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in the form of powders, foils, ingots, sheets, rods 
and crystals. From a commercial perspective, the 
most important Cd salts are Cd chloride (CdCl2), Cd 
sulphate (CdSO4), Cd nitrate (Cd(NO3)2), to a lesser 
extent, Cd oxide (CdO) and Cd sulphide (CdS) (1, 4). 
The properties of resistance to corrosion and extreme 
temperatures, high ductility, high thermal and electric 
conductivity make this metal suitable for various 
industrial applications (5). Cd is widely distributed on 
the earth crust at a concentration of 0,1-1 ppm, mainly 
associated with zinc (Zn), lead (Pb), copper (Cu) (6). 
The primary mineral form of Cd is CdS, so that 3 kg 
of Cd are produced for each ton of Zn (0,33%) (7). Cd 
is mostly used for the production of nichel-Cd(Ni-Cd)
(83%), minor shares are for producing pigments (8%), 
coatings and platings (7%), stabilizers for plastics 
(1,2%) and other applications (ie. ferrous alloys, 
seminconductors, photovoltaic devices) (0,8%) (8).

The use of Cd in batteries has raised from 8% 
in 1970 to 75% in 2000 (1NTP, 2004). Cdmainlyused 
compounds are (1, 9): Cd Chloride (CdCl2): 
preparation of CdS, printing, galvanic, production 
of pigments and vacuum tubes; previously used as 
fungicide; Cd Hydroxide(CdOH2): alkaline batteries, 
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1. ABSTRACT

Cadmium (Cd) is a metal found in group 
12 (IIB) of the periodic table of elements together 
with zinc, a metal with which it is often conjugated in 
nature. Occupational exposure to Cd occurs in many 
industrial settings, by cigarette smoking, diet and due 
to environmental pollution. International Agency for 
Research on Cancer and other epidemiological studies 
suggested that Cd can lead to prostate cancer and likely 
to kidney and lung cancers. Although epidemiological 
studies seem to point towards such an association, the 
in vitro studies have not been compelling. The aim of 
this article is to summarize current knowledge about 
the association of Cd exposure and prostate cancer, 
that suggests that new studies to show the role of Cd 
in the pathogenesis of prostatate cancer. 

2. INTRODUCTION

Cadmium (Cd) (atomic number= 112.4.1) is 
a metal belonging in group IIB of the periodic table 
of elements. There are 8 stable and 2 radioactive 
isotopes of Cd in the environment (1). Almost every 
Cd compound has an oxidation number of +2. Cd is 
slowly oxidized in moist air and forms fumes of Cd 
oxide when heated (1-4). Cd is commercially available 
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combination with barium sulphate (BaSO4) have been 
widely used in the past as heat and energy stabilizers 
for polyvinyl chloride (PVC) and other plastics (13, 
14). Small quantities of Cd are used in various alloys 
to enhance thermal and electrical conductivity and 
increase the mechanical properties of the base alloy, 
such as puncture, extrudability, hardness, wear 
resistance, traction and hardening; or to lower the 
melting point. Other minor uses of Cd are Cd telluride 
and CdS in solar cells and other semiconductor Cd 
compounds in various electronic applications (15, 14, 
10). Traditionally, the most common applications for 
Cd are: pigments, stabilizers and coatings. However, 
in recent years, the use of Cd for these purposes has 
decreased, mainly due to the specific toxicity of this 
metal and the introduction of Community Regulations 
(EU), which limit its use (5). In 2003, the EU adopted 
restrictions on the use of hazardous substances, 
prohibiting the incorporation of Cd and other heavy 
metals into electrical and electronic equipment 
(including some types of Ni-Cd batteries) (16).

2.1. Occupational and environmental exposure

Cadmium pollution can origin from either 
stationary or mobile sources. In particular, stationary 
sources are all factories such as foundries, cement 
factories, galvanic plants, petroleum refining or 
coal combustion plants and incinerators.Mobile 
sources are Cd exhaust fumes from vehicles and/
or particles resulting from tire wear, etc. The main 
sources of exposure to Cd and its compounds are 
working environments. In these places professional 
exposure is due to the presence of Cd in suspended 
dust in the air and in fumes. The highest exposure 
potential occurs in the production and refining of 
Cd, production of Ni-Cd batteries, production of Cd 
pigments, formulation and production of Cd alloys, 
mechanical plating, Zn fusion, soldering and brazing 
with Cd alloys and PVC material production (1, 4, 
12). In exposed workers, Cd main absorption path is 

Cd Nitrate Cd(NO3)2: colorant for glass, porcelain 
and photographic emulsions, Cd Oxide (CdO): zinc 
oxide accumulators (ZnO), heat stabilizer for plastics 
and alloys; Cd Sulphate (CdSO4): intermediate and 
galvanic, Cd Stearate: lubricant and stabilizer for 
plastics, Cd Sulphide (CdS): pigment.

