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1. ABSTRACT

Deep learning (DL) is affecting each and every 
sphere of public and private lives and becoming a tool 
for daily use. The power of DL lies in the fact that it tries 
to imitate the activities of neurons in the neocortex of 
human brain where the thought process takes place. 
Therefore, like the brain, it tries to learn and recognize 
patterns in the form of digital images. This power is 
built on the depth of many layers of computing neurons 
backed by high power processors and graphics 
processing units (GPUs) easily available today. In the 
current scenario, we have provided detailed survey 
of various types of DL systems available today, and 
specifically, we have concentrated our efforts on 
current applications of DL in medical imaging. We have 
also focused our efforts on explaining the readers the 
rapid transition of technology from machine learning to 
DL and have tried our best in reasoning this paradigm 
shift. Further, a detailed analysis of complexities 
involved in this shift and possible benefits accrued by 
the users and developers.

2. INTRODUCTION

The advent of deep learning (DL) (1) has 
spawned a new era in research and development 
in data science. DL has affected each and every 
sphere of life within a very short span of time. The 
most immediate effect can be felt in the field of image 
processing (2), robotics (3), computer games (4), 
natural language processing (5), self-driving cars (6) 
and many others. The immense popularity of DL is 
because of higher performance in comparison with 
other conventional algorithms. The performance 
of DL has steadily increased with advent of Big 
Data while it has remained static for conventional 
algorithms (7). The high performance ratio along 
with the easy availability of computer hardware such 
as graphics processing units (GPUs) and multi-core 
processor chips has made DL immensely popular 
among members of data science community (8). The 
foundation of DL lies in the formalization of the idea 
that all the functions of the brain are derived from 
the neural activity of the brain (McCulloch et al. (9)). 
The McCulloch-Pitts model of the neuron stands as a 
ground breaking exploration on the working of neural 
network that leads to the development of several 
other neural models of the brain i.e., perceptrons (10), 
feed-forward neural networks (11), feedback neural 
networks (12), etc. While the earlier networks were 
either single layer (input-and-output) or included single 
hidden layer (input-hidden-outputs), the DL paradigm 
takes advantage by using many layers or hidden 
neurons and layers to add depth to the network. 

Learning in this context can be either 
supervised or unsupervised. In supervised learning, 
the algorithm is trained by human observer using 
training data and corresponding ground truth (GT), 
where at the end of training the algorithm learns to 
identify complex patterns. In unsupervised learning, 
algorithm learns to identify complex patterns and 
processes without intervention from human observer. 
There are many adaptations of DL for medical 
imaging as shown in Figure 1. Deep belief network 
(DBN) (13, 14) is a DL adaptation for unsupervised 
learning, where the top two layers act as associative 
memory. The important applications of DBN has 
been in the generation and recognition of images 
(15, 16), video sequences (17) and motion capture 
data (18). Autoencoder is a DL-based network used 
for unsupervised learning (19). Architecturally, the 
input and output layers of an autoencoder consists of 
same number of nodes with one or more hidden layers 
connecting them. It is specifically done to train the 
hidden nodes to encode the input data in a specific 
representation, so that the input could be regenerated 
from that representation. Thus, instead of conventional 
GT, input data is used to train the autoencoder. The 
convolutional neural network (CNN) (20) is a type of 
DL, which is specifically used in computer vision. It is 
inspired by the functioning of the animal visual cortex. 
Like the animal visual cortex, CNN’s exploit spatially-
local correlation by enforcing a local connectivity 
pattern between neurons of the adjacent layers. There 
are many different types of CNN models available 
such as LeNet (21), AlexNet (22), GoogleNet (23), etc. 
It’s been seen that performance of DL-based system 
stagnates and then deteriorates rapidly with increase 
in depth. Deep Residual Networks (DRNs) (24) 
allow for an increase in depth without performance 
degradation. In this paper, we thoroughly discuss 
different DL methods and their applications in medical 
or radiological imaging. 

In medical imaging, the scanned images of 
infected/abnormal regions are usually generated using 
computed tomography (CT) (25), magnetic resonance 
imaging (MRI) (26) and ultrasound (US) (27). 
Identification of infected tissues or any abnormality 
is generally done by trained physicians. The 
advancement of computer vision and machine learning 
(ML) has spawned a generation of technologies in 
computer aided diagnosis (CAD) of diseases. In this 
regard, in 2008, Suri developed an active deformable 
model (28) for cervical tumor delineation. In 2011, Suri 
and his team developed a feature-based recognition 
and edge-based segmentation for carotid intima-media 
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thickness (cIMT) measurement (29). The same group 
also developed an ML-based technique for ovarian 
tissue characterization in 2014 (30). In the same year, 
an attempt was made to develop a CAD system for 
detection of Hashimoto thyroiditis on US images from 
a Polish population (31). In 2014, Suri and his team 
developed a system for semi-automated segmentation 
of carotid artery wall thickness in MRI using level set 
(32). The characterization process of ML involves the 
extraction of features from multiple feature extraction 
algorithms. These multiple features are combined 
in various ways for effective characterization by ML-
based algorithms. The methods of feature extraction 
from digital images and their combination are usually 
not comprehensive, resulting in low accuracy. The 
emergence of DL in medical imaging has eliminated the 
need of feature extraction algorithms as the DL systems 
generate features internally, thus bypassing the low 
effective feature extraction stage. In segmentation, 
deformable models (33) are generally used for inferring 
the shape of infected/abnormal region in a medical 
image. However, the accuracy of deformable models 
is affected by the presence of noise or missing data 
in image and thus results in a poor border shape. DL 
applies pixel-to-pixel characterization for inferring the 
estimated shape of the infected/abnormal shape in 
an image. This allows the DL to provide an accurate 
delineation of shape. In ML, for 3D segmentation (34), 
3D atlas feature vector is computed from each voxel 
(3D image unit) along with probability maps and then 
training/testing is done to delineate the inferred shape. 
Such estimation using feature vectors is task specific 
and may not be accurate for all type of 3D datasets. In 
DL, the feature extraction is done internally to estimate 
the location of the desired shape. Thus, DL provides a 
generalized mechanism for segmentation of 3D images 
which can also be extended to include 4D data such as 
video. During training, the DL weights are updated layer-
by-layer unlike ML where weights are simultaneously 
updated. The layer-by-layer updating of weights helps 
in better training of DL systems. The primary focus of 
this study is to study different DL models for medical 
imaging and their applications. The whole concept of 
this paper to compare and contrast the DL models 
adapted in different field of medicine. Since the imaging 
modality differs from disciple to discipline, it is therefore 
important to understand how deep learning models 
are adapted. Even though the fundamental technology 
of deep learning might remain overlapping same, but 

the role of spatial information, temporal information, 
correspondence information, shape of the structure, 
purpose the application (diagnostic, therapeutic or 
monitoring) is kept in mind while building this deep 
learning review in mind. In this paper, we study various 
applications of DL in the field medical imaging related 
to cardio, neurology, mammography, microscopy, 
dermatology, gastroenterology and pulmonary.

The paper is organized as follows: section 
two provides the detailed analysis of four types of 
DL systems, section three gives details about the 
application of DL in medical imaging, section four 
describes the corresponding literature survey and 
conclusion.

3. DEEP LEARNING ARCHITECTURES

In here we briefly describe the various DL-
based frameworks discussed in the last section.

3.1. Deep belief networks

Hinton’s (35) initial work on restricted 
Boltzmann machine (RBM) laid the foundation of DBN 
for classification, regression and feature learning. RBM 
is a two-layer network where the first layer is the input 
(also called visible layer) and the second layer is the 
hidden layer as shown in Figure 2. The joint probability 
distribution p  under this model is defined by Gibb’s 
distribution which is given by:

p v h
z
e E v h, ,( ) = − ( )1

	 (1)
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where, z  is normalization constant, wij  is 
denoted by the weight value between visible node v j  
and hidden node hi  and bj  and ci  are bias terms 
related to visible and hidden nodes. The nodes within a 
layer are not connected to each other, hence the term 
“restricted” which transcribes that, probabilistically 
the hidden node states h h hm1 2, ,...  are independent if 
input node states v v vn1 2, ,...  are given and vice versa. 

