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All chicken genotypes are susceptible to RSV 
infection and lymphoma development (9-11). However, 
there is a difference in disease resistance and 
immune response between individuals. The diversity 
of the major histocompatibility (MHC) proteins, T cell 
receptor proteins, immunoglobulins and cytokines, 
constitutes the major immunological basis for the 
variations (12-14). Chicken MHC-B complex genes 
encode cell surface proteins critical to the function of 
the immune system (15, 16). Specific MHC genotypes 
can alter the RSV growth pattern, either progressively 
or regressively (17, 18). Additional work by numerous 
investigators supports the hypothesis that MHC genes 
can regulate RSV tumor growth (19, 20). 

In contrast to the information on MHC 
mechanisms, there is a paucity of knowledge on the 
role of other immune modulators in RSV infection, 
pathogenesis and immunity. As an important 
immunosuppressive disease in chickens, it is likely 
that the Rous sarcoma virus has complex interactions 
with the immune system. In avian species, adaptive 
immunity involves both humoral and cell-mediated 
immune (CMI) responses (21). While humoral or 
antibody - mediated immune responses are used to 
control extracellular microorganisms, CMI responses 
are important for eradicating intracellular bacteria and 
tumor cells and eliminating viral infections (21, 22). 
The functional effectors that mediate CMI include 
immune cells, such as cytotoxic T cells (CTLs), 
macrophages, and natural killer (NK) cells, which 
are regulated, in part, by cytokines (23). Cytokines 
are small proteins (5-20 kDa) that are secreted by 
immune and tumor cells (24, 25). They play a pivotal 
role in the function and regulation of the innate 
immune system (26). They have autocrine and 
paracrine functions, and thus function locally or at a 
distance to enhance or suppress immunity (27, 28). 
Depending on the tumor microenvironment and the 
balance of pro-inflammatory and anti-inflammatory 
cytokines, their relative concentrations and receptor 
expression, cytokines can modulate the antitumoral 
responses (29). Thus, it is imperative to understand 
the interactions between RSV and cytokines to further 
elucidate the oncogenesis of RSV.

Therefore, in this study, we determined the 
expression of cytokines in various organs of chickens 

1. ABSTRACT

The present study determines the cytokine 
gene expression in chickens following RSV-A 
infection, using RT-qPCR. In susceptible chickens 
tumors progressed to fulminating metastatic tumors 
while it regressed in regressors chickens and some 
resistant non-responder chickens did not respond to 
RSV-A infection and thus did not develop tumors at all. 
The in vivo expression of pro-inflammatory cytokines, 
Th1 cytokines and Th2 cytokines was determined at 
the primary site of infection, as well as in different 
organs of progressor, regressor and non-responder 
chicks at different time intervals. Our results indicated 
a significant upregulation of the pro-inflammatory 
cytokines, IL-6 and IL-8, in all the organs of progressor 
chicks, while they were significantly lower in regressor 
and non-responder chicks. The expression of the 
Th1 cytokines IFN-γ and TNF-α was low in all of the 
organs of the progressor group, except that in spleen. 
In contrast, regressor and non-responder groups 
showed high expression of IFN-γ and TNF-α. Further, 
there was an early upregulation of the expression of 
the Th2 cytokine, IL-10, TGF-β and GM-CSF, in all of 
the organs of progressors as compared to uninfected 
control. 

2. INTRODUCTION

The Rous sarcoma virus (RSV), a member 
of avian leucosis virus (ALV) group, was the first 
oncogenic retrovirus to be identified as a cancer 
inducer (1). In susceptible chickens injected with RSV, 
there is a rapid neoplastic transformation and tumor 
development within a few days or weeks (2). The RSV 
has a wide host range, causing tumors in chickens, 
pheasants, guinea fowl, ducks, pigeons, Japanese 
quails, turkeys, and rockpartridges (Alectoris graeca) 
and also in mammals, including rats (3) and monkeys 
(4). Its replication strategy has evolved to produce a 
long-term or persistent infection which results from its 
spread both vertically from parent cells to daughter 
cells via the provirus, as well as horizontally from cell 
to cell via virions (5, 6). Distal tumors are frequently 
seen in various tissues and organs induced either 
by viral inoculation or by actual metastasis from 
primary sarcomas (7, 8). The enhancement of the 
disease by RSV is most likely the consequence of 
immunosuppression, but the mechanism of RSV-
induced immunosuppression remains to be elucidated. 
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following RSV infection based on their response to 
RSV (i.e. progressors, regressors or non-responder).

3. MATERIALS AND METHODS

3.1. Chicks and management practices

All the procedures have been conducted 
in accordance with the guidelines of the Institutional 
Animal Ethical Committee of Indian Veterinary 
Research Institute. Permission for the sacrifice of the 
experimental birds by cervical dislocation was obtained 
from the Animal Ethics Committee of Indian Veterinary 
Research Institute, Government of India.

One - day old chicks, belonging to white-
plumaged Synthetic Broiler Dam Line (SDL), were 
obtained from the Experimental Broiler Farm, Central 
Avian Research Institute (CARI), Izatnagar, Uttar 
Pradesh (UP), India. All birds were maintained under 
uniform, standard management conditions, with 15 h 
light: 9 h dark exposure and provided with free access 
to feed and water. The individual chicks were wing 
banded for identification. The chicks were transported 
to challenge sheds at the Indian Veterinary Research 
Institute (IVRI), Izatnagar, UP, India, where they were 
maintained under a controlled environment.

