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1. ABSTRACT

The coagulation takes place in the hemostasis 
system and is a is hallmarked by a complex interplay 
of reactions between coagulation proteins. In the 
presence of a vascular breach, the conversion of 
prothrombin to thrombin leads to the formation of 
insoluble fibrin fibers that will stop bleeding and limit 
blood loss. Hemostasis is known to be disturbed in 
many diseases leading to hemorrhages or thrombosis. 
Despite the role of coagulation in hemostasis, recent 
evidences suggested that coagulation factors are 
involved in other (patho)physiological processes 
in the vasculature not necessarily marked by overt 
clotting, such as atherosclerosis and hypertension. 
Many direct (through protease activated receptors) or 
indirect effects of several coagulation factors are now 
well described. This review is focusing on the role of 
coagulation factors in the (dys)regulation of vascular 
function.

2. INTRODUCTION

The coagulation takes place in the 
physiological system of hemostasis. In case of vascular 

injury, formation of a clot in concert with platelet 
activation will stop bleeding and limit blood loss (1). 
The aftermath of hemostasis, fibrinolysis corresponds 
to wound healing and resolution of thrombotic 
material. Hemostasis is known to be disturbed in many 
diseases leading to hemorrhages or thrombosis (2). 
Proper coagulation needs the presence of calcium, 
phospholipids, and cellular receptors to allow several 
zymogens to be activated in a cascade and in feedback 
loops (3). Despite the role of coagulation in hemostasis, 
recent evidence suggest that coagulation factors are 
involved in other physiological as well as pathological 
processes such as the regulation of vascular function.

2.1. From tissue factor to fibrin clot

The coagulation system is a complex 
interplay of reactions between coagulation proteins 
leading to the conversion of prothrombin to thrombin 
and the formation of insoluble fibrin fibers. Most of 
the coagulation factors are synthesized by the liver, 
the endothelium and/or myeloid cells and consist of 
inactive zymogens.
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The coagulation cascade is traditionally 
separated into two pathways, the intrinsic and extrinsic 
pathways. Despite this historical separation, many 
interactions exist between the coagulation factors 
of these two pathways. Tissue factor (TF) is the first 
factor from the extrinsic pathway (also named tissue 
factor pathway). It is made of three domains, one 
extracellular constituted of two fibronectin type-III 
domains, a transmembrane domain and a cytosolic 
domain (4,5). This membrane bound factor is present 
in the subendothelial layers and is exposed to the blood 
in case of injury. In the presence of vessel damage, 
exposed TF will bind to FVII and in the presence of 
calcium this complex will lead to the activation of FVII 
(FVIIa). This complex, called extrinsic Xase is able 
to activate FX to FXa. FXa will form a complex with 
FVa called “prothrombinase complex”. FXa from this 
complex will cleave two sites of prothrombin (FII) 
leading to the formation of active thrombin (FIIa) 
(6). Prothrombin is a vitamin K dependent zymogen 
able to bind to phospholipids through its gamma-
carboxyglutamic (Gla) domain in presence of calcium. 
Once the first molecules of thrombin are formed, 
several processes occur (Figure 1)

–	� Autoamplification of thrombin formation 
through activation of FV, FVIII and FXI by 
thombin

–	 Formation of the first fibrin fibers
–	� Activation of the inducible anticoagulant 

systems. Formed thrombin will bind to 
thrombomodulin present on the surface 
of endothelial cells (ECs) and lead to a 
thousand-fold increased speed of protein C 

(PC) activation (activated protein C, APC) 
(7). Endothelial protein C receptor (EPCR) 
can also increase the conversion speed 
of PC to APC. In turn, APC will inactivate 
FVa and FVIIIa, thus shutting down the 
prothrombinase and the intrinsic Xase 
complex.