Figure 1. Deep learning and its various adaptations.
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The independence between the variables allows 
states of all variables in one layer to be sampled jointly 
i.e., sampling of new state h  for all hidden nodes is 
based on p h v|( )  and sampling of state new state 
v  for all visible nodes is based on p v h/( )  which is 
also called block Gibbs sampling. These can be also 
represented as:

p h v p h vi
i

m

| |( ) = ( )
=
∏
1  and� (3)

p v h p v hj
j

n

| |( ) = ( )
=
∏
1 � (4)

Since learning in RBM is unsupervised, the 
probability distribution function p v( )  is considered 
the likelihood function of parameter θ∈{ }w b c, ,  for 
input vector v  which can be also written as p v,θ( ) . 
Each input sequence tries to revise θ  to increase 
the likelihood of p v,θ( ) . The most common learning 
algorithm is the gradient descends method which 
employs In ,p v θ( )  as the log likelihood function. The 
parameters are revised along the gradient ∂ ( )

∂
In ,p v θ

θ
 to 

bring more learning efficiency. It is given as:
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By using the output of hidden layer in an RBM, 
as the input of visible layer to another RBM, a stack 
of RBMs can be created which effectively is the Deep 
Belief Network (DBN). A DBN is shown in Figure 3 
consisting of one visible layer with m  nodes and q
hidden layers with n  and p  nodes for the first two 
hidden layers and r  nodes for the last hidden layer. 
A couple of strategies for effective training of DBN 
were proposed. Those are: (i) layer-wise unsupervised 
learning where each RBM in a DBM is trained layer wise 
and (ii) fine tuning where a suitable classifier such as 
back propagation network is added at the end of DBN. 
Inference in DBN models is easy, however, assessing 
generalization performance of this model is difficult 
because probability of data under the model is known 
only up to a computationally intractable normalizing 
constant, known as the partition function. An estimate 
of partition function would help in controlling complexity 
and generalization of the model (36).

3.2. Autoencoder

Autoencoder neural network (37) like DBN 
is an unsupervised learning algorithm applying 
backpropagation for learning. In here, the number of 
target values are same as the inputs. A simple single 
hidden layer autoencoder network is shown in Figure 4. 
Interesting structures about the given data can be 
learned by putting constraints on the network such as 
limiting the number of hidden neurons. If the number 
of hidden neurons is less than the number of input 
neurons, then the network learns a compressed form 
of the input and possibly find relationship between the 
input features. Even if the number of hidden neurons 
is high, interesting relationships can be discovered by 
application of sparsity constraints (38). We describe 
here mathematically the autoencoder model as a 
generalized single hidden layer model:

Let the number of input and output neurons 
be n . Let there be a single hidden layer consisting 
of h  neurons. To generalize the working of n h n− −  
autoencoder the following tuple ( , , , , )n h m P,Q,R,S,X δ  
where:

1. R  and S  are sets.
2. n  and h  are positive integers.
3. R  is a class of functions from pn  to Qh

.
4. S  is a class of functions from Qh  to pn .
5. A a a am= { }1 2, ,...  is a set of m  training 

vectors in pn . If external targets are present then 
B b b m= { }1 2, ,...b  denote the corresponding set of 
target vectors in pn .

Figure 3. A multilayer DBN.

Figure 4. A generic autoencoder model.

Figure 2. A two-layer restricted Boltzmann machine.
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6. δ  is the dissimilarity function defined over 
Fn .

Given any input, it’s the task of the autoencoder 
to convert a given input vector a pn

n∈  to an output 
vector R S a Pn

n⋅ ( )∈ . The task of optimization involves 
finding suitable candidate functions i.e., r R∈  and G  
to minimize the dissimilarity function which is given by:

min , min min ,
R,S

G R S G a R S a ai
i

m

R,S i i
i

m

( ) = ( ) = ⋅ ( )( )
= =
∑ ∑
1 1

δ
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where, G  is the overall distortion function. In 
here, the autoencoder tries to learn an approximation 
to the dissimilarity function where the output is similar 
to the input. In the case where both input and targets 
are provided, the minimization problem is given by:

min , min , min ,
R,S

E R S E a b R S a bi i
i

m

R,S i i
i
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( ) = ( ) = ⋅ ( )( )
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∑ ∑
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The derivation of features (36, 37) from the 
learned hidden neurons has been found useful in 
object recognition, vision and other non-visual tasks 
such as audio as well. One of disadvantage of using 
autoencoder is suffers from the problem of vanishing 
gradient. The vanishing gradient issue is thoroughly 
discussed in the next sub-section.

3.3. Convolution neural networks

Convolutional neural networks (CNNs) are 
simply neural networks that use specialized kind of 
linear operation called convolution in place of general 
matrix multiplication in at least one of their layers. 
CNNs are biologically inspired from Hubel’s work on 
a cat’s visual cortex (39). The visual cortex consists 
of a complex arrangement of cells sensitive to small 
sub-regions in the visual field. These cells act as 
filters over the input and exploit the strong spatially 
local correlation present in natural images. CNNs 
exploit this spatially-local correlation by enforcing 
a local connectivity pattern between neurons of 
adjacent layers. The basic building block of CNN 
consists of three operations which are: (i) convolution, 
(ii) rectifier linear unit or ReLu and (iii) pooling. 
Certain parameters such as convolution filter size, 
architecture of network etc., has to be defined before 
the training process. In the convolution stage, CNN 
applies convolution filters to extract features from the 
given input image. It preserves the spatial relationship 
between pixels by learning image features using 
small squares of input image data. CNN learns the 
values of filters or kernels during the training process. 
If a greater number of filters is used, then more image 
features get extracted from the given input image and 
our network becomes better at recognizing patterns 

in unseen images. The convolution operation can be 
shown mathematically as:

f x y x y W x y 1 x p y W x y
q m

m

p m

m

, , , , ,( ) = ( ) ( ) = + +( )× ( )
=−=−

∑∑1

2

2

2

2
Θ
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where, image I  is convolved with kernel 
W , yielding an output feature value f  and Θ  
represents the convolution operation. The convolution 
is basically the sum of all products between image I  
and kernel W , represented by Eq. 7, where the kernel 
is represented as a vector of size m m×  and is shown 
for the point locations ( x y, ), while p  and q  are the 
dummy variables. After each convolution operation, 
ReLu operation is applied on the convolution output. 
In Artificial Neural Networks, gradient based methods 
learn a parameter’s value by understanding how a 
small change in the parameter’s value will affect the 
network’s output. If a change in the parameter’s value 
causes very small change in the network’s output 
then learning is not effective which is also known as 
the vanishing gradient problem. In DL the problem 
becomes even more severe due to large number of 
layers. This is avoided by using activation functions 
which don’t have this property of suppressing the input 
space into a small region. ReLu is a popular activation 
function which maps x to max(0,x). It is a non-linear 
operation where it replaces all negative pixel values 
in the feature map by zero. It is applied in CNNs to 
reduce the likelihood of the gradient to vanish. The 
pooling reduces the dimensionality of each feature 
map but retaining the most important information by 
using max pooling and average pooling. Pooling is 
done to simplify the output from CNN.

Multiple layers of convolution, ReLu and 
pooling are applied to extract high level features. 
Generally, a fully connected network (FCN) layer 
is appended at the end of the CNN for training and 
characterization purposes. CNNs have been widely 
used in computer vision tasks and are the most 
popular among all DL adaptations. CNN is used for 
both tissue characterization in medical images and 
segmentation purposes. However, the CNN requires 
large dataset for effective training. A variant of CNN 
called Fully Convolution Network (FCN) is specifically 
used for semantic segmentation discussed here.