3.2. Virus 

The Bryan Standard strain of Rous sarcoma 
virus (Rous associated virus-1) (BS-RSV (RAV-
1)), henceforth known as RSV-A, was used in this 
study. The virus was obtained from Virus Lab/Tumor 
Immunology Lab, ICAR-IVRI, Izatnagar, India. The 
Infectivity titer of the virus was 1x103 pock forming 
units (pk.f.u.)/mL. The virus was handled in biosafety 
level 2 facilities. 

3.3. Tumor induction and categorization of chicks

One week old SDL broiler chicks were 
subcutaneously infected with Rous Sarcoma Virus 
(2000 p.f.u/0.2. mL of RSV-A suspension per chick) 
in the left wing-web. Chicks were observed regularly 
for the appearance of tumors at the primary site of 
inoculation. Chicks that developed primary tumor within 
2 to 8 days post infection (DPI) and grew progressively 
and metastasize to other organs were categorized as 
progressors. Chicks that developed tumor between 8 to 
10 (DPI) and started regressing their tumor sometimes 
before 30 DPI were designated as regressors. The 
chicks that did not develop tumor at all were deemed as 
non-responders. A group of uninfected control chicks 
was simultaneously maintained in the same facility.

3.4. Harvesting of tissues

Three birds were sacrificed at regular 
intervals post RSV-A challenge, from progressors on 

3, 6, 9, 12 and 18 DPI and organs affected by RSV 
pathogenesis, primary tumor tissue, lung, liver and 
spleen were collected. At the early stages of infection, 
it is difficult to determine if a bird will or will not have 
tumor regression. Therefore, after visualizing the 
trend of tumor progression/ regression, the regressor 
birds were sacrificed at two time points, 27 days post 
infection (dpi) and 45 dpi and the lungs, liver and 
spleen were collected from regressor chicks. Non-
responder birds (i.e. absence of tumor development) 
can only be identified after at least 8 dpi; therefore, 
the mRNA expression profiles of different organs in 
non-responders were determined at 12 and 27 dpi and 
the lungs, liver and spleen were collected at respective 
dpis. The mRNA expression profile of uninfected 
controls was also determined, in lungs, liver, spleen 
and the muscle from wing web on day zero.

3.5. RNA Extraction and cDNA synthesis

Total RNA from each sample was extracted 
using ‘RNAgents- Total RNA isolation system’ 
(Promega, Madison, WI, USA), according to the 
manufacturer’s instructions. Briefly, the organs from 
the different groups were collected in RNA Later and 
fifty mg tissue was added and incubated with 600 µl 
of denaturating solution. The tissue was homogenized 
and 60ul of sodium acetate was added. A mixture 
of phenol choloroform/ isoamyl alcohol (600 µl) was 
added, mixed vigorously for 10 seconds and chilled 
on ice for 15 minutes. The mixture was centrifuged 
at 10,000 x g for 10 minutes at 4°C and RNA was 
precipitated. The RNA was air dried, dissolved in 
diethyl pyrocarbonate (DEPC) treated water and 
stored at –80°C until further use. 

The first strands of cDNA from the RNA 
sample was prepared by Revert AidTM First strand 
cDNA synthesis kit (MBI Fermantas). Briefly, the 
reverse transcription of RNA was performed in a 20 ul 
final volume Total RNA (1µg), Oligo (dt)18 primer (0.5. 
µg/ml) 1µl and deionized nuclease free water (6µl). The 
mixture was incubated at 70°C for 5 minutes and chilled 
on ice immediately. The following components were 
added: 5x reaction buffer (4µl), ribonucleases inhibitor 
(20U/µl), 10 mM dNTP mix and incubated at 37°C for 
5 minutes. The enzyme Revert AidTM M.MuLV Reverse 
transcriptase (200U) was added and the mixture was 
incubated at 42°C for 60 minutes. The reaction was 
stopped by heating the mixture to 70°C for 10 minutes. 
The resultant cDNA was stored at -20°C. 

3.6. Quantitative RT-PCR of cytokines 

The expression of cytokines (i.e. IFN-γ, IL-
6, IL-8, IL-10, TGF-β, TNF-α and GM-CSF) were 
quantified by mRNA expression using real-time PCR 
(30) by using Mx3000P™ system (Stratagene). The 
details of the primers used for each gene are given in 
Table 1. The amplification was carried out in a volume 
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of 20 µl containing 1X QuantiTect SYBR Green PCR 
master mix (QIAGEN GmBH, Germany), 10 pM primers 
and 1 µl cDNA template. PCR was carried out with 
standardized cycling conditions as: Initial denaturation: 
94°C for 5 min, 40 cycles of denaturation: 94°C for 1min, 
annealing: x°C for 1 min. (annealing temp. given in 
Table 1), extension: 72°C for 1 min and final extension: 
72°C for 10 min. All PCR reactions were performed in 
optical 96-well reaction plates in duplicates. For each 
gene, negative and positive controls were included. 
The results were expressed in terms of the threshold 
cycle value (Ct), the cycle at which the change in the 
reporter dye (DRn) passes the significance threshold. 
β-actin was used as a housekeeping gene. 

3.7. Data Analysis

3.7.1. Generation of standard curve and 
calculating cytokine mRNA expression 

Standard curves were constructed for each of 
the genes using serially diluted plasmids from 10-1 to 
10-5 containing specific various immune - related gene 
and the housekeeping gene beta actin separately 
in each plasmid. The curve was plotted between 
values for log10cDNA vs Ct. Each RT-PCR experiment 
contained triplicates of the test samples, one no-
template control (NTC) and one no-primer control 
(NPC) and a log10 dilution series (30). Regression 
analysis of the standard curve was used to calculate 
the slopes of the gene specific to log10 dilution series. 