2.2. The intrinsic pathway

FXII is the initiator of the intrinsic pathway. 
This pathway is also called contact phase since FXII 
can be activated by negatively changed surfaces like 
platelet polyphosphates or extracellular RNA (8,9). 
This little amount of FXIIa will activate kallikrein. In 
return, kallikrein can activate FXII (10). Activation 
of FXII initiates the intrinsic pathway by activation 
of FXI that will activate FIX. FIXa can form the so-
called “intrinsic Xase” complex with FVIIIa and 
promote thrombin formation (11,12). Thrombin can 
autoamplify its activation via its ability to activate FXI 
(13). Contrary to FXI deficiency (hemophilia C) which 
may be associated with a mild bleeding phenotype, 
FXII deficiency do not lead to abnormal bleeding 
indicating that FXII is not essential for hemostasis 
(14–16). Concerning the thrombotic risk related to the 
coagulation factors of the intrinsic pathway, elevated 
FXI, FIX and FVIII are associated with increased risk 
of venous thromboembolisms (17–19).

2.3. Fibrin clot formation and fibrinolysis

Fibrinogen consists of 3 chains (Aα, Bβ, γ) 
assemble into dimers (Aα γ and Bβ γ) and then into 

Figure 1. Overview of the coagulation cascade. In the presence of a vascular injury the subendothelium releases tissue factor (TF), which will lead to 
factor VII activation (FVIIa) and to factor X activation (FXa). The initially formed FXa can convert prothrombin (FII) to thrombin (FIIa) and FIIa will amplify 
its own formation through activation of factor V (FVa), factor VIII (FVIIIa) and factor XI (FXIa). FXIa can activate factor IX (FIXa), which will activate FX with 
the help of FVIIIa. FIIa cleaves fibrinogen, leading to the formation of insoluble fibrin and the fibrin clot is stabilized with activated factor XIII (FXIIIa). Lysis 
of the clot is made possible by the conversion of plasminogen to plasmin via tissue plasminogen activator (t-PA) and urokinase plasminogen activator 
(uPA), leading to the formation of fibrin degradation products. Fibrinolysis can be inhibited by plasminogen activator inhibitors (PAI-1, PAI-2). Black curved 
arrows: “conversion to”; green arrows: “activation of” red T-bar: “inhibition of”; grey arrows: additional pleiotropic effects.
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hexamers (Aα, Bβ, γ)2 to form two Aα-Bβ-γ trimers 
linked by disulfide bonds. This soluble glycoprotein can 
be cleaved by thrombin (on α and β chains) and form 
fibrin molecules that possess the ability to polymerize. 
Fibrin polymers are cross-linked with the help of the 
transglutaminase FXIIIa, to form a fibrin clot (20).

Fibrinolysis, the pathway counteracting 
coagulation, results in the degradation of fibrin, which 
is also an important step in thrombus resolution. The 
main molecule responsible for thrombus resolution 
is plasmin. Similar to other coagulation factors, it is 
released as an inactive zymogen, plasminogen. In 
circulating blood plasminogen cannot be converted 
to active plasmin; this is only possible in case of a 
conformational change occurring once plasminogen 
is bound to thrombotic material or cell surfaces (21). 
Once plasminogen has adopted an open conformation, 
it can be cleaved by tissue plasminogen activator 
(t-PA) or urokinase plasminogen activator (uPA), 
kallikrein, FXIIa or FXIa (22). Plasmin not only cleaves 
fibrin but also fibronectin, thrombospondin, laminin or 
von Willebrand factor (VWF). Action of plasmin can 
be inhibited by plasminogen activator inhibitors-1 and 
-2 (PAI-1 and PAI-2), which will inhibit plasminogen 
activation via tPA and uPA inhibition.

2.4. Coagulation profile in hypertension and other 
diseases related to vascular dysfunction

Essential hypertension represents the most 
common cardiovascular risk factor present in more 
than 20% of the adult population (23). Untreated 
hypertension can lead to many adverse outcomes 
such as renal failure, heart failure, atrial fibrillation 
and stroke. Hypertension increases levels of factor 
VII (FVII), fibrinogen and D-dimer suggesting the 
presence of a hypercoagulable state (24–26). On 
the anticoagulation side, antithrombin (AT) and PC 
were also found to be increased in hypertensive 
individuals. In rats with deoxycorticosterone-induced 
hypertension, thrombin-antithrombin complex levels 
(TAT), indicating increased thrombin generation in 
vivo, were increased (27). In this model, tissue factor 
(TF), which triggers the extrinsic coagulation pathway 
was increased and thrombomodulin (TM) which 
triggers the anticoagulant PC pathway was lowered. 
In spontaneously hypertensive rats, prothrombin and 
fibrinogen were increased while anticoagulant AT was 
also increased (28).