Cd is found in non-ferrous metals (Zn, Pb 
and Cu), in iron (Fe), steel, fossil fuels (coal, oil, gas, 
peat and wood), in concrete and phosphatic fertilizers 
(10). Cd is also produced from recycled materials 
such as Ni-Cd batteries, production scraps and from 
some residues, such as dust from electric arc furnaces 
containing Cd or intermediate products.

Recycling accounts for about 10-15% of Cd 
production in developed countries (5). The primary 
use of Cd, in the form of CdOH2, is in the Ni-Cd 
battery electrodes. Ni-Cd batteries are widely used 
in consumer products (eg. electric wireless devices, 
smartphones, videocameras, laptops, portable 
appliances and toys) and in the railway and air sector 
(for ignition and emergency power supply) (11, 8). CdS 
compounds (Cd sulfoselenide and Cd litopone) are 
used as pigments in a wide spectrum of applications, 
such as plastics, glass, pottery, rubber, enamels, colors 
and fireworks (4, 12). Cd pigments range from yellow 
to dark-brown, have good covering properties, and 
are highly resistant to a wide range of environmental 
conditions (light, high pressure and chemicals such 
as hydrogen sulphide (H2S) and sulfur dioxide (SO2) 
(13, 11, 10). Cd and Cd alloys are used as coatings 
in iron, steel, aluminum and other non-ferrous metals. 
They are particularly suitable for industrial applications 
that require long-lasting performances eg aerospace 
industry, industrial hinges, electrical parts, automotive 
systems, military equipment and marine installations, 
due to their good resistance to corrosion in alkaline 
solutions, low friction coefficient, good conductive 
properties. Furthermore, Cd alloys are easy to weld 
(14, 10). Cd organic acids (Cd stearate and Cd lauryl) in 

Study type Exposure type Results References

Retrospective Occupational Positive association with prostate cancer 44

Retrospective Environmental Positive association with prostate cancer 45

Case-control Occupational Slightly Positive association with prostate cancer 46

Case-control N/A Positive association with prostate cancer 48

Cohort Environmental No association with prostate cancer 50

Case-control Environmental Positive association with prostate lesions 51

Cross-sectional Occupational Positive association with DNA damage 52

Cohort Environmental Increased prevalence of prostate, colon rectum and pancreas cancer 57

Retrospective Dietary No association with prostate cancer onset 58

Table 1. Epidemiological studies in humans

N/A: Non-applicable
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Table 1. Biological processes related to L1 retrotransposons
through the airways, even if accidental ingestion of 
dust from contaminated hands and/or through food 
is also possible, albeit less common (11). In Europe, 
between 1990 and 1993, it was estimated that over 
two hundred thousand workers were exposed to Cd 
and its compounds in occupational environments such 
as: construction industry (n=32,113), manufacture/
processing of metal products (n=23,541), non-
ferrous metals industries (n=22,290), manufacture of 
PVC products (n=16,493), personal and household 
services (n=15,004) and machinery manufacturing 
(n=13,266) (17). Other areas where exposure 
can occur include: foundries, factories for the 
production of commercial and industrial machinery, 
manufacture of motor vehicle parts, metal production 
for architectural and structural use, production 
and transformation of non-ferrous metals (except 
Al), manufacture of metal-working machines, iron 
and steel mills, production of Al alloys and their 
transformation, production of electrical equipment 
and other electrical components (12). The following 
data represent the main source of workers’ exposure 
to Cd and its compounds (12):

2.1. Manufacture of batteries

Zhang et al. (18) studied workers exposed to 
Cd in a Ni-Cd battery factory in China. Based on the 
environmental sampling carried out during the period 
1986-1992, the average concentration of Cd powders 
was 2.1.7 mg/m3 (range 0.1.-32.8. mg/m3). The average 
total urinary Cd concentration in 214 workers was 12.8. 
mg/g creatinine (range 4.0.-21.4. mg/g creatinine), 
the overall average concentration of Cd in the blood 
was 9.5. mg/L (range of 3.8. to 17.4. mg/L). These 
values are considered to be extremely high when 
compared to the working-time weighted environmental 
limits (TLV-TWA), according to American Conference 
Governmental Industrial Hygienists (ACGIH) and the 
Italian Association of Industrial Hygienists (AIDII), 
which are 0,01 mg/m3 for Cd and 0.0.02 mg/m3 for its 
compounds.