The corrected cytokine mRNA per sample 
was calculated using the following formula: 

Corrected cytokine mRNA = ((40- Mean Ct of 
Target gene) x Target gene slope)/ (Difference factor 
of sample X Slope of beta actin) (30). The mean 40 – 
Cttarget = the triplicate mean of 40 – Ct value; Slopetarget = 
the slope from the standard curve regression equation 
for the target gene; β-actin df = the triplicate mean of 
β-actin-specific product of a sample / overall mean for 
all β-actin samples; and Slopeb-actin = the slope from the 
standard curve regression equation for the β-actin gene.

3.7.2. Statistical Analysis of mRNA Expression 
levels (Corrected Ct values) of various genes

The effects of time and different groups on 
expression of each gene (corrected Ct values) were 
analyzed by ANOVA. The SPSS version 16.0. software 
was used to analyze the data. The main fixed effects 
as different group and time points with interaction were 
included in the fixed model used. 

The following formula was used to calculate 
corrected Ct value of each gene:

Yijk	 =	 µ + Gi + Tj + (G×T)ij +eijk
Yijk	 =	 Corrected Ct Value recorded on 

kth individual 
under ith group and jth time point.
µ	 =	 Overall mean
Gi	 =	 Effect of ith group (i = 1, 2, 3)
Tj	 =	 Effect of jth time (j = 1, 2,…, 5)
(G×T)ij	 =	 Interaction effect of ith group and 

jth time point.
eijk	 =	 Random error distributed with 

mean 0 and 
variance s2

For significant effects, subclass means were 
compared using Duncan’s multiple range test (Duncan 
et al., 1995).

4. RESULTS

4.1. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in 
primary tumors 

4.1.1. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in primary 
tumors from progressor chicks

The expression of IL-6 and IL-8 was 
significantly upregulated after RSV-A inoculation 
and was maximal at 9 days post infection (dpi) in 
primary tumors compared to controls (day zero) 

Table 1. Primers for mRNA expression

Genes Primer Sequences (Forward) Primer Sequences (Reverse) Accession No. Annealing 
Temperature

IL-6 5’CTG CCC AAG GTG ACG GAG GAG GAC 3’ 5’GAT TGG CGA GGA GGG ATT TCT GG 3’ AJ250838 52°C

IL-8 5’CTG TCC TGG CCG TCC TCC TGG TT 3’ 5’CTT GGC GTC AGC TTC ACA TCT TG 3’ NM_205498.1 52°C

IL-10 5’TGC GGG AGC TGA GGG TGA AGT TTG 3’ 5’CGC GGG GCT GGG CTG AGA G 3’ AJ621614 52°C

IFN-γ 5’ACA AGT CAA AGC CGC ACA TC 3’ 5’TGG ATT CTC AAG TCG TTC ATC G 3’ AY705909 50°C

TNF-α 5’TGA GTT GCC CTT CCT GT 3’ 5’CAG AGC ATC AAC GCA AA 3’ A1979890 52°C

GM-CSF 5’CTG CGC CCA CCA CAA CAT ACT CCT 3’ 5’ACG ATT CCG CTT TCT TCC TCT GTC 3’ NM_01007078 55°C

TGF-β2 5’TGC ACT GCT ATC TCC TGA G 3’ 5’ATT TTG TAA ACT TCT TTG GCG 3’ NM_01031045 52°C

β-Actin 5’CAT CAC CAT TGG CAA TGA GAG G 3’ 5’GCA AGC AGG AGT ACG ATG AAT C 3’ L08165 55°C
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(Figure 1 and Table 2). The expression of IFN-γ was 
significantly downregulated at 3 dpi as compared to 
controls; however, it was significantly upregulated 
at 9 dpi and was downregulated to control level at 
12 dpi (Figure 1 and Table 2). The pattern of TNF-α 
expression was similar to that of IFN-γ, as TNF-α 
was significantly downregulated at 3 dpi, followed by 
significant upregulation at 9 and 12 dpi as compared 
to controls (Figure 1 and Table 2). The expression of 
IL-10 was significantly upregulated after 6 dpi until 12 
dpi as compared to control (Figure 1 and Table 2). The 
expression of TGF-β was significantly decreased at 
earlier stages (3 dpi and 6 dpi) compared to controls. 
However, TGF-B expression was significantly 
increased from 9 dpi until 12 dpi compared to controls 
(Figure 1 and Table 2). The expression of GM-CSF was 
significantly upregulated at 3 dpi and 9 dpi compared 
to controls. In contrast, the expression of GM-CSF at 
6 dpi and 12 dpi was same as that of control (Figure 1 
and Table 2). 

4.2. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the lungs 

4.2.1. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the lungs 
of progressor chicks

The expression of IL-6 was significantly 
upregulated at 3 and 6 dpi compared to controls, but 
was significantly downregulated at 9, 12 and 18 dpi 

compared to controls (Figure 2 and Table 2). The 
expression of IL-8 was significantly upregulated at 
all time points, 3, 6, 9, 12 and 18 dpi as compared 
to control (Figure 2 and Table 2). The expression of 
IFN-γ in the lungs was significantly upregulated at 
6 and 12 dpi but was not significantly different from 
controls at 3 and 9 dpi (Figure 2 and Table 2). Further, 
it was significantly downregulated at 18 dpi compared 
to controls (Figure 2 and Table 2). The expression 
of TNF-α was significantly downregulated at 3 dpi, 
followed by a significant up regulation at all subsequent 
dpi compared to controls (Figure 2 and Table 2). The 
expression of IL-10 in the lungs was significantly 
upregulated at 6 and 18 dpi compared to controls and 
was not significantly different from the control at all the 
other time points (Figure 2 and Table 2). 