3.3.1. A short note on fully convolution network

Fully convolutional network (FCN) indicates 
that the neural network is composed of convolutional 
layers without any fully-connected layers or MLP 
usually found at the end of the network. In FCNs, 
features are fused across layers to define a 
nonlinear local-to-global representation that is fine-
tuned end-to-end. Each layer of data in an FCN is 
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a three-dimensional array of size h x w x d, where h 
and w are spatial dimensions, and d is the feature or 
channel dimension. The first layer is the image, with 
pixel size h x w, and d is color channels. Locations in 
higher layers correspond to the locations in the image 
they are path-connected to, which are called receptive 
fields. FCNs are built on translation invariance. Their 
basic components (convolution, pooling, and activation 
functions) operate on local input regions, and depend 
only on relative spatial coordinates. The output of 
FCN represents high level or global features on which 
suitable classifiers are built by adding conventional 
classifiers such as perceptrons at their end which are 
basically CNNs. These features represent a coarse, 
downsampled model of the original image. These 
global features are upsampled and merged with 
intermediate low level or local features to give smooth 
segmentation maps of the original image

3.4. Deep residual network

With increasing depth of neural networks, they 
become more difficult to train. The accuracy saturates 
with a certain depth after which it degrades rapidly 
resulting in higher training error. Deep residual network 
(DRN) (24) simplifies the training of these networks, 
allowing networks to go to a greater depth. The notion 
here is that adding more layers should not increase the 
training error of its less deep counterpart. This notion is 
implemented mathematically as follows: Let’s say that 
G i( )  is a desired mapping from two stacked layers as 
shown Figure 5 (a). Then the residual mapping between 
the stacked layers is the difference between input i  
and desired mapping G i( )  i.e., F i G i i( ) = ( ) −  as 
shown in Figure 5 (b). Then the original mapping is 
recast which is given by G i F i i( ) = ( ) + . The solution 
is shown Figure 5 (c). In this way, even if the training 
error does not decrease, it remains the same as its 
less deep counterpart. Also, the optimal mapping is 
closer to identity and easier to find small fluctuations. 
Therefore, training error does not increase with 

addition of more layers. Further, residual connections 
significantly reduced time for convergence. However, 
the deep residual network is used as a conceptual tool 
for enhancement of other networks rather than being a 
separate class of neural networks.

4. DL-BASED MEDICAL IMAGING SYSTEMS

The applications of DL in medical imaging 
have been rising rapidly. The independence of DL with 
regards to feature extraction has made it an attractive 
tool for imaging scientists, students and entrepreneurs 
alike. Many current tools which were dependent 
upon ML tools are increasingly shifting their focus 
to DL. There are a number of reasons for this shift. 
The first is the lack of identification of appropriate 
tissue characterization features for the various kinds 
of diseases. This can be attributed to the fact that 
ground truth data is not easy to collect due to the cost 
reasons. Typical ground truth data sets require manual 
delineations which can be expensive due to the time 
involved in manual tracings. Second, when histology 
and pathology ground truth is involved in 3D, this 
becomes very time consuming, very challenging and 
very expensive. This is typically seen in the component 
classification of plaques in the artery. Here the slices 
are cut perpendicular to the blood flow and thin enough 
to be seen in the microscope. Second challenge in 
the ML-based system is exhaustive search strategy 
needed for feature extraction with different kinds of 
frameworks. Each framework gives several set of 
features. Thus the combination of frameworks and 
feature size leads to 1000’s of features. Thus one needs 
exhaustive feature selection techniques which have 
detrimental effect on speed, learning, generalization 
effect, cross-validation protocol, etc. This adds large 
complexity in the ML-based systems.

Majority of DL applications for medical imaging 
fall primarily into two categories: (i) classification and (ii) 
segmentation. The generalized classification model is 

Figure 5. Deep residual network conceptual model in subfigures: 5 (a), 5 (b) and 5(c).
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shown in Figure 6. Here, DL is used for characterization 
of medical images. As shown in the object process model 
the DL classifier is trained using GT of training data and 
finally tested with GT of test data. Depending upon the 
application, image segmentation can be sometimes 
more challenging compared to classification. This is 
because segmentation can involve a combination 
of classification followed by segmentation modeling. 
Classification can turn the images or volumes into 
different classes as an intermediate step, which can 
then be used for training the segmentation models. 
The trained models can then be applied to test data 
sets leading to the prediction of the segmentation of 
surfaces or boundaries. Thus in most segmentation 
problems, classification process are a precursor. For 

this reason, we are typically adaptive to intelligence 
based method for segmentation where one needs large 
spatial data sets. It is either done in one stage or two 
stages. In a one stage system, it is either done by a 
FCN or some pre-processing stage such as patching 
process. In patching, image patches are extracted 
which are manually annotated and then training/testing 
takes place. In the two stage system, segmentation 
generally involves rough estimate of the borders from 
the initial DL-based segmentation model trained using 
GT of training data. The second stage adapts a DL 
model or a conventional ML model to generate the 
refined output. The corresponding generalized two-
stage segmentation model is given by Figure 7. This 
has been applied to many domains i.e. cardiovascular 

Figure 6. Generalized classification model in DL framework.

Figure 7. Generalized two stage segmentation models in DL framework.
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diseases, brain diseases, breast cancer, cellular biology 
etc. We present different successful applications of DL 
in different domains in the following subsections.

4.1. Cardiovascular application

DL has been widely used for left ventricle 
(LV) segmentation, vessel detection and plaque 
characterization. In here, we discuss five applications 
based on DL.

4.1.1. Tracking the left ventricle endocardium in 
US data

The two most important parameters to check 
the health of heart is ejection fraction measurement 
and assessment of the regional wall motion. These 
parameters can be obtained by the combination 
of segmentation and tracking of left ventricle (LV) 
endocardium from US scans of heart. Earlier attempts 
that were made to detect the size and contour using 
active shape and appearance model (32) but it had 
its own limitations. These models required a large 
annotated dataset for training, an initialization closer 
to local optimum, assumed a Gaussian distribution 
of shape and appearance from training samples 
which are not always accurate. Further, they did not 
consider priors which are important to capture all 
variations of wall motions. To resolve these issues, 
a new pattern recognition (40) approach for the 
problem of left ventricle tracking in US images is 

performed using DBN framework. The expected 
segmentation of the current time step t  considers 
all previous segmentation contours c  and current 
images produced. The author has defined current 
image I  is a set of prior states where each state 
is defined by heart functions of systole and diastole 
i.e., k systole diastole= { },  and the contour c  which 
defines the shape. In this respect, given the cardiac 
phase and contour, the shape model can be described 
probabilistically as:

p I k c p k c I p It t t t t t t| , , |( ) ≈ ( ) ( ) � (8)

where, p It( )  is constant and p k c It t t, |( )  
can be described as integration of affine detection 
p k It t| ,θ( ) , non-rigid segmentation p c It t t| , k ,θ( )  

and prior distribution of affine parameters p Itθ |( ) :

p k c I p k p c k I p I dt t t t t t t t t, | | , I | , , |( ) = ( ) ( ) ( )∫ θ θ θ θ
� (9)

where, θ  denotes parameters of affine 
transformation, kt  represents the cardiac phase 
and ct  is the LV contour. Thus, to estimate contour 
segmentation ct  and cardiac phase kt , the affine 
transformation θ  has to be marginalized using the 
prior information estimated from the training dataset. 
A team of four cardiologists and one technician traced 
the left ventricle (LV) borders of 496 images dataset. 
The results were computed on 132 images. The traced 
images formed the GT of the experiment. 

The model as described in Eq. 8 and Eq. 
9, is implemented using two separate DBN-based 
architectures. The first is the rigid or affine classifier 
which provides the initial coarse contour shape of 
the LV. The second is the non-rigid classifier which 
produces estimated fine shape of LV. The rigid DBN-
based system consists of three DBNs each trained 
on different priors (systole, diastole and non-LV). The 
discriminative training finds the maximum posterior 
(coarse contour) among each scale. The non-rigid 
classifier produces a fine contour of the LV using a 
principle component analysis (PCA) based shape 
model. Each of the DBN-based systems goes through 
training using predefined image datasets to train the 
hidden weights. Different performance parameters 
were computed such as Jaccard distance (JD), average 
error (AV), mean absolute distance (MAD) and average 
perpendicular error (AVP) from the predicted and GT 
contours. The average JD, AV, MAD and AVP were 
found to be 0.83, 0.91, 0.95 and 0.83 respectively. The 
corresponding object process model of the system is 
given in Figure 8. The resultant images are shown in 
Figure 9. The DBN-based method used limited size 
datasets to achieve better segmentation accuracy. 

