based developmental trajectories of the normal 
and Fmr1KO primary somatosensory (S1BF) mouse 
cortex (Figure 3) (116).

5.3. Proposing a scheme for for the 
neurobiological research of autism onset

Following I will propose a scheme of pinpointing 
and studying the onset of autism development in 
the Fmr1KO rat cerebral cortex based on network 
dynamics of local cortical microcircuits. The proposed 
scheme is based on electrophysiological recordings 
performed in vitro, in the acute brain slice preparation, 
in order to first establish a phenotype, namely describe 
when and where autism begins in the cortex and then 
investigate the underlying mechanisms responsible. 
The first could be based exclusively on extracellular 
recordings while the second would involve intracellular 
recordings and pharmacological experiments. 

In order to pinpoint the onset of autism, 
spontaneous network activity of local cortical 
microcircuits could be used as a neurophysiological 
measure to trace cortical development. This would 
require systematic recordings from multiple ages 
composing a serial study from first postnatal days till 
adulthood and multiple cortical sites per each animal 
in both wild-type and transgenic rats. In addition, the 
validity of these comparisons (Wt vs FXS, among 
different cortices) would require recordings under 
identical/comparable experimental conditions. To 
this end I propose to take advantage of the cortex’s 
intrinsic property of generating spontaneous activity 
in the total absence of external (sensory) inputs 
such as during quiescence in vivo, but also in vitro at 
the reduced level of the isolated, sensory-deprived 
brain slice. In particular spontaneous field potential 
(network) events (i.e. Up states) would be recorded in 
vitro, in rat brain slices preserved alive in the interface 
type of recordings chamber, as previously described 
(31, 32, 40, 56, 71-73, 115).

5.3. 1. Why record in vitro? 

The brain slice has several advantages 
compared to the intact brain of anesthetized animals 
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for the proposed research. In particular: (a) slices from 
both Wt and Fmr1KO rats can be placed and recorded 
side by side under identical experimental conditions. 
This is an essential prerequisite for the validity of 
the genotype-dependent comparisons. (b) The slow 
oscillation is extensively synchronized in vivo, in the 
intact brain, making comparisons between different 
cortical areas very difficult. On the contrary, distinct 
types of cortex are separated in different slices which 
will allow us to document the intrinsic properties 
and development of local network dynamics. And 
(c) experiments in anesthetized animals are curtailed 
by the fact that anesthesia affects the slow oscillation 
(34). This is an important point, since the proposed 
developmental study would involve animals of very 
different ages which may require different doses of 
anesthetics or may respond/be affected differently to 
the same dose of anesthesia. In addition, recording 
spontaneous events in vitro has several advantages: 
(a) events are easily detectable with clear onsets and 

offsets which eases their further analysis, (b) cortical 
areas are easily accessible for recordings and/
or interventions and (c) the slice provides a steady 
and highly-controllable environment for prolonged 
combined extracellular and intracellular recordings 
with pharmacological protocols paving the way for 
understanding underlying mechanisms at the cellular 
and molecular level. On the contrary, in vivo it is difficult 
to dissociate the underlying components and perform 
proper pharmacological analysis.

5.3.2. Why record in the interface chamber? The 
interface vs the submerged chamber 

There are two types of recording chambers 
in vitro: the submerged and the interface chamber. 
In the submerged type of chamber brain slices are 
placed (submerged) in a solution within which neurons 
can then be visualized at high magnification using 
a water-immersion objective allowing high spatial 

Figure 3. Comparing developmental trajectories of the WT and FXS cortices. Cortical Up state index values, i.e. a combined measure of incidence and 
size (Up sComparing developmental trajectories of the WT and FXS cortices. Cortical Up state index values, i.e. a combined measure of incidence and 
size (Up state index= occurrence * rectified area, see Figure 1) of the normal (WT, blue) and FXS (green) mouse were plotted as a continuum from 
early postnatal age till the end of the fifth postnatal week of life. Data points, each representing the mean Up state index at a given age, were fitted 
by peak functions (WT cortex (Nslices=12, Nanimals=10): Up State Index = 0.3.8* exp(−0.5.* (ln(Age /19.2.1)/0.2.7)2, curve-fit R2 = 0.6.1, p < 0.0.5, FXS 
cortex (Nslices=10, Nanimals=8): Up State Index = 0.6.3* exp(−0.5.* (ln(Age/22.2.2)/0.2.9)2, curve fit R2 = 0.8.9; p < 0.0.5). Red asterisks indicate statistically 
significant differences, while n.s. stands for non-significant. Developmental trajectories show a delayed peak in FXS cortex and that deviation from 
normal begins at P15 i.e. at the onset of cortical sensory processing and becomes statistically significant by P18 which corresponds to the age of a 
human toddler. Reproduced with permission from (116).
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resolution intracellular recordings. On the other hand, 
in the interface chamber slices are kept alive lying at 
the interface of a liquid and gas phase which restricts 
intracellular recordings to be made blindly. Although 
spontaneous Up states from cortical slices can be 
recorded both in the submerged and the interface type 
of chambers, the interface chamber is more appropriate 
for the proposed research for two main reasons:

5.3.2.1. The submerged chamber pertains to intra-
cellular rather than extracellular recordings

Since the proposed research requires 
sampling at multiple ages and cortical areas, 
intracellular recordings could not be the technique of 
choice for this project. On the contrary, field potential 
(extracellular) recordings opt for multiple recordings in 
a single experimental day. In addition, it is essential 
to study cellular and synaptic changes that occur 
during normal and abnormal brain development in the 
light of field potential recordings of cortical network 
activity, not only as an emergent functional property of 
underlying cells and synapses (and ultimately, genes 
and molecules) but also as a measure that can be 
paralleled to the clinically relevant EEG recordings, 
an essential link for biomedical translational research. 
Although field potentials of spontaneous Up states can 
be recorded in cortical slices even in the submerged 
chamber this is achieved by using high rates of 
superfusion and relatively low temperatures in order 
to overcome the low diffusion of oxygen inherent to 
the submerged condition at low oxygenation rates and 
higher temperatures (56, 115). Importantly, even under 
optimal conditions Up states in the submerged slice 
occur at significantly lower incidences and are much 
more irregular compared to those recorded in the 
interface chamber. 

5.3.2.2. Space limitations of the submerged 
chamber

The submerged chamber has been designed 
to record cells from a single brain slice at a time. In 
recent work of ours we adjusted the submerged 
chamber and managed to fit and record field potentials 
simultaneously from four (4) mouse brain slices 
increasing the yield of our experiment in terms of the 
total number of recorded slices (56, 115). However, 
these numbers still remain significantly lower compare 
to commercially available interface chambers which 
can fit up to ten (10) mouse brain slices.

5.3.3. Why developmental trajectories? 

The proposed act would aim at describing 
and comparing cortical development in the FXS and 
Wt rat by outlining developmental trajectories based on 
parameters of network dynamics. In particular, we have 
recently shown that Up-states based developmental 

trajectories can mathematically describe cortical 
development in terms of a peak-function (115). 
Therefore spontaneous activity could be sampled at 
systematic intervals throughout development and 
at ages that are biologically meaningful for cortical 
development (elaborated below). Although the 
suggested ages don’t consist a continuum in time they 
are sufficient to support a peak function that will predict 
developmental changes of network dynamics at the 
missing intervals therefore forming a continuous line 
of development (developmental trajectory) as we’ve 
shown ((115) and Figure 3). In turn, developmental 
trajectories allow us to predict values of network 
activity even at ages that have not been experimentally 
sampled, this way (a) reducing the need for sampling 
all ages (i.e. day by day) during development, without 
(b) necessarily restricting the onset of autism at the 
somewhat arbitrarily chosen sampled ages. The 
latter is a very important point for the objectives of 
the proposed research as it ensures a “bottom-up” 
definition of autism onset. 

5.3.4. The choice of ages

Brain development goes through stages or 
phases, some of which (known as “critical periods”) 
are crucial for the development of some of the 
cortex’s features. Many of these developmental 
milestones belong to the first three weeks of the 
rat’s life. For example postnatal days 3-4 (P3-4) 
and P5-7 are critical for the establishment of the 
anatomy in the somatosensory cortex (141); during 
the second postnatal week (Ρ7-10) tonic inhibition is 
significantly reduced in the neocortex (151); around 
Ρ10 GABAergic synaptic neurotransmission in the 
hippocampus is reversed from excitatory to inhibitory 
(the“GABA switch”) (152); Ρ10-14 and Ρ14-16 are 
critical periods for synaptic plasticity of connections 
towards and within cortical layers II-III (141); on Ρ14 
rats open their eyes and begin to actively move their 
whiskers defining the onset of sensory processing 
in the cortex (153); on Ρ21 juvenile are weaned 
from their mother (154); and rats become sexually 
mature (puberty) by their sixth postnatal week (Ρ42) 
(154-156). The 7-10 days period before puberty (i.e. 
Ρ30-40) is important for the social development of 
these animals characterized by significant changes in 
the brain’s catecholaminergic systems (157). This pre-
puberty period is also of special interest in regards with 
autism research since deficiencies in social interaction 
is the disorder’s hallmark. Adolescence by definition 
is the gradual transition from childhood to adulthood 
which in rats practically covers their second month of 
life (~Ρ30-Ρ60) (154, 158, 159), while by three months 
old the rat is considered a young adult (154). In an 
attempt to see how rat brain development corresponds 
to that in humans, it is worth noting that rats are born 
“prematurely” compared to humans. Therefore, one 
week old neonatal rats (Ρ0-7) correspond to human 
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embryos of the third trimester, and it is only by the 
middle of their second postnatal week (P8-10) that 
rat neonates correspond to full-term human newborn 
(160-165). Juvenile rats 10-17 days old correspond 
to human babies and toddlers (163, 165); an age of 
special interest for the ontogeny of autism. Finally rats 
at Ρ18-30 can be paralleled to prepubertal children 
(9-10 years old) (163, 165, 166). Based on this 
information network dynamics in the neocortex could 
be sampled for example from at a total of thirteen age 
groups covering the entire development of the rat brain 
from the first postanatal days till young adulthood, 
namely: P4±1, P7±1, P10±1, P13±1, P16±1, P20±1, 
P25±1, P30±1, P35±1, P40±2, P50±2, P60±2 και 
P90±2. Such a systematic and detailed work would 
allow us to pinpoint the developmental ages at which 
autism begins in the cerebral cortex. 