The expression of TGF-β was significantly 
upregulated at all dpi except for the 9 dpi time period 
compared to controls (Figure 2 and Table 2). The 
expression of GM-CSF was significantly upregulated 
across all of the dpi intervals compared to controls 
(Figure 2 and Table 2). 

4.2.2. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the 
lungs of regressor chicks 

The expression of IL-6 was significantly 
downregulated at 27 and 45 dpi compared to controls 
(Figure 2 and Table 2). The expression of IL-8 and 

Figure 1. In vivo expression of mRNA for pro-inflammatory, Th1 and Th2 cytokines at different time points in primary 
tumors of Progressor chicks. Cytokine mRNA levels are expressed as relative fold - change in infected chicks compared 
to uninfected controls. Each value represents the mean of three samples, and the vertical bars represent the standard 
error of the mean. DPI, Days Post Infection; R, Regressor; NR, Non-responder. *, p-value ≤ 0.0.5.
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Table 2. In vivo expression of Pro-inflammatory, Th1 and Th2 cytokines at different time points in primary 
tumor and in different organs from Progressor, Regressor and Non-Responder chicks

Day Proinflammatory cytokines Th1 cytokines Th2 cytokines

PRIMARY TUMOR

Progressor

Day-0 (C) 4.8811±0.113 3.4121±0.081 8.6881±0.479 12.5971±0.420 4.2911±0.052 8.3941±0.364 3.8141±0.478

DPI-3 7.5392±0.100 5.0012±0.161 5.4662±0.205 6.5052±0.013 5.0231±0.053 3.7972±0.131 7.3042±0.070

DPI-6 7.7022±0.798 8.4363±0.798 8.4111±2.778 12.9011±1.283 7.0252±0.878 5.6653±0.392 3.5041±0.051

DPI-9 13.3803±0.129 13.1734±0.044 10.8913±1.690 25.4844±0.352 6.8862±0.303 11.1964±0.226 6.2752±0.303

DPI-12 7.3062±0.033 8.0663±0.477 8.2711±1.643 19.4303±0.208 8.1143±0.220 10.3094±0.302 4.7781±0.210

LUNG

Progressor

Day-0 (C) 8.1621±0.111 4.9341±0.192 10.0561±0.633 14.6891±0.635 4.6361±0.060 7.4361±0.340 2.6581±0.136

DPI-3 10.5302±0.123 8.7093±0.079 9.7331±0.442 10.7472±0.040 4.1881±0.083 9.8582±0.038 4.3942±0.087

DPI-6 10.2472±0.371 7.7062±0.171 14.0822±0.337 21.3864±0.461 6.9362±0.224 11.9543±0.179 4.9402±0.104

DPI-9 7.5111±0.169 7.4712±0.044 10.5381±0.950 17.6133±0.071 3.2553±0.070 6.6891±0.027 4.0732±0.052

DPI-12 6.1723±0.100 8.1173±0.046 14.5942±0.151 18.0653±0.267 4.5671±0.089 10.1652±0.066 4.6122±0.076

DPI-18 6.5443±0.149 8.1763±0.048 8.1653±0.825 19.11834±0.159 5.0911±0.063 10.5703±0.037 4.8822±0.037

Regressor

DPI-27 (R) 4.8464±0.141 6.1422±0.021 17.4594±0.112 13.91212±0.099 5.2711±0.011 4.4484±0.106 2.7521±0.056

DPI-45 (R) 5.4783±0.014 6.8092±0.017 19.48745±1.593 18.4823±0.247 4.7651±0.038 8.60712±0.127 4.9172±0.023

Non-Responder        

DPI-12 (NR) 6.7363±0.891 6.0222±0.287 20.7365±0.891 22.3924±0.354 5.2981±0.225 8.36712±0.134 6.8873±0.256

DPI-27 (NR) 3.3364±0.285 6.9612±0.020 18.33645±0.285 19.50934±0.222 3.5393±0.040 7.5561±0.042 5.0852±0.207

LIVER

Progressor

Day-0 (C) 3.9291±0.378 3.7831±0.233 13.2291±0.027 20.0562±0.389 5.5372±0.291 6.8212±0.196 3.3071±0.143

DPI-3 4.5791±0.129 8.3604±0.065 12.0991±0.207 18.5251±0.230 8.2374±0.128 9.1363±0.047 4.8222±0.114

DPI-6 5.3352±0.212 7.3304±0.222 9.5562±0.835 23.2283±0.099 7.6823±0.051 5.7311±0.042 5.5693±0.116

DPI-9 4.3791±0.061 6.7943±0.140 13.9071±0.009 20.1452±0.052 6.9473±0.172 5.8771±0.067 2.9471±0.031

DPI-12 5.3042±0.036 6.6403±0.206 20.1133±0.835 21.4202±0.256 7.1103±0.212 8.0593±0.224 4.2042±0.090

DPI-18 6.5583±0.200 6.7653±0.253 12.3271±0.554 22.9043±0.669 3.3211±0.028 9.3683±0.112 4.6972±0.206

Regressor

DPI-27 (R) 4.4471±0.053 5.9823±0.090 11.2561±1.306 17.1591±0.405 7.6503±0.047 10.8804±0.062 4.9282±0.087

DPI-45 (R) 3.0881±0.135 4.6552±0.271 12.6481±1.284 25.3994±0.006 5.7892±0.401 13.2095±0.347 6.0343±0.056

Non-responder

DPI-12 (NR) 3.8041±0.183 3.2151 ±0.342 19.6043 ±0.068 26.2304±0.570 6.7913±0.194 10.0374±0.417 5.1202±0.155

DPI-27 (NR) 1.8814±0.078 2.8661 ±0.076 11.0231 ±1.455 19.0111±0.141 5.9972±0.041 7.8332±0.398 4.6342±0.011

SPLEEN

Progressor

Day-0 (C) 6.8181±0.125 4.8931±0.198 12.7531±0.862 22.6422±0.178 4.3181±0.278 8.3982±0.161 3.7051±0.006