The admissible Cd value in the urine is 
5 μg/g creatinine and 5 μg/L in the blood. A study 
conducted in 2004 examined the cumulative exposure 
to CdOH2 in Ni-Cd batteries workers in the United 
Kingdom (n=926 male workers) from 1947 to 2000. 
Personal sampling revealed Cd concentrations of 
0.8.8-3.9.9 mg/m3 from 1969 to 1973. Interestingly, 
the values measured from 1989 to 1992 were much 
lower (range 0.0.24-0.1.2 mg/m3). Similarly, the results 
of environmental monitoring with fixed samplers 
demonstrated a significant exposure to Cd in workers 
who had operated in the period 1954-1963 (range 
0.3.5-1.2.9 mg/m3), compared to 1989-92 (Range, 
0.0.02-0.0.3 mg/m3) (19).This indicates that, over the 
years, the introduction of safety and health standards 
in workplaces and the use of safer manufacturing 

systems has allowed a progressive reduction of 
exposure risk in workplaces.

2.1.1. Cd recovery

Professional exposure to Cd compounds 
(CdO, CdS and CdSO4) was studied in male workers 
(n=571) of a Cd recovery facility in the United States 
between 1940 and 1982. Estimated exposure to 
airborne particles containing Cd ranged from 0.2. (in 
the reservoir area) to 1.5. mg/m3 (in the furnace areas) 
before 1950, and 0.0.2 (in the tank area) to 0.6. mg/m3 
(nearby ovens) for the period 1965-1976 (20).

2.1.2. Production of Cd alloys

Occupational exposure to Cd fumes was 
studied in 347 workers in a Cu-Cd alloy production plant, 
in 624 workers working near Cu-Cd alloy processing 
and in 521 workers in Fe and brass, in foundries in 
England and Wales, from 1922 to 1980. Based on 
a review of 933 Cd air-samplers between 1951-83 
(697 fixed samples and 236 personal samplers), the 
cumulative Cd exposures were estimated at 600 μg/
m3 for the period 1926-1930, decreasing to 56 μg/m3 

since 1980 (21).

2.1.3. Foundry

Professional exposure to Cd was studied in 
1,462 male employees in a UK foundry between 1972 
and 1991. Annual average exposures were highlighted 
in the main processing areas. Average air levels were 
considered: low in refining and mixing areas (range 
of mean 0.0.05-0.0.08 mg/m3), moderate in sintering 
areas and in ovens (ranges ranging from 0.0.4 to 0.0.8 
mg/m3) (22).

2.1.4. Vehicle manufacturing industry

Wang et al. (23) assessed the exposure of 
82 metal welders and 51 operators in two automotive 
production plants in China. The average Cd 
concentration in the blood of welders was 3.5.4 mg/L 
(range 0.2.-12.5. mg/L), significantly higher compared 
to the control group hematic Cd concentration, which 
was of 0.7.9 mg/L (range 0.1.-4.8. mg/L).

2.1.5. Other activities related with Cd exposure

Yassin and Martonik (24) calculated the 
prevalence and average urinary Cd levels for all US 
workers based on data collected from 11,228 workers 
(age 18-64) who participated in the third edition of the 
National Health and Nutrition Examination Survey 
(NHANES III) (25). For all workers, urinary Cd levels 
were between 0.0.1-15.5.7 mg/L, with an average of 
0.3.0 mg/L (0.2.8 μg/g creatinine). The prevalence of 
high levels of Cd in urine was reported on the basis 
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various agents including cadmium (29, 30, 31). During 
renal transport, the Cd-metallothionein complex is 
readily filtered by the glomeruli and can be efficiently 
reabsorbed at the proximal tubules (32, 33). In tubules, 
a portion of the protein is rapidly degraded and Cd 
is released (33). Cd builds up in kidney tubules and 
causes damage to tubular cells, especially in proximal 
tubules (34). The absorbed Cd is excreted very slowly 
and is almost equally eliminated in urine and stools 
(35). It has a long biological half-life and mainly 
accumulates in the liver and kidneys (half-life in kidney 
cortical is 10 to 30 years) (36). Overall, in humans, 
half-life is 7-16 years (35, 37).