Figure 8. DBN based LV contour tracking model.
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The MRI were obtained from 45 cardiac 
MR Datasets taken from the MICCAI 2009 LV 
segmentation problem. At first, the MRI were the input 
into the CNN framework to obtain the binary masks. 
The binary masks were then used to generate the 
region of interest (ROI) from the MR images. The 
weights of the CNN framework itself were next trained 
by an autoencoder. Once the ROI was obtained, an 
initial LV shape δ 0( )  was inferred from the ROI using 
stacked autoencoder architecture. Deformable models 
were applied in the final stage for segmenting the LV 
and final 3D alignment from the inferred shape. This 
was done by minimizing the energy function over the 
inferred shape which is given by:

δ δδ* arg= ( )min E
� (10)

where, E represents the energy function and 
δ *denotes the optimal contour shape. This was done 
by updating initial shape δ 0( )  iteratively using gradient 
descent method to obtain the final contour which is 
given by:

The model showed effective tracking accuracy and 
less processing time compared to previous methods 
(41, 42). The prototype developed was encouraging 
but lacked higher accuracy and was demonstrated on 
a low data size. 

4.1.2. Fully automatic segmentation of the left 
ventricle in cardiac MRI

Automated LV segmentation using 
conventional methods suffers from primarily two 
issues. The first is the lack of large training data 
and the second there is shortcomings in classical 
deformable models i.e., leakage, shrinkage and 
sensitivity to initialization. The combined approaches 
of DL along with deformable models can be used to 
resolve limited data size issue and the shortcomings 
of classical deformable models using artificial data 
enlargement, pre-training and careful design. In here 
an integrated approach of DL and deformable models 
in segmentation and alignment of the left ventricle 
(LV) from cardiac magnetic resonance imaging (MRI) 
datasets (43). 

Figure 9. Output of DBN-based segmentation of LV. The auto detected outline is shown in yellow, COM (40) outline in magenta, MMDA (41) outline in 
cyan while the GT outline is shown in blue (reproduced with permission from (39)).
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δ δ γ
δi i d
dt

+( ) = ( ) +1

� (11)

where γ  denotes the step size, i  represents 
successive iterations and d

dt
δ  represents change 

in δ  with respect to time. The model with respect 
to the system is given in Figure 10. The 2D and 3D 
segmentation outputs are shown in Figure 11 (a) and 
Figure 11 (b). Dice metric (DM), average perpendicular 
distance (APD) and conformity metrics were computed 
from the output estimated and GT contours. The 
results have shown improvement over previous 
methodologies with DM at 0.94, APD at 1.81 mm and 
conformity at 0.86. 

Although the model gives a quicker 
convergence with respect to classical methods, it is 
not fast enough since it is a CPU-based framework. 
All current versions of DL are GPU-based and 
therefore give a faster convergence rate. The CNN 
and autoencoder architectures implemented in this 
paper are one layer deep. However, all current DL 
frameworks are deeper i.e., multiple layers. Therefore, 
there is a scope of improvement by increasing the 
number of layers and be called truly deep. Even if 
the performance parameters are better than classical 
methods, the system can be improved for clinical 
acceptance.

4.1.3. Volumetric left ventricle image parsing 

The success or failure of ML-based 
algorithms lies with the human understanding of 
prior information hidden in the data to design feature 
extraction methods. This feature extraction task 
becomes even more complex in case of volumetric or 

3D data. This is because the system tries to capture 
features/parameters in translation (3D), orientation 
(3D) and anisotropic scale (3D) of the desired object, 
resulting in finding features in 9D space. Such large 
number of parameters scanning is not possible with 
current systems. A novel idea of Marginal Space 
Deep Learning (MSDL) (44) was introduced where 
incrementally learning deep classifiers are employed 
to learn the location of LV in the 3D image. This method 
was applied in two stages: a) object localization and 
b) boundary estimation. The object localization is 
done by applying deep classifiers (DCs) stepwise to 
learn position-orientation-scale of the LV. It is done 
by maximizing posterior probability of location of the 
object in image I  which can be defined as:

     

  T R S max T R S I
T R S

, , arg , , |
, ,( )= ( )

� (12)

where 


T  represents the 3D translation, 


R
denotes the 3D orientation and 



S  signifies the 3D 
scale space. The DC applied in this paper is Fully 
Connected Network. As observed in Eq. 14, a rough 
estimate is made on the position, orientation and 
scale of LV by using three DCs. The first DC is used 
to estimate the position of LV using 3D translation. By 
using the position estimate of the first DC, the second 
DC is used to estimate the position and orientation 
of LV. At last, by taking into account the position and 
orientation estimate from the second DC, the third DC 
estimates the position, orientation and scale of the LV. 
In the border estimation stage, DL-based active shape 
model is applied to guide the shape deformation. In 
order to increase computational efficiency and prevent 
overfitting, sparsity is introduced into the network 
by gradually dropping neural connections without 
affecting network performance. The dataset is taken 
from 869 patients containing 2,891 3D volumes from 
different vendors. The results have shown considerable 
improvement over state of the art Marginal Space 
Learning (MSL). The MSDL position error is computed 
at 1.47 mm which is far lower compared to 3.12 mm 
in MSL. The MSDL corner error is found to be 2.80 
mm which is almost half the corner error of 5.42 mm in 
MSL. The corresponding model is given in Figure 12.

The resultant images are shown in Figure 
13. The results provided in this study are not sufficient 
to judge the efficiency of the scheme. However, this 
method is the first application of DL in 3D imaging and 
therefore can be considered a benchmark in volumetric 
image parsing.

4.1.4. Vessel extraction in X-Ray angiograms

Coronary artery disease (CAD) is the most 
common type of heart disease which is the leading cause 
of death globally. X-ray angiography is considered as 
important method for diagnosis of CAD. Tracking and 

Figure 10. DL-based LV contour tracking model for MRI.
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filter based methods for vessel extraction suffers from 
non-linear noise, multiple organ structures bringing 
complexity in the images, and lastly low resolution. 
In study (45), a DL-based approach using CNN is 
proposed for detecting vessel regions in angiography 
images. A dataset of 44 X-ray angiography images is 
considered for the experiment. All the images were 
manually segmented by an expert. The images were 
first pre-processed to increase the contrast by Top-Hat 
transform. In order to train the CNN, 1,040,000 patches 
were extracted and applied. The patch is defined by 
placing a window around each pixel of the image. Each 
patch is fed into the CNN for training/testing. The CNN 
consists of two convolutions, two max-pooling and two 
FC layers. The first fully connected layer consisted of 
500 neurons and the second consisted of two neurons. 
The two neurons generated two probabilities for the 
center of the patch if it either belonged to the vessel 
region or the background region. The test results 
showed an accuracy of 93.5%.The whole object 
process model is shown in Figure 14. The DL-based 
method showed greater accuracy values in spite of 
low resolution and complex background of the images 
which demonstrated its superiority over conventional 
models. However, deeper architectures are needed to 
be tried for optimal results. A comparative analysis with 
current medical techniques for diagnosis is required to 
judge its clinical efficacy. The segmentation outputs 
are shown in Figure 15.

4.1.5. Plaque characterization 

An important task for identifying cardio­
vascular disease (CVD) events is the identification 
of plaques that are prone to rupture. Identification of 
such plaques is important for early risk assessment 
of cardiovascular and cerebrovascular events. The 
significant US speckle noise, coupled with the small 
size of the plaques and their complex multifocal 
appearance, makes it difficult even for automated 
ML techniques to discriminate between the different 
plaque constituents. Also, the US images of carotid 
bifurcation are inundated by shadowing, artifacts and 
reverberation making them difficult to read even by 
experts. This motivated Karim et al. (46) to implement 
automatic plaque characterization using DL-based 
framework. The study applied CNN-based strategy 
for plaque characterization. The CNN consisted 
of four convolution layers followed by three fully 
connected layers. Each of these layers was followed 
by a ReLu layer for extraction of deep features. A fully 
connected layer and softmax layer were appended 
for characterization purpose. The cross-entropy 
loss function was used for training. The cross-
entropy describes the loss between two probability 
distributions. In the case of DL, it describes the loss 
between true and predicted probability distribution. 
Single-scale SVM and multi-scale SVM was used for 
benchmarking the results of DL-based system.