Hypertension is the most important risk 
factor for heart failure (HF) (29). In this disease, the 
risk of venous and arterial thrombosis is increased 
(30). Left ventricular dysfunction is an outcome of 
myocardial infarction (31,32). In the V-HeFT study, 
thromboembolism risk was poorly associated with left 
ventricle ejection fraction (33). On the contrary, the 
1997 SAVE study presented an 18 % increased risk 

for every 5 % decrease of the left ventricle ejection 
fraction (34).

Atherosclerosis is commonly associated to 
vascular dysfunction. It develops when the vessel lumen 
narrows due to the formation of atheroma plaques 
mainly composed of immune cells generating foam 
cells and stiffening arterial vessels. Atherothrombosis 
occurs after rupture of an atherosclerotic lesion. 
Platelets adhere to the exposed subendothelial 
matrix molecules and VWF followed with strong 
coagulation activation (35). In atherosclerosis TF and 
FVII are expressed on macrophages and vascular 
smooth muscle cells (VSMCs) in the arterial wall and 
atherosclerotic plaques (36,37). FX was also found to 
be colocalized with macrophages in the plaque (38). 
In the same work the procoagulant state of advanced-
stage atherosclerotic plaques was increased compared 
to early-stage plaques with elevated activities of 
TF, prothrombin, FX, FXII and increased thrombin 
generation and thrombin-antithrombin complex. 
Moreover, fibrin degradation products (D-dimer) are 
increased and associated with an increased risk of 
severe atherosclerosis (39).

Most of the studies previously cited observed 
thrombotic risk as an adverse effect of the vascular 
disease. Almost 20 years ago the concept was raised 
that heart failure might also change several aspects 
of the hemostatic system (40). Contractility reduction 
associated with cardiac chambers dilatation increases 
blood stasis, which in turn participates to thrombus 
formation. A significant number of patients who died 
from left ventricular aneurysm presented signs of 
thrombosis (30).

ECs are a major source of anticoagulant 
factors. These cells cover the inner face of blood 
vessels and avoid contact between blood and 
procoagulant surfaces, such as collagen and VSMCs, 
preventing clotting. Endothelial function is known to 
be altered in many vascular diseases. Hypertensive 
patients present increased circulating levels of VWF, 
normally stored in the Weibel-Palade bodies of ECs or 
the platelet α-granula. VWF factor is increased in HF 
where endothelial dysfunction is also well described 
(41–43). Other markers of endothelial activation, such 
as EPCR, are increased in hypertension (44). Finally, 
the synthesis of all coagulation factors is modified 
indicating profound changes in hemostasis biology 
and regulation (45,46).

3. COAGULATION FACTORS IN VASCULAR 
FUNCTION

3.1. Tissue factor: beyond hemostasis

TF triggers the extrinsic pathway of the 
coagulation cascade. It is expressed in the vascular 
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wall by VSMCs, ECs and fibroblasts, but also by 
myeloid cells such as macrophages and neutrophils 
(47). In the blood, monocytes are able to synthetize TF 
(48). This encrypted TF represent about 80 % of the TF 
expressed by monocytes and activation of these cells 
can lead to TF decrypting (49). Calcium ionophore, 
phosphatidylserine and also monocytes interaction 
with other cells or circulating microvesicles could also 
be implicated in the activation process (50–52).

Over the years, immune cells have gained 
recognition to be the main source of TF implicated 
in venous thrombosis and atherothrombotic events 
(53,54). Moreover, TF-rich microvesicles can be 
generated by monocytes through the ADP/P2X7 
pathways and are well described to be procoagulant 
(55,56). Deletion of TF in monocytes and neutrophils 
prevents initiation of deep vein thrombosis in mouse 
models (57,58). Contrary to other coagulation factors, 
no TF deficiency was described in humans, and 
mice lacking TF are embryonically lethal (59,60). 
A disorganization of the yolk sac vasculature was 
observed in the TF deficient embryos highlighting the 
idea that TF was not only important for hemostasis but 
also for vessel development (61). In the 2000s, TF-
FVIIa complex was found to be able to activate protease 
activated receptor 2 (PAR-2) and contributes to several 
processes such as angiogenesis, inflammation or 
cancer development (Figure 2) (62,63). Indeed, 
inhibition of TF-FVIIa complex had antiangiogenic 
properties in PAR-2-dependent neovascularization 
in hypoxia (64,65). Migration and proliferation of 
VSMCs can be modulated by TF-FVIIa through PAR-
2 activation via ERK phosphorylation (66,67). More 
recently, FVIIa integrin-binding site was demonstrated 
to be required for integrin β1 complex formation 
leading to proangiogenic signaling independent of the 
TF-PAR-2 proangiogenic signaling (68).