DPI-3 14.3844±0.011 15.3124±0.039 24.4125±0.350 33.2305±0.123 8.6915±0.212 10.1763±0.050 7.5483±0.143

DPI-6 10.0743±0.147 8.0973±0.089 16.6933±0.613 28.0364±0.806 7.3134±0.165 7.9292±0.115 7.8353±0.284

DPI-9 10.1873±0.053 8.7513±0.004 17.9653±0.943 22.9472±0.467 5.0633±0.130 4.9951±0.135 3.9751±0.152

DPI-12 6.4722±0.226 5.8872±0.244 17.9033±0.903 19.1341±0.291 2.9882±0.054 5.8221±0.228 3.1131±0.157

DPI-18 6.3362±0.173 7.1063±0.105 12.9881±0.579 22.9402±0.438 4.7881±0.257 7.9022±0.099 4.1311±0.035
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IFN-γ was significantly upregulated at both the time 
points compared to controls (Figure 2 and Table 2). The 
expression of TNF-α was not significantly different from 
controls at 27 dpi, but was significantly upregulated at 
45 dpi compared to controls (Figure 2 and Table 2). 
IL-10 expression was significantly upregulated at 27 
dpi compared to controls but decreased to the level 
of control by 45 dpi (Figure 2 and Table 2). TGF-β 
was significantly downregulated at 27 dpi but later on 
increased and was same as control at 45dpi (Table 2, 
Figure 3). GM-CSF expression was same as of control 
at 27 dpi but was significantly upregulated at 45 dpi 
(Figure 2 and Table 2). 

4.2.3. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the 
lungs of non-responder chicks 

The expression pattern of non-responder 
chicks was determined at two time intervals, 12 dpi and 
27 dpi. The expression of IL-6 was significantly down 

regulated at 12 dpi and 27 dpi compared to controls 
(Figure 2 and Table 2). The expression of IL-8 was 
significantly upregulated at 12 and 27 dpi compared 
to controls (Figure 2 and Table 2). The expression of 
IFN-γ, TNF-α and GM-CSF was significantly elevated 
at 12 and 27 dpi compared to controls (Figure 2 and 
Table 2). The expression of IL-10 was significantly 
greater at 12 dpi than controls, whereas expression 
was significantly lower than controls at 27 dpi. (Figure 
2 and Table 2). TGF-β expression was same as that of 
control at 12 and 27 dpi (Figure 2 and Table 2). 

4.3. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the liver 

4.3.1. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the liver 
of progressor chicks 

The expression of IL-6 and IL-8 was 
upregulated from 3 dpi until the end of the experiment 

Regressor

DPI-27 (R) 7.7612±0.021 6.2182±0.081 10.3521±1.755 24.8283±0.400 4.5001±0.098 8.1962±0.143 6.865d±0.107

DPI-45 (R) 7.1542±0.299 6.3122±0.234 16.2143±0.194 25.2263±0.150 3.8192±0.004 9.8393±0.476 5.3232±0.210

Non-responder

DPI-12 (NR) 5.5441±0.183 4.7671±0.066 19.4814±0.527 31.1155±0.159 5.8273±0.126 11.5784±0.110 7.5383±0.080

DPI-27 (NR) 4.0631±0.023 4.8881±0.220 14.2952±0.187 26.0364±0.379 4.4021±0.112 8.4562±0.179 5.3592±0.057

The means bearing different superscript differ significantly. (p≤0.05). Values represent means ± SEM

Figure 2. In vivo expressions of mRNA for pro-inflammatory, Th1 and Th2 cytokines at different time points in the lungs of Progressor, Regressor and 
Non-Responder chicks. Cytokine mRNA levels are expressed as relative fold - change in infected birds compared to uninfected controls. Each value 
represents the mean of three samples, and the vertical bars represent the standard error of the mean. DPI, Days Post Infection; R, Regressor; NR, Non-
responder. *, p-value ≤ 0.0.5.
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compared to controls (Figure 3 and Table 2). The 
expression of IFN-γ, compared to controls, was 
significantly lower at 6 dpi, but was significantly 
upregulated at 12 dpi (Figure 3 and Table 2). The 
expression of TNF-α was significantly upregulated at 
6, 12 and 18 dpi compared to controls (Figure 3 and 
Table 2). The expression of IL-10 was significantly 
upregulated at 3, 6, 9 and 12 dpi compared to controls; 
however, expression was significantly decreased at 
18 dpi compared to controls (Figure 3 and Table 2). 
TGF-β expression was significantly upregulated at 
all dpi, except at 6 and 9 dpi, where expression was 
significantly decreased compared to controls (Figure 
3 and Table 2). The expression of GM-CSF was 
significantly upregulated at all time points compared to 
control, except at 9 dpi, which was significantly lower 
to controls. (Figure 3 and Table 2).

4.3.2. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the liver 
of regressor chicks 

Compared to controls, IL-6 expression was 
significantly higher at 27 dpi (Figure 3 and Table 2). 
The expression of IL-8 was significantly greater than 
controls at 27 and 45 dpi (Figure 3 and Table 2). IFN-γ 
expression was significantly downregulated at 27 and 
45 dpi compared to controls (Figure 3 and Table 2). 
TNF-α expression was significantly lower at 27 dpi 
but significantly higher at 45 dpi compared to controls 
(Figure 3 and Table 2). The expression of IL-10 was 
significantly upregulated at 27 dpi (Figure 3 and 

Table 2). The expression level of TGF-β and GM-CSF 
were significantly increased both at 27 and 45 dpi 
compared to controls (Figure 3 and Table 2).