Figure 11. (a). Example of outputs from the DL-based LV segmentation. The auto detected LV contour is shown in red-black as pointed by arrow (a) while 
GT contour is shown in green as pointed by arrow (b) (reproduced with permission from (42)). (b). Inferred 3D shape from the given model with side, top 
and bottom cut-sections (reproduced with permission from (42)).
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Figure 12. Deep classifier-based 3D LV segmentation model.

Figure 13. Deep Classifier-based 3D LV segmentation model outputs. The auto detected bounding box is shown in green while the GT bounding box 
is shown in yellow (reproduced with permission from (43)).



 Review on deep learning in medical imaging 

404 © 1996-2019

Figure 14. Segmentation of X-ray images using CNNs.

Figure 15. Row one shows five input images. Row two shows corresponding GT of Row one images. Segmentation outputs analogous images using 
CNN shown in row three (reproduced with permission from (44)).
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The study considered 90,000 image patches 
that were extracted from 56 US CCA images. All the 
patches were annotated into three classes of plaque 
such as: lipid core, fibrous and calcified by a single 
expert clinician with decades of experience. The 
annotated patches formed the GT of the experiment. 
The corresponding model of the system is shown 
in Figure 16. Finally, predicted plaque labels were 
compared against GT for performance parameters. 
The characterization results are shown in Figure 17. 
The DL-based approach gave the best classification 
accuracy at 78.5% of the cases, while multi-scale SVM 
gave classification accuracy of 14.3% and single-scale 
SVM gave classification accuracy of 7.2%.

The author has presented a useful DL system 
for plaque characterization using deep features for 
characterization by SVM based classifiers. The dataset 
size for the experiment was limited to 56 images only 
and hence more data set was needed to prove its validity 
and robustness. The classification accuracy was low 
when compared against other medical CAD systems.

4.2. Neurology application

Identification of abnormal regions of brain is 
a challenging task due to mixture of intensities in the 

images and irregularities of the abnormality. In here we 
discuss some applications of DL in neurology. 

4.2.1. Brain lesion segmentation

In brain imaging, exact estimation of location 
of lesion from traumatic brain injury (TBI) pertinent 
to brain structure is a necessity. There are several 
complications in computational estimation of brain 
lesion i.e., they can occur at multiple sites, shape and 
size of lesions vary and their intensity profiles overlap 
with healthy parts of the brain. Several conventional 
methods have been developed to localize 3D brain 
lesions but their performance is limited. This motivated 
the development of DL-based architecture for brain 
lesion segmentation (47). In this review, two DL-based 
architectures were used in parallel to increase the 
accuracy of estimation. Each DL-based pathway is 
a CNN which processes a different scale of the input 
which are combined to give accurate segmentation of 
brain lesion. In the first pathway, original size 3D images 
were input into the system whereas in the second 
pathway downsampled 3D images were fed. The first 
pathway computes the detailed local appearance of 
the structure while the second pathway captures high 
level features such as location within the brain. The 
features from these two pathways are combined later. 

Figure 16. Global diagram for plaque characterization.
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The second pathway features are upsampled and then 
combined with the first pathway features. Finally, the 
combined 3D features are fed into 3D fully connected 
conditional random field (CRF) network for structural 
predictions. The data were collected from 66 patients 
with moderate to severe traumatic brain injuries. 
The method gave highest dice similarity coefficient 
(DSC) at 0.59 at the ISLES-SISS challenge 2015. 
The corresponding model is given in Figure 18. The 
segmentation outputs of the model is given in Figure 
19. The results were compared against the Random 
forest method and the DL-based method outperformed 
the Random forest methodology. However, the DSC 
values are low making the methodology questionable 
for clinical use. However, this model provides prototype 
for DL-based frameworks for brain lesion segmentation.

4.2.2. Brain tumor segmentation

Among several types of brain tumor, Gliomas 
have the highest mortality rate. Gliomas are divided 
into two types: low grade gliomas (LGG) and high grade 
gliomas (HGG) with the latter being more aggressive 
than the former. Segmentation of Gliomas and their 
characterization into LGG and HGG is important for 
treatment, planning, and follow-up evaluation of the 
patients. Manual segmentation of Gliomas is tedious 
and error prone and therefore requires semi-automatic 
and automatic methods for segmentation. The 
detection of Gliomas is difficult because of their variable 
shape, structure and location. The MRI present their 
own set of challenges in form of intensity homogeneity 
and different intensity ranges along the same 
sequence of images and faulty acquisition scanners. 
Conventional methods such as ML-based techniques 
have been applied for segmentation but with limited 
success because of the above mentioned challenges. 
DL methods that generate their own internal features 
stand as an interesting alternative to the conventional 
methods. In this paper (48), a CNN architecture has 
been applied for tumor segmentation. The tumors are 
divided into four classes such as: edema, necrosis, 
non-enhancing and enhancing. The images were pre-
processed before they are input into the DL system for 
training. The pre-processing involved normalization of 
the image dataset.

Two different CNNs of different depth were 
used for LGG and HGG. The depth of LGG CNN was 
lesser compared to HGG CNN as increasing depth for 
LGG CNN did not increase performance. The LGG 
CNN framework consisted of four convolutions, two 
max-pooling and three fully connected layers while the 
HGG CNN framework consisted of six convolutions, 
two max-pooling and three fully connected layers. 
Two kinds of datasets were used for the experiment 
such as: BRATS2013 and BRATS2015. BRATS2013 
contained 65 MRI scans and BRATS2015 consisted 

Figure 17. Row one represents input images, row two is the corresponding GT and row three is the equivalent characterization output of the given 
method. In here, red represents lipid core, yellow epitomises fibrous tissue and green signifies calcified tissue (reproduced with permission from (45)).

Figure 18. Deep Neural Network for brain lesion segmentation.
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of 274 MR scans with manual segmentation available 
for both. For training, 335,000 and 450,000 image 
patches were extracted for LGG and HGG images 
respectively. The dice similarity metric for complete, 
core and enhancing segmentation scheme was 0.88, 
0.83 and 0.77 respectively. The object process diagram 
is shown in Figure 20. Since only 339 images were 
used, there is a scope of better training of the CNN 

with larger dataset. The segmentation output images 
are given in Figure 21. There is a clear potential of 
improvement of performance.

4.3. Mammography application

Breast cancer diagnosis provides various 
challenges to medical imaging scientists. Below, we 

Figure 19. Row one and two represents the FLAIR and DWI sequences from the dataset, row three denotes the GT, row four shows the corresponding 
output of DeepMedic and row five shows the analogous output of DeepMedic + CRF (reproduced with permission from (46)).
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Figure 20. DL-based system for brain tumor segmentation.

Figure 21. Segmentation of HGG shown in row one and segmentation of LGG shown in row two. The different MRI sequences from left to right are T1, 
T1c, T2 and FLAIR. The rightmost image in row one shown by medical arrow (a) is HGG segmented image and rightmost image in row two shown by 
medical arrow (b) is LGG segmented image. The colors represent tumor types: green: edema, blue: necrosis, yellow: non-enhancing tumor and red: 
enhancing tumor (reproduced with permission from (47)).
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discuss some applications of DL to detect breast 
cancer cells in breast cancer images.