VSMCs, as well as, ECs respond to shear 
stress, blood pressure, and pulse waves. Cyclic 
stretch created by blood pulsatility applied to VSMCs 
leads to vessel wall thinning and triggers intracellular 
signaling via mechanoreceptors like integrins, tyrosine 
kinase receptors or ion channels (69). In endothelial 
cells, shear stress attenuates tumor necrosis factor 
alpha (TNFα)-induced TF expression (70). TF pathway 
inhibitor (TFPI), a direct inhibitor of TF, is also modulated 
by cyclic stretch. A 10% mechanic stretch at 1 Hz 
leads to increased synthesis of TFPI by VSCMs (71). 
Interestingly, this relation between TFPI and increased 
pulse pressure and aortic stiffness was present in 
a cohort of postmenopausal woman. TFPI could be 
implicated in atherothrombosis via its ability to induce 
apoptosis in VSMCs (72). Moreover TFPI can also 
inhibit ECs proliferation thanks to its ability to recognize 
the very low density lipoprotein receptor (73).

3.2. PARs: the effectors of coagulation factor’s 
cellular effects

PARs are a subfamily of the seven-
transmembrane G-protein-coupled receptor superfamily. 
Four PARs are described and known to be expressed 
in platelets and vascular cells such as ECs and VSMCs 
(74). The distribution differs depending on cell types and 
species. For example, human platelets express PAR-1 
and PAR-4 that mediates platelet activation while mice 
platelet express PAR-3 and PAR-4 (75,76).

PARs activation by proteases consists in the 
unmasking of an N-terminal “tethered ligand” (TL), 
which stays linked to the rest of the protein (77). In case 
of activation, the TL part of the receptor binds to the 
extracellular receptor domain leading to conformational 
changes and cellular signaling (78). This activation 
occurs in PAR-1, PAR-2 and PAR-4 while PAR-3 acts 

Figure 2. Implication of coagulation factors in the development of vascular dysfunction. Shear stress stimulates synthesis of tissue factor (TF) and TF 
pathway inhibitor (TFPI) by vascular smooth muscle cells (VSMCs). Monocytes crossing the endothelial cells (ECs) barrier can also produce TF. TF 
bound to FVIIa as well as generated thrombin (FIIa) can activate protease activated receptors (PAR-2, -1, -4), known to trigger migration and proliferation 
of VSMCs. Black curved arrows: “conversion to”; green arrows: “activation of”; blue arrows: receptor activation; grey arrows: additional pleiotropic effects. 
FII: prothrombin.
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like a cofactor of PAR-4 in the presence of thrombin 
activation (Figure 3) (79). The ability of PARs to form 
heterodimers consisting of different PAR isoforms 
makes it very challenging to disentangle the signaling 
properties of PARs in health and disease.

Noncanonical activation of PARs is also 
reported. Some proteases can cleave the receptors 
and trigger TL-dependent activation of the receptor. 
This activation can occur with APC on PAR-1 (see 
APC section) (80). Triggered signaling pathways 
differ depending on the way of activation of these 
receptors. G-protein or β-arrestin activation are the 
most common activated pathways triggered by PARs 
(81).These receptors via their role in agonist release, 
kinase pathway activation can lead to activation of 
other cellular receptors and even modulate toll-like 
receptors as well as ion channels (77).