3. DISCUSSION

We performed a literature search over the 
last 50 years about the association between prostate 
cancer and Cd exposure. Search was performed on 
Medline (https://www.ncbi.nlm.nih.gov/pubmed) and 
Scopus (www.scopus.com/). The terms used to perform 
this research included: prostate cancer, cadmium, Cd, 
cadmium exposure, prostate, prostate tumor. Internal 
references of the examined studies were also taken 
into account. Research articles were included in the 
review, except for works published in languages other 
than English. In vivo and in vitro studies were included. 
After an independent search for scientific literature by 
reviewers, a total of 218 papers were collected. 143 
were ruled out following review of the title and the 
abstract and 3 studies were excluded after review of 
the text. Finally, 75 studies were included for review. 
A flowchart depicting the selection of studies is shown 
in Figure 2. 

The toxicology and carcinogenicity of Cd 
and its compounds, as well as the environmental 
impact (2, 3, 1, 4, 38, 39), are still partially studied 

of the following ranges: ≥15 mg/L, ≥10 mg/L, ≥5 mg/L 
and ≥3 g/L. The prevalence of urinary Cd levels ≥5 
mg/L was 0.4.2% (n=551.0.00) for levels ≥10 mg/L was 
0.0.6% (n=78.4.71) and for ≥15 mg/L was 0.0.028% 
(n=3.9.07). The percentage of workers with high 
urinary Cd varied with the type of occupation and type 
of industry. Urinary Cd levels ≥10 mg/L were twice 
as high among metal-working workers as compared 
with workers in the manufacturing industry (0.4.5% 
vs. 0.2.6%). Urinary Cd levels ≥5 mg/L were 12 times 
higher among vehicle mechanic workers than transport 
workers (1.7.1% versus 0.1.4%) and 5 times higher in 
construction workers than agricultural ones (0.7.3% 
versus 0.1.4%). Figure 1 summarizes the sources of 
cadmium release and exposure.

2.2. Cd absorption and metabolism

Inhalation is the main route of exposure to 
the Cd in professional environments; less frequently, 
exposure to Cd can occur through ingestion of food 
and drinking water. Exposure to particulate matter 
containing Cd can lead to absorption of Cd in both 
animals and humans (4). In working environment, Cd 
and its compounds, being non-volatile, are suspended 
in the air in the form of thin particles.

Animal studies (26) have shown that the lung 
can retain up to 20% of metal particles, particularly 
after short-term exposure. If ingested, most of Cd 
passes through the gastrointestinal tract without 
being absorbed. Estimates of the absorption rate of 
Cd in humans vary from 3% to 6.5.% (27, 28). When 
absorbed, Cd binds to metallothionein, forming a 
complex Cd-metallothionein which is transferred 
(through the blood) mainly to the liver and kidneys 
(29). Metallothionein is inducible in different tissues (eg 
liver, kidneys, intestines, and lungs) after exposure to 

Figure 1. Sources of cadmium release and exposure.
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serum testosterone (T), follicle stimulating hormone 
(FSH) and luteinizing hormone (LH) values were 
registered. Urinary Cd (U-Cd) and blood Cd (B-Cd) 
were also evaluated. The results showed a clear dose-
response relationship between Cd exposure and the 
prevalence of abnormal values of PSA (51). These 
results suggested that chronic Cd exposure might 
be associated with prostate lesions in humans (6). 
Studies conducted on workers exposed to Cd, cobalt 
(Co) and Pb, reported a positive correlation between 
Cd concentrations in air and blood and DNA damage 
(single stranded and interrupted) (52-55).