4.3.1. Mitosis detection in breast cancer

The presence of mitotic figures in histology 
images is an important indicator of cancer. Mitosis is 
a complex process where the cell nucleus undergoes 
various transformations. There are several structures 
of same intensity and shape that appear in histology 
images out of which only few are mitotic cells. 
Therefore, identification of mitotic cells becomes a 
difficult task. In this study, each pixel is assigned 
two classes which are: mitosis and non-mitosis. DL 
was applied for classification of pixels in the given 
dataset (49). Two different CNN frameworks were 
trained. The first CNN was 13-layer architecture and 
consisted of input, five convolutions, five max-pooling 
and two fully connected layers. The second CNN 
was 11 layers with one input, four convolutions, four 
max-pooling and two fully connected layers. The final 
outputs were later combined in ensemble classifier. 
A total of 50 images were taken from public MITOS 
dataset for training and testing of the DL-based pixel 
classifier. The performance results of our DL-based 
approach showed a precision of 0.88 and F1-score of 
0.78 which is higher than all previous implementations. 
The object process model is shown in Figure 22. The 
characterization output is presented in Figure 23.

The size of the dataset was limited to 50 
images. Although the method gave the best accuracy 
in comparison with competitors at ICPR2012 (48), the 
method requires a larger data size and corresponding 
validation.

4.3.2. Digital mammographic tumor classification 

Computer aided diagnosis of breast cancer 
using ML involves extraction of features and estimating 
malignancy probabilities. The methodology focuses on 
classification of breast lesions from mammographic 
images using transfer learning via CNN framework 
(50). In this study, classification comparison was made 
between analytically extracted hand crafted lesion 
features and features obtained from deep CNN. The 
deep CNN was trained on general object recognition 
tasks different from the breast cancer data through 
a process known as transfer learning. It is based on 
the hypothesis that structures within a CNN trained 
on everyday objects can be used to create a classifier 
for breast cancer. The dataset consisted of 219 breast 
lesions on digital mammography images from which 
607 region of interests (ROIs) were extracted. AlexNet - 
a CNN model was selected for feature extraction 
from breast cancer dataset. It consists of three fully 
connected layers and five convolutional layers. Three 
of the five convolutional layers were followed by max-
pooling layers. Two SVM classifiers, were used for 
training and testing of features obtained from AlexNet 
(Method A) and analytically extracted lesion features 
(Method B). An ensemble technique called soft voting 
was used to combine the results of two classifiers, 
which is if p1 was output of Method A and p2 was 
output of Method B, then the output of ensemble 
classifier was (p1+p2)/2. It’s seen from the results 
that ensemble classifier was significantly better i.e., 
AUC was 0.86 than Method B, that is, SVM trained on 
analytically extracted features i.e., AUC was 0.81. The 
analogous model is given in Figure 24. The outputs of 
each layer are shown in Figure 25. The study provided 

Figure 22. DL-based breast cancer detection.
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important benchmarking results in terms of AUC, but 
the system did not use GPU-based paradigm.

4.4. Microscopy application

Biological cell identification from images is 
a very difficult and time consuming task. In here we 
discuss some applications of DL in microscopy.

4.4.1. Quantitative analysis of individual cells in 
live-cell imaging experiment

In the field of cellular biology, dynamic 
live-cell imaging experiments are a powerful tool to 
interrogate biological systems. Determining the class 
of cells requires hours of manual curation. The key 
to analyzing data generated by these measurements 

Figure 23. Leftmost image show by arrow (a) represents the image with three dotted areas. The three dotted areas are shown in detail as pointed by 
arrow (b), arrow (c) and arrow (d). Mitosis detected by the system shown in green, red represents false positive and cyan signifies mitosis not detected 
by the given approach (reproduced with permission from (48)).

Figure 24. DL-based breast tumor detection.
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is image segmentation i.e. identifying which parts of 
an image (pixel) belong to which individual cells. The 
conventional methods applied to microscopic cell 
segmentation still require substantial manual curation 
for segmentation accuracy. DL-based methods provide 
an alternate way to improve segmentation accuracy as 
DL frameworks generate features internally. The DL 
framework implemented here was CNN architecture 
(51). By integrating CNNs into an image analysis 
pipeline, one can quantify the growth of thousands of 
bacterial cells and track individual mammalian nuclei 
with almost no manual correction. The training dataset 
is created from images of representative class by 
taking each image pixel and annotating a small region 
(patches) around a pixel with the pixel’s respective 
class. This is done for all images in the dataset. The 
image segmentation becomes a classification task 
as now the segmentation involves splitting images 
into overlapping patches, by applying classifier to 
each patch to assign labels and then all labels are 
congregated to form a new image. This prediction 
image is converted into segmentation mask by using 
image processing techniques. The cost function 
applied here is given by:
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where C  represents the cost function, i
symbolizes the images, l  denotes the labels, w  
signifies weights, τ  corresponds to regularization 
parameter and W  signifies all weights. The weights 
are updated as per the given formula:

w w C
wi i+ = −
∂
∂1 γ

� (14)

where i  denotes iterations, γ  represents the 
learning rate and ∂

∂
C
w

 gradient of cost with respect to 
weight. 

A total of five different mammalian cell lines 
were used to create the annotated dataset. In one 
microscopic image, the number of bacteria cells were 
approximately 300, 500 nuclei and 100 mammalian 
cells. The image dataset was first normalized for 
increasing robustness, segmentation performance, and 
processing speed and then augmented by rotating each 
image patch by 0, 90, 180, or 270 degrees. It was done 
to make the class labels invariant to the transformations. 
In order to generate a prediction for each pixel, a trained 
FCN was applied for segmentation. The jaccard index 
(JI) and DM for mammalian nuclei were 0.89 and 0.94 
respectively. Model parallelism was used to increase 
segmentation accuracy. The corresponding model is 
shown in Figure 26. The output is given by Figure 27. 
The application of DL-based framework reduced human 
curation time significantly and improved the accuracy 
of segmentation mask. The CNN architecture details 
which are not present would have provided more insight 
into the depth of the network.

4.4.2. Classifying and segmenting microscopy 
images 

The high-content screening (HCS) 
technologies have enabled large scale imaging 
experiments for studying cell biology and for drug 
screening. The ML-based algorithms available are 
optimized for mammalian cells and not for tiny organisms 
such as yeast. The DL approaches that learn feature 
representations directly from pixel intensity values 
have currently dominated object recognition challenges 
worldwide. In this study, the approach has been to 
combine CNN with multi-instance learning (MIL) in 
order to segment microscopy images using only whole 
image level annotations (52). In MIL, the supervised 
algorithm trains not from single instances rather a 
group of instances at a time. The similarity between 
the pooling layer and the MIL aggregation function is 
exploited here, where features in convolutional layers 
correspond to instance features in MIL. If class specific 
feature maps are treated as bags of instances, then 
the classical approaches in MIL can be generalized to 

Figure 25. The outputs of different layers of AlexNet are shown. (a) represents the ROI input, (b) represents output of pooling layer one, (c) denotes 
outputs of pooling layer two, (d) denotes output of convolution layer four and (e) signifies the output of pooling layer five which are fed into conventional 
methods for characterization (reproduced with permission from (49)). 
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global pooling layers over these feature maps. The CNN 
produces an image level classification over images of 
arbitrary size and varying number of cells through a 
MIL pooling layer. The individual cells are classified by 
mapping the probabilities in class specific feature maps 
back to the input space. The pre-softmax activations of 
specific output nodes are back-propagated through a 
classification network to generate Jacobian maps with 
respect to specific class predictions. The segmentation 
masks are generated by thresholding the sum of the 
Jacobian maps along the input channels. Loopy belief 
propagation (reference #10 in (52)) is used to improve 
the localization of cellular images with respect to 
segmentation masks. The DL framework consisted 
of seven convolution layers, four pooling layers, one 
MIL pooling layer and one fully connected layer. A 
total of three types of datasets were used. Data was 
collected from nine categories of MNIST handwritten 
digits dataset. From each category, 50 images were 
used for training and 10 images were used for testing. 
The second dataset consisted of MFC-7 breast cancer 
cells available from the Broad Bioimage Benchmark 
Collection. A total of 300 microscopic images were 
used for training and 40 images were used for testing. 