Regarding the actions of PARs in the 
cardiovascular system, PAR-4 in cardiomyocytes 
was found to be able to transactivate the epidermal 
growth factor (EGFR) and ErbB-2 by activation of 
Src tyrosine kinase, p42/p44 and p38 MAPK (82). In 
human umbilical vein ECs obtained from preeclamptic 
pregnancies, PAR-2 mediated expression and release 
of soluble vascular endothelial growth factor (VEGF) 
receptor-1 which is also elevated in preeclampsia 

(83). Bradykinin receptor B2 (B2R) elicits bradykinin-
dependent vasodilation, vascular permeability and 
edema and can interact with PAR-4 (84). Renin 
angiotensin aldosterone system (RAAS) which also 
modulates the bradykinin pathway is also related 
to PARs. Angiotensin II (AngII) upregulate PAR-1 
expression via angiotensin-1 receptor in VSMCs (85). 
Moreover PAR-1 was found to be a strong actor of 
cardiovascular remodeling in AngII-induced vascular 
inflammation while FXa and thrombin inhibitors were 
able to limit the development of experimental aortic 
aneurysm and atherosclerosis (65,86).

3.3. The role of thrombin on cardiovascular 
function and diseases

Thrombin is a central coagulation factor 
leading to polymerization of fibrin fibers and clot 
formation. Thrombin possesses cellular actions 
through PARs dependent on hemostasis, like platelet 
activation and other cellular actions independent of its 
role in coagulation (Figure 3). Thrombin can activate 
PAR-1 and PAR-4 and was recently found to be able 
to activate PAR-2 (87). In the vascular bed, PAR-1 
is present at the surface of ECs as well as VSMCs 
(88–90). In pulmonary arteries thrombin can mediate 
endothelium-dependent relaxation following thrombin 
stimulation or trypsin (as a noncanonical activation 

Figure 3. Cellular action of coagulation factors mediated through protease activated receptors. Shear stress stimulates synthesis of protease activated 
receptor-1 (PAR-1) by endothelial cells (ECs). Activated factors VIII and V (FVIIIa, FVa) promote the generation of thrombin (FIIa) and the activation of 
PAR-1 by thrombin stimulates von Willebrand factor (VWF) release by ECs. PAR-1-dependent production of interleukin-6 (IL-6) and metalloproteinases 
(MMPs) and RhoA signaling lead to the disruption of the EC barrier. In addition, FIIa can activate PAR-2 and PAR-4 with its cofactor PAR-3 and 
stimulates vascular smooth muscle cells (VSMCs) migration and proliferation. The interaction of FIIa with thrombomodulin (TM) and the endothelial 
protein C receptor (EPCR) leads to activation of protein C (APC) which can also activate PAR-1 and though Rac-1 and the monocyte inflammasome 
inhibition results in vascular protection. Black curved arrow: “conversion to”; green arrows: “activation of”; red T-bar: “inhibition of”; grey arrows: additional 
pleiotropic effects.
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of PAR-1) and in endothelium denudated vessels 
thrombin can mediate vasoconstriction (88).

Thrombin is known to have pleiotropic effects: 
it can affect differentiation, migration, inflammatory 
response and gene expression (89,91–94). As for 
TF, PAR-1 deficiency leads to elevated embryos 
lethality. PAR-1 knockout embryos died from bleeding 
suggesting, since PAR-1 is expressed by ECs, that this 
receptor is implicated in blood vessel development (95).

In pathological conditions, thrombin can act 
like a growth factor and regulates vascular remodeling 
through VSMCs proliferation (Figure 2) (96). Vascular 
remodeling occurs in atherosclerosis, hypertension or 
restenosis. PAR-1, PAR-2 and PAR-4 mediate VSMCs 
migration, proliferation and hypertrophy (96,97). 
In response to shear stress, PAR-1 expression by 
VSMCs increases and potentiates thrombin-induced 
proliferation (98). Thrombin is also important in 
inflammation since it can induce MCP-1 (CCL2) and 
IL-6 production, or matrix metalloproteinases (MMPs) 
which will participate in the extracellular matrix 
degradation and promote vascular remodeling (99–
101). Through MCP-1 stimulation, thrombin increases 
monocyte chemotaxis and participates to immune 
response modulation in acute or chronic inflammation 
(102–104). In patients with ascending aortic aneurysm, 
in vivo thrombin generation is increased and correlated 
to aortic dilatation (105,106). In human atherosclerotic 
vessel thrombin was found in a concentration 
sufficient to activate PAR-1 (107). Since thrombin 
was found within the tunica media, one can postulate 
that increased thrombin generation participates in 
vascular wall destabilization, which in turn increases 
the thrombogenic potential of the vascular cells.