Sahmoun et al. (56) examined the literature 
on prostate cancer and exposure to Cd published 
between 1966 and 2002, reporting a positive 
association in 3 of 4 descriptive studies, in 5 of 10 
case-control studies and 3 of 11 cohort studies. The 
authors concluded the review indicating the limits of 
these studies, especially regarding the issues related 
to a poor assessment of exposure, which could be 
a critical factor for the validity of the studies. When 
they limited their review to 4 cohorts of Ni-Cd battery 
workers only (where the exposure assessment was 
more accurate), they calculated a standardized 
mortality rate (SMM) of 1.2.6 (95% CI: 0.8.3-1.8.4) 
for prostate cancer. A recent epidemiological study 
examined a population exposed to heavy metals 
such as Cd, As and Pb in their living environment, 
due to the proximity of glasswork plants. The results 
of the study showed an increase in the prevalence of 
gastrointestinal tract cancer, including colon, rectum 
and pancreas in both genders and of prostate cancer 
in men (57). A retrospective study evaluated dietary 
cadmium intake in a population of 26,778 men who had 
been enrolled in the Danish Diet, Cancer and Health 

(1, 4, 11, 40, 41, 36, 42). Potts, in 1965, examined 
a small cohort of United Kingdom workers employed 
in Ni-Cd batteries and observed an increase in the 
incidence of prostate cancer (43). Lemen et al. (44) 
performed an epidemiological study that showed a 
positive correlation between workers exposure to Cd 
and lung and prostate cancers. A descriptive study on 
Cd polluted areas in Japan has shown an increase 
in prostate cancer mortality in two of the four studied 
areas (45). A case-control study conducted on a 
cohort of British cadmium workers showed a slightly 
increased odd ratio (OR) for prostate cancer, alongside 
an excess of mortality due to respiratory diseases and 
no evidence supporting a link with renal cancer (46). 
Nevertheless, a subsequent review of cohort studies 
did not confirm these results (47).

Vinceti et al. (48), in a case-control study on 
hospitalized patients with prostate cancer, measured 
the concentration of Cd accumulated in the toe nails 
of patients and observed a dose-response relation 
between Cd exposure and prostate cancer risk. Using 
increased urinary excretion of β2-microglobulin (β2M) 
as a marker of Cd toxicity, an increase in cancer 
incidence and mortality was observed in a Cd polluted 
area (relative risk (RR), 2.5.8, 95% CI: 1.2.5 (49, 50).
The authors concluded that there was a significant 
association between β2M urinary excretion and 
cancer mortality, but there was neither a significantly 
increased standardized incidence ratio of cancer, 
nor a relevant relationship between urinary β2M and 
cancer incidence rate (49, 50). A case-control study 
conducted in 1998 in South East China examined 297 
male volunteers, which included two groups living and 
operating in Cd-polluted areas and a control group. 
Serum total prostate specific antigen (PSA), total 

Figure 2. Flow chart of eligible studies.
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cohort. These subjects were administered a 192 item 
semi-quantitative questionnaire and Cd exposure 
was calculated basing on mean Cd content in food. 
Following statistical analysis, the results showed no 
association between dietary Cd intake and prostate 
cancer onset, even after correction for smoking habits, 
BMI, Zn or Iron (Fe) intake (58). Studies carried out to 
assess the risk of cancer in cohorts of workers exposed 
to Cd are often affected by: the size of the workers’ 
cohorts, usually too small for long term studies; lack 
of previous data on Cd exposure, particularly for non-
US plants; inability to examine and define a cumulative 
exposure gradient in different studies (12). In addition, 
cigarette smoking is considered a confounding factor 
in relation to the assessment of the risk of lung cancer 
among workers exposed to Cd and this data was only 
directly addressed in US studies (12). Cigarette smoke 
is an important source of Cd exposure. Smoking 
subjects have an absorbed dose of Cd that is twice as 
high as that of non-smokers (6).