Cell data was also collected from yeast GFP collection. 
A total of 2200 images were used for training and 280 
images were used for testing. The equivalent model 
is given in Figure 28. The segmentation is output is 
shown in Figure 29. The test error for MNIST dataset 
was 0%. The highest accuracy for yeast dataset and 
breast cancer dataset across all classes was 0.96 and 
0.97 respectively. The results showed considerable 
increase in accuracy across all datasets. The system 
should be validated with larger breast cancer dataset 
to increase its clinical value.

Recently, DL has also been applied to 
enhance super-resolution localization microscopy (53), 
Resolution enhancement of wide-field interferometric 
microscopy (54) and rapid autofocusing in whole slide 
imaging (55).

4.5. Dermatology application

Skin cancer affects a considerable percentage 
of population across the globe. In here we discuss one 
application of DL in characterizing skin cancer from 
images.

Figure 26. Model depicting segmentation of individual cells using DL.
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4.5.1. Melanom a recognition in dermoscopy 
images

Melanoma has the highest mortality rate 
among skin cancers. It is curable when detected at initial 
stage. The ML algorithms applied earlier for detection 
of melanoma are dependent on hand-coded low-level 
features and therefore their success was limited. In 
this study, DL was applied for detection of melanoma 
(56). The segmentation was done by an FCN whose 
architecture was similar to UNet (57). It co4nsisted of 
a series of convolutions, pooling followed by a single 
fully connected layer. It was followed a series of 
deconvolution and unpooling layers. Skip connections 
were used to merge convolutional data prior to pooling 
operations with the deconvolution operation outputs. 
The classification operation consisted integration 

of CNN, DRN and UNet. Each technique is used to 
extract features from the entire image and region 
segmented around the lesion part. The architecture 
consisted of three stages of convolutions and pooling 
followed by fully connected layer and thereby the 
process is reversed with three stages of deconvolution 
and unpooling layers. For this experiment, 900 
annotated dermoscopic images were used for training 
and 379 images were used for testing. The dataset 
was a part of the ISIC2016 (reference #34 in (56)). The 
proposed system consists of two primary components: 
segmentation and classification. At the end, an SVM 
was applied to segregate the melanoma. The system 
gave higher accuracy at 76.0% in comparison with 
70.5% of average accuracy of eight dermatologists. 
The whole object process model is depicted in Figure 
30. The segmentation output is shown in Figure 31. 

Figure 27. The phase contrast input images are shown leftmost side and pointed by (a) and (d). The analogous segmentation output is shown (b) and 
(c) (reproduced with permission from (50)).
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Although the results are better than eight 
dermatologists, the system did not meet the accuracy 
standard for regulatory level.

4.6. Gastroenterology application

Liver tumor detection is a challenging task. In 
here, we discuss one application of segmentation of 
liver tumor from CT images.

4.6.1. Segmentation of liver tumor

As per WHO report, liver cancer has been 
the second major cause of death among all cancers. 
Detection of liver tumor from CT images is tough 
task appearance variability, fuzzy boundaries and 
heterogeneous densities, shapes and sizes of lesions. 
Earlier applications of ML had limited performance due 
to their dependence on hand-made feature extraction 

Figure 28. Model depiction deep multiple instance learning.

Figure 29. Segmentation using FCN-MIL pooling methodology. (a) Shows the Jacobian maps, (b) shows thresholding, (c) denoising using loopy bp and 
(d) segmentation outlines (reproduced with permission from (51)).
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Figure 30. Segmentation and classification of melanoma.

Figure 31. Segmentation of melanoma of nine patients using FCN-UNet. Row one shows the input images. Row two is the corresponding GT and row 
three is the analogous segmentation output (reproduced with permission from (52)).
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algorithms. In here (58), DL-based framework has 
been used for segmentation for liver tumor.

A CNN architecture is used as the DL-based 
framework. The CNN consisted of two convolutions, 
two max-pooling, one fully connected and one Softmax 
layer. Three ML algorithms which are AdaBoost, Random 
Forest (RF) and SVM were used for benchmarking the 
results. The images were pre-processed and patches 
were extracted from the images. Each patch was 
labelled positive if more than 50% of it contained tumor 
cells and negative otherwise. All the patches were fed 
into the CNN for training and testing. A dataset of 30 
CT images was collected for the experiment. The CT 
images were divided into two categories of tumor and 

non-tumor images. The comparison results show DM 
coefficient at 80.06% for the given method, 79.78% for 
SVM, 79.47% for RF and 75.67% for AdaBoost. The 
segmentation system model is visualised in Figure 32. 
The segmentation output is given in Figure 33. The 
results have shown considerable improvement over ML 
based techniques, however, there was a clear potential 
of improvement in terms of accuracy.

4.7. Pulmonary application

Detection of lung cancer using automated 
techniques is always a challenge. In here we discuss 
one application of DL in lung cancer characterization 
from images.

Figure 32. Segmentation of CT liver tumor.
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4.7.1. Characterization of lung disease

Lung cancer is a malignant disease with five 
year survival rate less than 20%, if not diagnosed early. 
Characterization of lung disease from CT images is 
difficult as small lung nodules are infrequently regarded 
malignant, difficult to biopsy and cannot be reliably 
characterized by positron emission tomography scan. 
DL-frameworks provided a new area of research in this 
field. In here for characterization of lung cancer (59), 
two DL-based frameworks are applied. Two separate 
characterizations were done using two DL techniques 
such as: CNN and DBN. It was found that CNN and 
DBN both gave better results than other conventional 
methods using feature extraction technologies. The 
pulmonary modules in lung could be diagnosed as 
malignant based on their shape which can be sphericity 
and speculation and composition of internal structures 
such as fluid, calcification and fat. In this paper, the 
chest CT images were collected from 1010 patients. 
The sensitivity of CNN and DBN was found to be 73.3% 

and 73.4% while specificity was found to be at 78.7% 
and 82.2%. The object process model of the system 
is given in Figure 34. The input CT images depicting 
various sizes of lung module is given in Figure 35. This 
application can be called as a ground level study of the 
use of DL for lung cancer detection. Multiple deeper 
layers could be added to improve accuracy. The paper 
lacked prevailing DL-based architectures.

5. DISCUSSION

The evolution of DL can be traced to earlier 
attempts to mine knowledge using artificial intelligence 
(AI) techniques from given data. The AI techniques 
were task specific and faced difficulties dealing with 
real time data. This led to the development of ML which 
was able to learn patterns from data using feature 
extraction tools. The ML techniques were dependent 
on feature extraction techniques which were faulty 
in nature. The feature extraction methodologies 
are generally hand-designed mathematical tools 

Figure 33. Segmentation of CT liver tumor for four patients using AdaBoost (purple) in row one, RF (green) in row two, SVM (blue) in row three and CNN 
(red) in row four. GT is shown in yellow in all rows (reproduced with permission from (54)).
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and therefore task specific. These tools cannot be 
diversified to the wide variety of real time data that 
exists. Therefore, the performance of ML system is 
limited. The advantage of DL is that it generates its 
own features and is independent of feature extraction 
techniques. Thus, the performance of DL system 
is better than ML systems. The greater depth of DL 

system allows it to learn complex functions and 
composite relationships between data components. 
The application of DL system varies widely i.e., text, 
numbers, images, video etc. In this paper, our primary 
focus has been on DL in medical imaging applications. 
We have dealt with various types of images like US, 
MRI, CT, X-ray etc. from various types of medical fields 

Figure 35. Different sizes of lung nodules (yellow) visualized in the CT images for characterization by the CNN and DBN (reproduced with permission 
from (55)).