3.4. The direct and indirect effects of APC on 
vascular cells

PC is a vitamin K-dependent zymogen 
synthetized in the liver. The single-chain precursor can 
be cleaved by thrombin and form APC consisting of 
one light chain and one heavy chain connected by a 
disulfide bond. APC also possesses a Gla domain able 
to bind to negatively charged phospholipids and also to 
the EPCR (108). Conversion of PC to APC is fastened 
by TM and EPCR. Concerning anticoagulation, APC 
main function is to inactivate FVa and FVIIIa (109,110). 
The anticoagulation function can occur when APC 
is released from EPCR. When it stays linked to this 
receptor, APC triggers cytoprotective effects. Many 
beneficial cellular effects of APC were described, from 
endothelial barrier protection to limitation of tumor 
proliferation (111). In stroke and ischemia, APC was 
found to be increased (112,113). Circulating levels of 
APC are also inversely associated with stroke (114).

APC-dependent improvement of the 
endothelial barrier was found to be beneficial in sepsis 

where complications such as hypotension, swelling or 
inflammation occur (115). Indeed, the effect of APC 
was well studied in sepsis since the achievement 
of the recombinant human protein C world-wide 
evaluation in severe sepsis (PROWESS) trial in the 
early 2000s (116). Endothelial dysfunction is one of the 
characteristics of sepsis and can be reduced by APC, 
but in 2011 the PROWESS-SHOCK trial did not reveal 
an improved survival in septic shock patients treated 
with drotrecogin, a recombinant APC (117,118).

During recent years, the interest for the 
crosstalk between APC, immune cells and vascular 
function has steadily grown (119). The cytoprotective 
effect of APC is present in monocytes, macrophages 
and neutrophils. In myocardial infarction, ischemia-
reperfusion injury induces release of proinflammatory 
cytokines like IL-1β and IL-18 controlled by Nlrp3 
inflammasome (120). Nlrp3 expression leads to the 
oligomeric inflammasome complex formation and IL1β 
and IL-18 maturation (121). Nazir et al found that APC 
protects from ischemia-reperfusion injury by inhibition 
of the inflammasome activation in macrophages, 
cardiomyocytes and cardiac fibroblasts via PAR-1 
signaling and mammalian target of rapamycin complex 
1 (122). These effects occur through activation of 
PAR-1 when APC is bound to EPCR (Figure 3). Anti-
inflammatory effects on ECs and leukocytes are well 
described. APC-dependent PAR-1 signaling includes 
Beta-arrestin-2, PI(3)K/Akt and Rac1 (102,123). 
PAR-3 can also be involved in APC-dependent 
cytoprotection (124). The effect of APC can also be 
mediated by β1 and 3 integrins, apolipoprotein E 
receptor, macrophage antigen-1 (MAC-1) and Tie2 
(125–128). Recent findings showed that in sepsis and 
stroke PAR-1 biased signaling through cleavage in the 
R46 position (while thrombin and APC can cleave the 
R41 of PAR-1) is responsible for the beneficial effect 
of APC (129).

Soluble EPCR was discovered to bind 
activated neutrophils through proteinase-3 as well 
as monocytes with MAC-1, helping them to cross 
the endothelial barrier (125,130). Considering that 
circulating EPCR is increased with hypertension, 
these results suggest a direct link between EPCR and 
the propagation of vascular inflammation (44).

3.5. From FXII to FXI and bradykinin

Coagulation FXII plays a pivotal role in the 
crosstalk between hemostasis, immunity and vascular 
function (131). FXIIa activates FXIa leading to thrombin 
generation and fibrin clot formation but also has an 
important role in inflammatory response since it can 
generate bradykinin (BK) through kallikrein cleavage 
of HK (Figure 4) (131).