Few studies have managed to extrapolate 
the effects of confounding factors arising from co-
exposure to other substances such as As and Ni (12). 
Ju-Kun et al. (59), in a recent meta-analysis, assessed 
the correlation between Cd exposure and the risk of 
prostate cancer. The results suggest that Cd exposure 
is a risk factor for prostate cancer in occupational 
settings, especially in high doses. These results were 
particularly consistent because of the large sample size 
of the analysis, even though the authors recognized 
the possible limitations consequent to the influence 
of publication bias or the influence of confounding 
factors. On the other hand, Chen et al. (60) performed 
a meta-analysis of cohort and case-control studies 
among general and occupational populations exposed 
to Cd and found no sufficient evidence to support 
a positive association between Cd exposure and 
prostate cancer. In 2012, the International Agency 
for Research on Cancer (IARC) stated that the data 
regarding Cd exposure and the risk of prostate cancer 
are suggestive of an association, but the results are 
still inconsistent (12). Animal experimental studies 
clearly demonstrate that Cd and its compounds 
can induce the onset of both benign and malignant 
tumors through different routes of exposure(1, 4, 
41, 42, 61-68). In vivo studies conducted on rats 
administered oral CdCl2 showed prostate hyperplasia 
development (65) and increased incidence of large 
cell lymphoma, leukemia, prostate and testicular 
tumors (69, 70). Waalkes et al. (64) studied Nobel 
rats poisoned with drinking water containing Cd and 
noted the onset of proliferative lesions of prostate and 
kidneys. Overall, Cd exposure has proven to causes 
tumors of the hematopoietic system (leukemia and 
lymphoma), sarcoma and adrenal, liver, lung, kidney, 
pancreas, pituitary gland, prostate and testes cancer 
in laboratory animals (1, 36). Oral administration of 
CdCl2 caused prostate cancer and/or preneoplastic 
lesions in Wistar rats and in Noble rats (69, 63). In 

rats, inhalation of various compounds of Cd (CdCl2, 
CdO, CdS) and endotracheal administration of CdCl2 
induce pulmonary tumors (12).

CdCl2 induces proliferative lesions and 
testicular tumors in rats after subcutaneous or oral 
administration (12). The pathogenic mechanisms on 
Cd toxicity have been studied on various experimental 
models. In laboratory animals, Cd causes tumors 
in many tissues: therefore, the mechanism of 
carcinogenicity is likely to be multifactorial (6). In 
rodents, Cd salts administration results in an increased 
number of micronuclei and chromosomal aberrations. In 
mammalian cells, in vitro, Cd compounds induce DNA 
breaks and chromosomal aberrations (36, 70). Soluble 
and insoluble Cd compounds determine genetic toxicity 
through indirect mechanisms such as oxidative stress, 
inhibition of DNA repair systems, alteration of cell 
proliferation and of tumor suppressor functions (71). An 
experimental study combined evidence of in vitro cell 
cultures and mice models to clarify the role of autophagy 
in the development of Cd-induced prostate cancer 
(72). The authors tested the effects of Psoralidinon 
Cd-transformed prostate epithelial cells (CTPE). CTPE 
cells normally exhibit a highly aggressive and invasive 
behavior, but showed an overall decrease in growth 
and expression of pro-survival signaling proteins after 
treatment. These results were also tested on xenograft 
models in vivo (72).

CdS induces the formation of hydrogen 
peroxide in polymorphonucleated leukocytes in 
humans; CdCl2 induces superoxide production in rat 
and human phagocytes (73). Antioxidant agents and 
antioxidant enzymes (74 - 76) suppress the induction 
of DNA strand breaks and chromosomal aberrations 
determined by Cd in mammalian cells. Since Cd does 
not undergo physiological reduction reactions, the 
higher production of reactive oxygen and oxidative 
cell damage can be due to the inhibitory effect of 
Cd on antioxidant enzymes and DNA repair systems 
(75, 76). Cd is co-mutagenic and increases the 
mutagenesis caused by ultraviolet radiation, alkylation 
and oxidation, in mammalian cells. These effects are 
a consequence of Cd-mediated inhibition of various 
types of DNA repair mechanisms such as nucleotide 
excision, mismatch repair and the elimination of 
thepre-mutagenic DNA base alteration 7,8-dihydro8-
oxoguanine (77). 

Low Cd concentrations do not seem to 
generate oxidative damage, but they effectively inhibit 
DNA oxidative damage repair in mammalian cells (78, 
79). In the process of nucleotide excision, Cd interferes 
with the removal of thymine dimers after UV irradiation 
by inhibiting the first step of this repair pathway (77, 
79). In human cell extracts, Cd has shown to inhibit 
DNA-mismatch repair (80). In addition, Cd inhibits 
8-oxo-dGTPase in human and E. coli cell cultures 
(81). This inhibitory effect grows with the concentration 
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of Cd and could explain the induction of the 8-oxo-dG 
into DNA which has been observed in other studies 
(82). The molecular mechanism of inactivation of DNA 
repair proteins involves Cd-induced displacement of Zn 
from Zn-finger structures. The removal of Zinc, in fact, 
alters the function of some DNA repair proteins such 
as PigmentousXeroderma A (XPA) group, required for 
nucleotide-excision and Formamido-Pyrimidine-DNA-
glycosylase (FPG), which is involved in E. coli base 
excision (83).