4.3.3. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the 
liver of non-responder chicks 

The expression of IL-6 was significantly 
downregulated at 27 dpi compared to controls, 
whereas the expression of IL-8 was not significantly 
different from the controls (Figure 3 and Table 2). 
Compared to controls, the expression of IFN-γ and 
TNF-α was upregulated at 12 dpi, but was significantly 
downregulated at 27 dpi (Table 2 and Figure 4). The 
expression of IL-10 was not significantly different from 
the controls (Figure 3 and Table 2). TGF-β expression 
was significantly upregulated at 12 dpi compared to 
controls and GM-CSF expression were significantly 
increased at 12 and 27 dpi compared to controls 
(Figure 3 and Table 2). 

4.4. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the spleen 

4.4.1. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the 
spleen of progressor chicks

The expression of IL-6 was significantly 
upregulated from 3 to 9 dpi, with the maximum at 3 
dpi, compared to controls (Figure 4 and Table 2). IL-8 

Figure 3. In vivo expression of mRNA pro-inflammatory, Th1 and Th2 cytokines at different time points in the liver of Progressor, Regressor and 
Non-Responder chicks. Cytokine mRNA levels are expressed as relative fold - change in infected birds compared to uninfected controls. Each value 
represents the mean of three samples, and vertical bars represent the standard error of the mean. DPI, Days Post Infection; R, Regressor; NR, Non-
responder. *, p-value ≤ 0.0.5.
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expression was significantly upregulated at 3, 6, 9, 
12, 18 dpi compared to controls, with the maximum 
increase at 3 dpi (Figure 4 and Table 2). IFN-γ and 
TNF-α expression were significantly increased from 3 
to 9 dpi, with a significant increase at 3 dpi, compared 
to controls (Figure 4 and Table 2). The expression of IL-
10, compared to controls, was significantly upregulated 
from 3 to 9 dpi, but was significantly downregulated 
at 12 dpi (Table 2 and Figure 5). TGF-β expression 
was significantly increased at 3 dpi, followed by a 
significant downregulation at 6, 9 and 12 dpi compared 
to controls (Figure 4 and Table 2). GM-CSF expression 
was increased at 3 and 6 dpi compared to controls. 
(Figure 4 and Table 2). 

4.4.2. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the 
spleen of regressor chicks 

The expression of IL-6 was same as of 
control at both 27 and 45 dpi (Figure 4 and Table 2). IL-
8, TNF-α and GM-CSF expression were significantly 
upregulated at both 27 and 45 dpi compared to 
controls (Figure 4 and Table 2). IFN-γ and TGF-β 
expression at 27 dpi was not significantly different 
from of controls, but was significantly upregulated 
at 45 dpi compared to controls (Figure 4 and Table 
2). The expression of IL-10 was not significantly 
different from controls at 27 dpi, but was significantly 
downregulated at 45 dpi compared to controls (Figure 
4 and Table 2). 

4.4.3. In vivo expression of mRNA for pro-
inflammatory, Th1 and Th2 cytokines in the 
spleen of non-responder chicks 

The expression of IL-6 was significantly 
downregulated at both 12 and 27 dpi compared to 
controls (Figure 4 and Table 2). IL-8 expression was 
not significantly different from controls at 12 and 27 dpi 
(Figure 4 and Table 2). The expression of IFN-γ, TNF-α 
and GM-CSF were significantly upregulated at 12 and 
27 dpi compared to controls (Figure 4 and Table 2). IL-
10 and TGF-β showed upregulated expression at 12 
dpi compared to control (Figure 4 and Table 2).

5. DISCUSSION 

The cytokines released from specific 
immune cells can produce a rapid response against 
viruses as well as other pathogens (31, 32). Pro-
inflammatory cytokines and the balance of Th1 vs 
Th2 cytokines produced during infection play a pivotal 
role in susceptibility or resistance to various infectious 
diseases (33-36). 

Pro-inflammatory cytokines, and the 
chemokines, such as IL-6 and IL-8, are released by the 
activation of the innate immune response in mammals 
(37, 38). Upon activation by bacterial or viral particles 
or injury, pro-inflammatory cytokines play a key role in 
mediating inflammation (39, 40). Th1 cytokines (e.g. 
IFN-γ, TNF-α) are involved in the induction of cell-

Figure 4. In vivo expression of mRNA for pro-inflammatory, Th1 and Th2 cytokines at different time points in the spleen of Progressor, Regressor and 
Non-Responder chicks. Cytokine mRNA levels are expressed as relative fold - change in infected birds compared to uninfected controls. Each value 
represents the mean of three samples, and the vertical bars represent the standard error of the mean. DPI, Days Post Infection; R, Regressor; NR, Non-
responder. *, p-value ≤ 0.0.5.
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mediated immunity (41). In contrast, Th2 or Th2 - related 
cytokines, such as IL-10, TGF-β and GM-CSF (42, 43), 
are involved in the activation of humoral immunity (44, 
45). In the present study, the inoculation of susceptible 
chickens with RSV resulted in RSV- infected responders 
that included progressors and regressors and RSV 
infected non-responders, compared to RSV uninfected 
control chicks. We evaluated the cytokine response to 
RSV infection in SDL broiler chicks in different organs 
of progressors, regressors and non-responders at 
different times post-inoculation.