5.3.5. The choice of cortices

An important element in the proposed 
research scheme would be to record in parallel distinct 
cortical areas in isolation. This is an important condition 
for the validity of the inter-cortical comparisons during 
development in order to test whether the ontogeny of 
autism involves the entire cortex or not (the issue of 
heterochronicity). Importantly, the cortex is composed 
of anatomically distinct areas, which differ functionally, 
cytoarchitecturally and phylogenetically. The primary 
somatosensory cortex of the whiskers (S1BF), the 
primary motor cortex (Μ1) and the prefrontal cortex 
(PFC) are examples of functionally distinct areas in the 
neocortex. Autistic children show a developmental delay 
of motor skills and excessive responses to sensory 
stimuli (1-4), facts that justify the choice of a sensory 
and motor cortical area to study. In regard with the 
sensory cortex, the S1BF cortex consists an established 
model for the study of cortical sensory processing; it 
has a stereotyped and well-characterized development 
(167); and changes in network dynamics (Up states) 
of this cortex have been described in animal models of 
autism (144, 145). In addition, S1BF and M1 cortices 
are known to be different in several ways, in regard 
with their cytoarchitecture: S1BF has a well-developed 
layer IV and belongs to the granular type of cortex, 
while M1 whose layer V is expanded at the expense 
of layer IV belongs to the agranular type of cortex 
(168); the plasticity of their intrinsic synaptic networks 
(169, 170); the dynamics of their thalamocortical inputs 
(171); their paroxysmal oscillatory activity (71, 72, 172) 
and their development (115). Finally, the prefrontal 
cortex consists an established model to study cortical 
malfunction in a number of psychiatric disorders (173); it 
controls social behavioral which is primarily distorted in 
autism (174-176); it has been clinically associated with 
the ontogeny of autism (15); and electrophysiological 
changes have been reported for this cortical area 
in animal models of autism (137, 139). Therefore, 
these cortices could be valid choices for the proposed 

research scheme and their intercortical differences 
may consist a neurobiological context to test the idea 
whether the developmental deviations associated with 
autism involve the entire cortex or rather changes in 
some areas are earlier and/or more intense than others.

6. CONCLUSION

Spontaneous neuronal network activity may 
help us understand not only how local microcircuits of 
the cortex may be affected in autism, but also when, 
therefore shifting the research paradigm of autism 
from the time of symptoms to the time of onset. 
Moreover, when during development and where in 
the brain/cortex autism attacks are clinically highly 
relevant questions, which, however, are very difficult 
to be addressed in humans. To this end, appropriate 
animal models of autism would be instrumental to 
study the neurobiological mechanisms underlying the 
onset of this devastating disease placing studies in 
place and in context, i.e. at developmental periods and 
cortical areas relevant to the ontogeny of the disorder. 
The spontaneously active brain slice could provide 
us the means to study the neurobiology of autism 
in a behaviour independent manner in appropriate 
animal models of the disorder, in which, however, 
it is often very difficult to replicate and link complex 
human behaviours. In addition, spontaneously 
active slices provide a functional read out of network 
dynamics which would integrate the effect of single 
molecules and cells on the ontogeny of the disease. 
Therefore, understanding when and where in the 
brain development goes awry in autism will place 
the respective research of underlying neurobiological 
mechanisms in the context of disease-relevant critical 
periods and brain areas.
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