FXII is a 80 kDa single chain polypeptide 
zymogen. It contains a fibronectin type II and I domain, 
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Figure 4. Interplays between coagulation, the kinin-kallikein and the renin-angiotensin systems. 1: In the intrinsic pathway of coagulation activated factor 
XII (FXIIa) activates factor XI (XIa), which then will activate factor IX (FXIa), followed by factor X activation (FXa) and conversion of prothrombin (FII) to 
thrombin (FIIa). FIIa amplifies its own activation through FXI activation. 2: High weight kininogen carries prekallikrein (PK) and Factor XII (FXII). Activated 
FXII (FXIIa) activates PK to kallikrein which in return can activate FXII. 3: Shear stress increases the kininogen syntesis, which by kallikrein can be 
converted to bradykinin. Bradykinin can bind to its second receptor (B2R) and trigger vascular permeability and vasodilation. The C1 esterase inhibitor 
(C1inh) can inhibit both FXII and PK activation. 4: Renin converts angiotensinogen to angiotensin I (AngI) and angiotensin converting enzyme (ACE) 
converts AngI into angiotensin II (AngII). ACE can also degrade bradykinin into bradykinin 1-5 (B 1-5), which is able to inhibit the thrombin-dependent 
activation of PARs. AngII acts on angiotensin receptor 1 (AT1R) for vasoconstriction while its degradation product angiotensin (1-7) (Ang (1-7)) acts on 
angiotensin receptor 2 (AT2R) to trigger vasodilation. Black arrows: “conversion to”; green arrows: “activation of”; blue arrows: receptor activation; red 
T-bar: “inhibition of”; grey arrows: additional pleiotropic effects.
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2 EGF-like domains, a kringle domain and a proline-rich 
region (132,133). Beyond its function in the coagulation 
cascade, FXII can act as a growth factor and promotes 
angiogenesis and cell proliferation (134,135). FXII can 
bind to the ECs via a multiprotein receptor complex 
constituted of urokinase plasminogen activator 
receptor (uPAR), gC1qR and cytokeratin (136). FXII 
was found to be present and active in atherosclerotic 
plaques38. Proliferation and angiogenesis action of 
FXII are mediated by uPAR, integrin β1 and EGFR.

The main direct effect of FXII in vascular 
function comes from its ability to activate the kallikrein-
kinin pathway. Kallikrein activation mediated by FXIIa 
leads to the cleavage of HK and the release of BK 
that will induce hypotension and increase vascular 
permeability through BK receptor 2 (B2R) (137). B2R is 
a G-protein coupled receptor expressed constitutively 
and ubiquitously. This pathway plays a major role 
in hereditary angioedema, a life-threatening tissue 
swelling disorder. Deficiency of C1-esterase inhibitor 
(C1INH) which inhibits FXIIa in normal condition leads 
to excessive BK production and vascular permeability. 
C1INH deficiency or activity alteration are the cause of 

hereditary angioedema type I and II (138). One type of 
hereditary angioedema occurring with normal C1INH 
is associated with a mutation of FXII in which two 
missense mutations were detected (139). This type 
of hereditary angioedema is predominant in women, 
is hormone-dependent and can be treated with B2R 
inhibitor, C1INH concentrate or tranexamic acid as 
for Type I and II hereditary angioedema but also with 
progestin (140).

FXI, through its ability to be activated by 
thrombin and to increase thrombin generation, 
may play a direct role in hypertension and vascular 
dysfunction development. Increased angII production 
promotes TF synthesis and release and thrombin 
generation. Inhibition of FXI in angII infused mice and 
rats limit blood pressure increase and adverse effect 
of hypertension (Figure 5) (104). In this pathological 
setting FXI shows a dichotomy with FXII since 
beneficial effects of FXI inhibition were lost when 
only FXII-dependent activation of FXI was inhibited. 
Moreover contrary to FXI deficient mice, FXII deficient 
mice were not protected against angII-induced vascular 
dysfunction. The contrast between FXI and FXII in 