Generally as mRNA level increases, protein 
activity also increases. However, this might not always 
be true and the gene expression may not project the 
full image for genes and their functions, as increased 
expression of genes might be related to increase 
synthesis of m-RNA or decreased degradation or 
suppression of siRNAs. Also, the genes might not be 
translated efficiently or might escape such translation. 
Therefore, protein quantification is important; 
however, if very little is known about when and why 
a gene will be expressed, expression profiling under 
different conditions is the best method to determine 
a cell’s function from a single experiment. Hence, by 
determining mRNA expression we determined which 
genes were expressed in an organ at different stages 
of disease at the level of transcription that could give a 
global picture of cellular function.

Our results indicated a significantly greater 
expression of IL-6 mRNA expression in the early 
phase of infection (i.e 3 to 9 dpi) in all the organs 
compared to controls. The primary tumor, however, 
had significantly higher levels of IL-6 level throughout 
the length of the study. IL-6 is a proinflammatory 
cytokine and its elevated levels in the early phases of 
infection is indicative of an acute-phase response in 
susceptible chickens (46, 47). IL-6 inhibits apoptosis 
and may be involved in malignant transformation and 
tumor progression (48). Similar to our results, Kaiser 
et al. reported that IL-6 mRNA levels were significantly 
increased in spleenocytes between 3 and 5 dpi in 
susceptible chickens infected with Marek’s disease 
virus (49, 50). Our results indicated that the expression 
of IL-6 was significantly lower in the liver compared to 
other organs, indicating that the liver was least affected 
by RSV infection. In addition, the lungs, liver and 
spleen from the regressor and non-responder groups 
had a significantly lower expression of IL-6, suggesting 
a protective response against RSV infection. Similarly, 
Abdul Careem et al. reported that the expression of 
IL-6 was significantly lower in chickens in the Herpes 
virus of turkeys (HVT) vaccinated group as compared 
to unvaccinated controls (51). However, in a study 
Xing and Schat did not detect IL-6 expression following 
MDV infection in chickens and this difference could 
be due to a pathogen - specific response of the host 
immune system (52).

The cytokine IL-8 produces inflammation 
and is a chemotactic factor for monocytes and 
lymphocytes (53-55). In the present study, IL-8 mRNA 
expression was significantly increased in all the 
organs, i.e. primary tumor, lung, liver and spleen, as 
the disease progressed and it was maximum at 3 dpi. 
This upregulation of IL-8 may have played a role in 
recruiting and activating neutrophils in response to the 
infection and help to control the RSV infection. Xing 
and Schat reported that IL-8 mRNA was expressed 
in the spleens of MDV-infected chicks 3 days post 
infection (52). In our study, the regressor and non-
responder groups had a low level of IL-8 expression in 
all of the organs.

IFN-γ is a cytokine that mediates resistance 
to many different pathogens (56-58). In the current 
study, the expression of IFN-γ mRNA was initially 
downregulated in the lungs, liver and primary tumor 
of chicks in the progressor group and thereafter, 
levels were upregulated in the later stages of RSV 
infection. In the spleen, an upregulation occurred in 
the progressor group. The lungs, liver and spleen of 
regressor and non-responder chicks were upregulated 
at all the stages of RSV infection. The initial down 
regulation of IFN-γ in various organs of progressors 
suggested a severe immunosuppression, which would 
have enhanced RSV pathogenesis and diminished 
viral clearance, as reported by Price et al. (59). Thus, 
decreased IFN-γ levels would have resulted in tumor 
progression in progressor chicks as was found in 
present study also. The relatively low expression 
of IFN-γ in all of the organs of progressor chicks is 
indicative of immunosuppression, as well as the lack 
of a sufficient immune response by progressor chicks, 
leading to viral - induced pathogenesis, resulting 
in an increase in tumor volume. The most severe 
suppression was present in the primary tumor, i.e. 
the site of viral inoculation. In the spleen, upregulated 
IFN-γ mRNA levels suggested viral clearance and an 
anti-RSV response by the spleen of the host. Also, the 
upregulation of IFN-γ in regressor and non-responder 
chicks in present investigation suggested a sustained 
and sufficient immune response by host, thereby 
limiting viral pathogenesis. Consequently, this results 
in the regression of tumor size in regressor chicks 
or no tumor growth in non-responder chicks. Similar 
results were reported by Kaiser et al., wherein IFN-γ 
mRNA expression was significantly repressed in most 
of the genetic lines infected with MDV by 21 days 
post - infection (50). Hong and Sevoian also reported 
that IFN levels were higher in resistant (K strain) than 
susceptible (S strain) chickens infected with Avian 
Leucosis Virus (ALV, JM strain) (60). Xing and Schat 
reported an increase in IFN-γ expression in the spleen 
of chickens following MDV infection between 3 to 15 
dpi (52). Abdul Careem et al.reported an increase 
in IFN-γ expression in the spleens of vaccinated, 
unprotected chickens, suggesting that the increase in 
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IFN-gamma levels production was positively correlated 
with disease progression (51). 

Tumor necrosis factor alpha (TNF-α) plays an 
important role in immunity, inflammation and apoptosis 
(61-66), helping in maintaining homeostasis by 
replacing injured and senescent tissue and stimulating 
necrosis of specific tumors (67-73). However, high 
levels of TNF-α promotes the growth of other types 
of tumor cells, increasing the risk of mortality (74-77). 
Moreover, the prolonged overproduction of TNF-α 
causes cachexia (78, 79). TNF-α has been reported 
to be a pro-tumor molecule in a number of cancers 
(80, 81). In the present study, there was a significant 
dowregulation of TNF-α at 3 dpi in the progressor 
group of chickens. This was followed by a significant 
upregulation during the later stages, in all the organs, 
except for the spleen. It is likely that the prolonged 
upregulation of TNF-α in primary tumors, lungs and 
liver increased the likelihood of immunosuppression, 
leading to tumor progression. Furthermore, if TNF-α 
levels remain elevated for an extended period of time, 
its anti-tumor efficacy decreases, thereby leading to 
disease progression (82, 83). However, after an initial 
upregulation of TNF-α in the spleen of progressors, 
there was a trend toward a decrease in expression, 
which may have been useful in controlling viral 
pathogenesis. The increase in TNF-α expression may 
have produced an anti-tumor effect in the regressor 
and non-responder groups. Initially, the lungs and liver 
of regressors expressed a low level of TNF-α, but at a 
later stage, TNF-α was upregulated, thereby potentially 
increasing tumor necrosis, although this remains to be 
verified. It is important to note that TNF-α is an acute 
phase protein that initiates the synthesis of numerous 
cytokines and increases vascular permeability, 
thereby recruiting macrophage and neutrophils to the 
site of infection, increasing tumor regression (84-87). 
Similarly, the lungs, liver and spleen of non-responders 
expressed high levels of TNF-α, thereby increasing the 
probability of an anti tumor effect.