Cd inhibits the function of 8-oxoguanine-
DNA-glycosylase (hOGG1), which is essential in 
DNA repair mechanisms. Although hOGG1 does not 
contain Zn-binding structures within its molecular 
structure, inhibition of its function is due to its down 
regulation resulting from decreased DNA binding of 
the SP1 transcription factor, which contains Zn-finger 
structures (84). Finally, Cd induces a conformational 
change in the Zn domain of p53 protein. Thus, in 
addition to directly inhibiting repair proteins, Cd causes 
a down regulation of the genes involved in DNA repair 
in vivo (85). Like other metals, Cd can show atomic/
molecular mimicry of essential nutrients (86). In other 
words, it can compete with essential nutrients for sites 
that are important in gene regulation, enzyme activity 
and/or maintenance of genomic stability (36, 87, 88). 
The role of connexin 43 (Cx43) and of androgen 
receptor activation in the development of prostate 
cancer in Cd exposed subjects has been evaluated 
in a recent study. The authors noted that changes in 
Cx43 are involved in the enhanced proliferation of 
human prostate epithelial cells exposed to low doses of 
Cd. They also hypothesized that Cd could induce cell 
proliferation through endocrine-disrupting effects and 
added flutamide (and androgen receptor antagonist) 
to their cell cultures. After treating with flutamide, Cd 
did not seem to exert any effect on cell proliferation or 
Cx43 expression (89). Numerous studies have shown 
that Zn reduces the carcinogenic effect of Cd in some 
sites (such as lung, testes and injection sites), but not 
all (eg prostate) (36).

The impact of Cd on DNA repair mechanisms 
may be particularly relevant in Cd “adapted” cells. This 
metal, in fact, induces several genes to tolerance to 
several reactive oxygen species, in particular those 
that code for metallothionein, synthesis and function of 
glutathione, catalase and superoxide dismutase (75). 
These modifications allow cell survival at chronically 
high concentrations of Cd (90). Taking into account 
the impact of Cd on DNA repair and the contextual 
tolerance and toxicity of this metal, there is a greater 
chance of inducing further critical mutations (61). 
Several mechanisms could potentially contribute 
to Cd-induced carcinogenesis. Direct DNA binding 
seems to be of lesser importance, and mutagenic 
responses are weak. Compelling evidence emerges 
from disorders in DNA repair mechanisms and onco-
suppressive proteins that lead to chromosomal 

damage and genomic instability (6). Other reported 
effects include changes in DNA methylation patterns 
as well as interactions with signal transduction 
processes that may contribute to the alteration of cell 
growth regulation (6). A recent study used CTPE cells 
to evaluate whether KRAS gene overexpression could 
play a role in the pathogenesis of Cd-induced prostate 
cancer. This experiment was conducted basing on 
previous knowledge, which reported the ability of As 
to transform human prostate epithelial cells (RWPE-
1) into neoplastic cells, with KRAS playing a pivotal 
role in this process (91). Cd showed an even greater 
capacity of transforming RWPE-1 into neoplastic cells, 
and silencing of KRAS did markedly reduce malignant 
hallmarks such as hypersecretion of MMP-2, colony 
formation and cell survival, albeit it did not reverse 
the malignant phenotype. The authors concluded that 
KRAS gene plays a key role in the development and 
maintenance of Cd-induced prostatic cancer (92).

In vitro, Cd can induce neoplastic 
transformation in a variety of cells, including epithelial 
cells of the human prostate, demonstrating its 
oncogenic properties (36). Furthermore, studies have 
proven that this metal has a broad spectrum of cell and 
molecular, both genetic and epigenetic effects, (36, 87, 
93), that could affect all phases of the carcinogenic 
process (94, 95). Waisberg et al. (93) examined 
different studies, reporting that the carcinogenicity 
of Cd seems to be mediated by the production of 
reactive oxygen species. Actually, Cd - as well as 
other toxicants (2) - induces the production of hydroxyl 
radicals, superoxide anions, nitric oxide and hydrogen 
peroxide. It also increases levels of lipid peroxidation in 
the liver, liver mitochondria of rats and rat hepatocyte 
cultures. Cd is not a Fenton metal and induces the 
formation of reactive oxygen species through indirect 
mechanisms (93). In experimental models, Cd induces 
many biochemical changes, including aberrant gene 
expression and signal transduction, E-caderine 
dysfunction (which plays a pivotal role in tumor 
proliferation processes), inhibition of DNA methylation, 
DNA repair and death interruption cell line (93).