Figure 5. The FXI-related vascular coagulation proinflammatory circuit in hypertension developpement. Overactivation of the renin angiotensin 
aldosterone system (RAAS) increases angiotensin II (AngII) production, which exerts proinflammatory effects leading to increased tissue factor 
synthesis (TF). Increased stimulation of the extrinsic pathway and amplification of prothrombin (FII) conversion to thrombin (FIIa) via the Factor XI (FXI) 
amplification loop at the platelet surface leads to platelet and monocytes activation. The binding of immune cells to the vascular endothelium through 
membrane receptors assists the transmigration and promotes adverse effect of immune cells whithin the vascular wall and the development of vascular 
dysfunction. Inhibition of FIIa generation or blockade of the amplication loop via FXI inhibition limit the development of vascular dysfunction. Black arrows: 
“conversion to”; green arrows: “activation of”; red T-bar: “inhibition of”; grey arrows: other effects. GP: Glycoprotein Ibα; MAC-1: Macrophage antigen-1; 
VLA-4: Very Late Antigen-4 also known as Integrinα4β1; VCAM-1: Vascular cell adhesion protein 1. ROS: reactive oxygen species; ECs: endothelial 
cells, VSMCs: Vascular smooth muscle cells.
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thrombus propagation is already well established and 
thrombin-dependent activation of FXI is one of the 
main contributors to thrombus propagation (141).

Limiting thrombin generation via FXI 
inhibition reduces the recruitment of proinflammatory 
monocytes to the vessel wall and subsequent vascular 
inflammation development. In patients with acute 
coronary syndrome FXIa and thrombin generation 
where found to be elevated (142). FXI deficiency in 
apolipoprotein E knock-out mice protected against 
atherogenesis (143). Downstream FXI activation and 
the intrinsic pathway, FVIII was found to be produced 
by pulmonary EC and its expression may modulate 
pulmonary thrombosis and hypertension (144).

3.6. Fibrinogen and clot-related molecules

Fibrinogen is often seen as a biomarker of 
inflammation and thrombotic risk. It is well described 
in chronic inflammatory diseases affecting the arterial 
wall, like hypertension, atherosclerosis or coronary 
artery disease (145–147). Fibrinogen formation is 
upregulated by pro-inflammatory cytokines like IL-6 
and can also trigger IL-6 and other proinflammatory 
molecules, such as TNFα or IL-1b (148,149). Fibrinogen 
as well as fibrin and fibrin degradation products all 
possess proinflammatory properties and can alter 
the VSMCs phenotype (148,150). Permeability of 
the endothelium as well as ECs migration were 
also increased following fibrin degradation product 
stimulation (151). In spontaneously hypertensive and 
hyperlipidemic rats, the plasmatic concentration of 
fibrinogen was found to be increased (28). On the 
contrary, cytokines conveying protection from vascular 
alteration involved in atherosclerosis development, 
such as IL-4, IL-10 and IL-13, downregulate fibrinogen 
synthesis (152). Altogether, these data suggest that 
fibrinogen is involved in progression of vascular 
disease and directly in their development.

FXIIIa crosslinks and stabilizes the fibrin-
clot and can influence VSMCs migration (153). Its 
plasmatic concentration may not be associated 
with blood pressure, but it might be associated 
with atherosclerosis prediction in systemic lupus 
erythematosus (154). Immune cells, in particular 
monocytes, are known to participate in atherosclerosis 
or hypertension progression and FXIII is able to cross-
link the angiotensin receptor-1 on monocytes, allowing 
a full activation of these cells by angII (155,156). In 
the pathological setting of myocardial infarction, the 
lack of FXIII in mice led to impaired wound healing 
with imbalanced extracellular matrix turnover due to 
overexpression of MMP-9 (157). 

Fibrinolysis can occur when t-PA converts 
plasminogen to plasmin. B2R and Beta 2 AR are 
known to form heterodimers and bradykinin as well as 
adrenergic receptors can upregulate t-PA release while 

beta blockade abolished this t-PA release (158,159). 
U-PA can also modulate migration of VSCMs submitted 
to pulse pressure while the increase of PAI-1 inhibits 
these effects (160,161).

4. CONCLUSION

Coagulation factors are not only important for 
hemostasis. Their role in vascular function regulation 
are now starting to be revealed. Through cellular 
receptors (e.g. PARs, EPCR and TF), FX, thrombin or 
APC can all exert cellular effects on blood cells and 
cells that constitute the vascular wall. An number of 
important questions remains concerning the ability of 
many cell types to synthetize coagulation factors that 
could have localized cellular effects. More work is also 
necessary to understand how circulating coagulation 
factors could move from the blood to the vascular wall 
(and inversely) and how this movement is modulated 
under pathological conditions as well as how cellular 
effects of coagulation factors could play a role in the 
vascular regulation of these pathologies. 
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