Figure 34. Characterization of CT lung cancer.
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i.e., cardio, neurology, mammography, microscopy, 
dermatology, gastroenterology and lung as seen in 
Table 1. The DL system deals with characterization 
and segmentation. The characterization is done in one 
stage by classifying images as per the labels which 
is followed in rows 5, 8, 9 and 14. We have observed 
two kinds of segmentation. In general segmentation in 
ML system follows the active contour models (60). The 
first kind is a two-stage system where a rough estimate 
is made about the contour in the first stage and in the 
then fine tuning is done in the second stage for fine 
segmentation. This type of segmentation is followed 
in rows 1, 2, 3, 6 and 11. The first stage is usually a 
DL framework but the second stage is implemented by 
either DL or conventional methods. In the second kind, 

segmentation is performed in first stage itself. There 
are again two ways to do that. The image is divided 
into very small patches, and each patch is classified 
as per the labels. These labels are reassembled to 
give the segmentation mask of the given image. This 
way of patching, classifying and reassembling can 
be seen in rows 4, 7, 10 and 13. The second way is 
semantic segmentation using FCN which is observed 
in row 12. In addition to mentioned research, DL has 
also been applied recently in brain lacunes detection 
(61), white matter segmentation (62) and fatty liver 
disease detection (63), which are not discussed due to 
lack of space. Generalized DL systems which can do 
classification, regression and segmentation for wide 
variety of medical images has also been developed 

Table 1. Benchmarking table

Medical field SN Author (year)/
Ref number Data type (size) Application 

type
DL System
(Stage 1)

DL System
(Stage 2) Performance

Cardiovascular

1 Gustavo et al. 
(2013) [40] US (496) LV Segmentation DBN DBN

JD: 0.83, AV: 0.91, 
MAD: 0.95, AVP: 
0.83

2 Avendi et al. 
(2008) [43] MRI (45) LV Segmentation CNN

Autoencoder 
+ Deformable 
model

DM: 0.94 ± 0.02, 
APD: 1.81 ± 0.02 
mm, Conformity: 
0.86

3 Ghesu et al. 
(2016) [44] 3D TEE (2891) LV Segmentation

Fully 
Connected 
Network

Fully 
Connected 
Network

Position Err: 1.47 
mm Corner Err: 
2.80 mm

4 Esfahani et al. 
(2016) [45] X-ray (44) Vessel Segmentation CNN - Acc: 93.5 %

5 Karim et al. 
(2017) [46] US (56) Plaque Classification CNN - Acc: 0.75 ± 0.16

Neurology

6 Kamnitsas et al 
(2017). [47] 3D TBI (66) Brain lesion 

Segmentation CNN
Fully 
Connected 
Network

DM: 0.59

7 Pereira et al 
(2016). [48] MRI (339) Brain tumor 

Segmentation

CNN1 (HGG) 
+ CNN2 
(LGG)

-

DM complete: 0.88
DM core: 0.83
DM enhancing: 
0.77

Mammography
8 Ciresan et al. 

(2013) [49] MITOS (50) Mitosis Classification

CNN1 (11 
layers) + 
CNN2 (13 
layers)

- Precision: 0.88
F1-score: 0.78

9 Huynh et al. 
(2016) [50] Dig. Mam. (219) Breast tumor 

Classification CNN + SVM - AUC: 0.86

Microscopy

10 Valen et al. 
(2016) [51] 

Mammalian cell 
lines (5)

Cellular
Segmentation CNN - JI (MN): 0.89 

DM (MN): 0.95

11 Kraus et al. 
(2016) [52] 

Breast cancer (340)
Yeast (2480)

Cellular
Segmentation CNN+MIL

Jacobian 
Maps + 
loopy belief 
propagation

Breast cancer
Acc: 0.971
Yeast dataset Acc: 
0.963

Dermatology 12 Codella et al 
(2016). [56] Dermatology (1279) Melanoma 

Segmentation FCN - Acc: 76%

Gastroenterology 13 Li et al. 
(2015) [58] CT (30) Liver tumor 

Segmentation CNN - DM: 80.06%

Pulmonary 14 Hua et al. 
(2015) [59]

CT
(1010)

Lung Cancer 
Classification

CNN
DBN - CNN Sens: 73.3 %

DBN Sens: 73.4 %

JD: Jaccard Distance; AV: Average Error; MAD: Mean Absolute Distance; AVP: Average Perpendicular Distance; DM: Dice Metric; APD: Average 
Perpendicular Distance; TEE: transesophageal echocardiogram; TBI: Traumatic brain injury; JI: Jaccard index; MN: Mammalian nuclei
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(64). It was observed that despite the wide diversity of 
image and application types, DL systems were able to 
give higher performance, greater accuracy and lower 
error. This proves that the robustness and performance 
of DL systems are independent from diversity and 
origin of data. In the next subsections, we discuss the 
hardware and software requirements for DL. 

5.1. Graphics Processioning Unit 

Deep neural networks need to learn millions 
of weights while training. However, training such huge 
number of weights on a single, dual and even seven 
core CPUs may take weeks to complete. A graphics 
processing unit (GPU) consists of hundreds of cores 
and a peak memory bandwidth several times higher 
than a normal CPU, makes it an attractive option for 
DL. The computer hardware operates thousands of 
threads and can schedule them on the available GPU 
cores thus offering massive parallelism over CPU 
operations. Thus, the speedup of GPU is almost 10 to 
100 times of a CPU based core, therefore, completing 
jobs in few hours. However, the massive speedup 
requires dedicating cores for data processing rather 
than caching and control like a normal CPU core. 
Therefore, algorithms for ML should be rewritten for 
running on GPU. In spite of the disadvantage of using 
GPU, CPU is still not practical for their low speed (8).

5.2. Software Frameworks for DL

The complexity of DL systems requires suitable 
software framework for its implementation. Python is the 
most popular programming used for DL applications. It 
provides unique set of easy to use library functions for 
implementation of DL architecture. Most of the software 
frameworks discussed in this subsection are partly or 
fully developed in Python language. The most popular 
among them are TensorFlow (65), Theano (66), Keras 
(67), CAFFE (68), Torch (69) and Deeplearning4j 
(70). TensorFlow is a second-generation DL system 
developed by the Google Brain team. TensorFlow is 
a Python-based library capable of running on multiple 
CPUs and GPUs. Theano like TensorFlow is Python-
based low-level library for developing DL applications. 
However, unlike TensorFlow it lacks multiple-GPU 
support. Keras as an interface built to work on either 
Theano or TensorFlow. It is also developed in python 
and requires fewer lines of code to build a DL system. 
CAFFE is a C++ library with both Python and MatLab 
interface. The primary application of CAFFE is in 
developing CNNs. It is open sourced by Facebook as a 
simpler version in the form of Caffe2. Torch is a C/C++ 
library and CUDA for GPU processing. Torch was built 
with an aim to achieve maximum flexibility and building 
of models extremely simple. It is now also available in 
Python in the form of PyTorch. Torch is a C/C++ library 
and CUDA for GPU processing. It is now also available 
in Python in the form of PyTorch. Deeplearning4jis Java 

based toolkit and supports JVM. It can be implemented 
on top of the popular Big Data tools such as Apache 
Hadoop and Apache Spark. It is widely used as a 
commercial, industry-focused distributed DL platform. 

Though the discussion has been strictly 
focused in medical imaging, the DL usage and 
applications are wide-ranging in healthcare. DL has 
been successfully applied in genomics and biomedical 
signal processing. In genomics, DL has been 
successfully applied in protein structure prediction 
(71-79), gene expression regulation (80-84), protein 
classification (85-87) and anomaly classification (88). 
In biomedical signal processing, DL has been applied 
to brain decoding (89-91) and anomaly classification 
(92-94). The only reason for applications of DL in wide 
areas in a very short span of time, is its independence 
from different feature extraction methodologies. The 
high performance of DL systems underlines quick 
diagnosis of disease and even better monitoring of 
high risk patients. Therefore, patient treatment can 
start quicker and help in quick recovery of the patients 
leading to a better healthcare ecosystem.

6. CONCLUSION

In this paper we have focused on 14 
papers of deep learning in various medical imaging 
applications such as ultrasound, MRI, CT-scanned 
images etc. from various domains such as cardio, 
neurology, mammography, microscopy, dermatology, 
gastroenterology and pulmonary. It’s been seen that 
DL-based applications give far better accuracy than 
conventional methods. This due to their in-house 
feature extraction capability which increases their 
accuracy. The main focus of this review has been 
on classification and segmentation. For each DL 
application object process model has been drawn 
which shows us the inner working of the DL-based 
systems. In the future, we would evaluate real time 
medical imaging applications of deep learning and 
develop a future model for real time applications.
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