IL-10 is produced by activated macrophages 
or cytotoxic T-cells (88-90) and is involved in cell-
mediated immunity (91, 92). IL-10 decreases the levels 
of Th1 cytokines (93, 94) and inhibits the actions of 
NK cells during the immune response to viral infection 
(95). In the present study, an early upregulation of IL-
10 in the lungs, liver, spleen and primary tumor would 
have increased viral pathogenesis. IL-10 suppresses 
immune and inflammatory responses by inhibiting the 
tumoricidal capacity of macrophages by modulating 
cytotoxicity and cytokine production of tumor-specific 
T-cells and blocking the presentation of antigens by 
antigen-presenting cells (96, 97). In primary tumors, 
the expression of IL-10 continuously increased, which 
would have produced immunosuppression and RSV 
pathogenesis, leading to an increase in the size 
of the tumors. IL-10 also inhibits the expression of 

IFN-γ in chickens (93), which has antiviral efficacy 
(98, 99). Thus, high level of IL-10 and low level of 
IFN-γ could have significantly increased the severity 
of the tumors in the progressor group. The lungs, 
liver and spleen in the regressor and non-responder 
groups had a higher expression of IL-10 during the 
early stages of RSV infection, whereas in the later 
stages, IL-10 expression decreased to basal levels, 
thereby inhibiting tumor growth. Hagenbaugh et al. 
reported that IL-10 transgenic mice injected with Lewis 
lung carcinoma cells developed larger tumors than 
control mice, suggesting that the production of IL-10 
prevents the development of an effective immune 
response against the tumor cells (100). In Marek’s 
disease, infected chickens had significantly higher IL-
10 expression compared to vaccinated chickens (51). 
Studies have reported that the upregulation of IL-10 
may have contributed to the severity of -Newcastle 
diseases virus (NDV) pathogenesis (101). 

TGF-β can induce apoptosis in chicken 
lymphocytes, resulting in viral pathogenesis (102, 
103). In the present study, there was a significant 
upregulation of TGF-β in the lungs and liver, which could 
produce immunosuppression. In the primary tumor, the 
downregulation of TGF- β in the early stages could have 
sustained viral spread. In contrast, the upregulation of 
TGF-β in the later stages of RSV infection could have 
increased viral pathogenesis. However, the decreased 
expression of TGF-β in the spleen of the progressor 
group at the later stages could have increased the 
immunity of the host against RSV infection. The lungs 
and spleen of the regressor and non-responder groups 
had a slightly higher expression of TGF-β compared to 
controls, but this could have increased the mean survival 
time by inducing tumor regression. However, the liver 
of the regressor and non-responder groups would not 
have sustained viral pathogenesis as indicated by an 
increase in TGF-β expression.

GM-CSF is produced and secreted by 
activated T cells, macrophages, endothelial cells, 
and fibroblasts (104, 105). It has been reported that 
GM-CSF inhibits tumor growth and metastasis (106), 
although GM-CSF can enhance tumor progression 
(107). Furthermore, GM-CSF can produce significant 
anti-proliferative (108-110) or anti-apoptotic effects 
(111-113), depending on the tumor type and the stage 
of development (114). In the present study, an early up-
regulation of GM-CSF occurred in all the organs of the 
progressor group of chickens may have induced over 
expression of IL-6, hence favoring viral pathogenesis. 
In this study, the GM-CSF expression level in the 
regressor and non-responder group of chickens was 
also increased compared to controls, but was not 
significantly different from GM-CSF expression in the 
progressor group. Overall, in this study, it is unlikely 
that GM-CSF did not significantly affect the induction, 
progression, or regression of primary tumors.
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6. CONCLUSION

The development of molecular-based 
immunotherapeutic strategies for controlling neoplastic 
transformation in poultry requires a better understanding 
of the cytokine network. In humans, cytokines not only 
modulate tumor growth and the immune response, but 
they may also play a role in producing cancer-related 
symptoms and chronic debilitation (115). The results 
presented herein characterized the dynamics of specific 
pro-inflammatory, Th1 and Th2 cytokines. In progressor 
chicks, the pro-inflammatory and Th2 cytokines (IL-6, 
IL-8, IL-10) were significantly upregulated, whereas the 
Th1 cytokine particulary IFN- γ was downregulated, 
producing severe immunosuppression in the host 
and leading to RSV induced - pathogenesis. The 
expression pattern of the various cytokines in regressor 
and non-responder chicks produced some magnitude 
of resistance to RSV infection. We hypothesize that 
the expression pattern of IL-6, IL-8, IL-10 and IFN-γ 

be considered when developing immunotherapeutic 
drugs or vaccines against cancer. However, further 
elucidation of the interactions between tumor cells and 
cytokines would be important for the development of 
more efficacious, novel treatments.
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