Cd modifies the expression of several genes 
related to carcinogenesis, including intermediate genes 
of early response such as c-fos, c-jun, and c-myc; stress 
response genes such as metallothionein and heat-
shock genes; glutathione and related protein genes; 
transcription and transduction factors (93). In non-
cytotoxic concentrations, Cd inhibits DNA repair including 
mismatch repair, nucleotide excision and base excision. 
Inhibition of DNA repair, combined with an increase in 
oxidative stress, causes DNA damage, cell cycle arrest, 
mutagenesis and genomic instability, leading to cancer 
or cell death (87). The biochemical alterations induced 
by Cd may play a role in all phases of carcinogenicity 
(initiation, promotion and progression). For example: 
1) induction of oxidative stress in combination with 
decreased DNA repair can lead to genomic damage and 



Cadmium exposure and prostate cancer

1694 © 1996-2018

gene mutations, causing preneoplastic lesions (96, 97); 
2) gene expression alterations and signal mechanisms, 
combined with the inhibition of DNA methylation, 
induce proto-oncogenes, resulting in cell proliferation; 
3) E-caderine dysfunction interrupts cell adhesion 
and causes tumor progression (93). Furthermore, Cd 
seems to alter the apoptotic processes. In cultured 
cells, Cd exposure causes a dose-dependent increase 
in apoptotic cells. In some experimental systems, the 
increase in cell death is associated with an increase of 
p53 protein and mRNA levels; while in other cell lines, 
Cd induced apoptosis is p53-independent and linked to 
the production of reactive oxygen species. However, the 
induction of apoptosis is unlikely to protect cells against 
malignant transformation, as some studies have found 
that only a small fraction of Cd exposed cells undergo 
apoptosis, while the remaining cells may acquire 
apoptotic resistance (93). In addition, cells in which 
Cd induces neoplastic transformation (eg: prostate 
cells, lung epithelial cells and rat hepatocites) acquire 
resistance to apoptosis (97 - 99). Apoptosis resistance 
allows accumulation of critical or preneoplastic 
mutations (93, 36).

4. CONCLUSIONS

In conclusion, several studies demonstrate a 
close relationship between exposure to Cd and pro-
liferative lesions ending with prostate cancer (61- 64, 
66). In vitro studies performed on human prostate cells 
have also shown the role of Cd in inducing malignan-
cies (36). These findings suggest starting off further, 
more effective studies meant to analyse the effects of 
Cd exposure on humans, which may occur either at 
work or casually. Up to date, present epidemiological 
studies have several limits, as they cannot detect clear 
effects on man. This depends on many confounding 
factors such as cigarette smoking and the co-expo-
sure to other ores and /or pollutants (100, 101, 102). 
Whereas, animal studies seem to highlight a relation-
ship between Cd exposure and human prostate cancer 
(6). Some case-control and ecological studies suggest 
the association between Cd exposure and prostate 
cancer (104, 105, 48). The use of biomarkers to as-
sess Cd exposure such as Cd urinary excretion and 
blood and serum Cd levels, can help cope with some 
of these limitations (6). Therefore, there is enough evi-
dence in human beings of Cd and Cd compounds lung 
carcinogenicity (12). Positive associations have been 
observed between exposure to Cd and its compounds 
and kidney and prostate cancers. Ju-Kun et al., (59), in 
a recent literature meta-analysis, evaluated the corre-
lation between Cd exposure and prostate cancer risk. 
Results suggested that Cd represents a risk factor of 
prostate cancer in professional categories exposed 
to high concentrations of Cd. These observations, to-
gether with a quantity of in vivo tests seem to suggest 
a probable carcinogenic role of Cd in inducing pros-
tate cancer. Further studies still need to be carried out, 

which will have to take into due account the limitations 
of the previous ones that, until now, have not allowed 
to clarify the carcinogenic role of Cd in prostate cancer.
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