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development of systemic insulin resistance, 
a phenotype of type 2 diabetes. Nitric oxide 
synthase (NOS) is an enzyme that converts 
L-arginine to nitric oxide (NO), which functions to 
maintain vascular and adipocyte homeostasis. 
Arginase is a ureohydrolase enzyme that 
competes with NOS for L-arginine. Arginase 
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1. ABSTRACT 

Obesity has reached epidemic 
proportions and its prevalence is climbing. 
Obesity is characterized by hypertrophied 
adipocytes with a dysregulated adipokine 
secretion profile, increased recruitment of 
inflammatory cells, and impaired metabolic 
homeostasis that eventually results in the 
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activity/expression is upregulated in obesity, 
which results in diminished bioavailability of 
NO, impairing both adipocyte and vascular 
endothelial cell function. Given the emerging 
role of NO in the regulation of adipocyte 
physiology and metabolic capacity, this review 
explores the interplay between arginase and 
NO, and their effect on the development of 
metabolic disorders, cardiovascular diseases, 
and mitochondrial dysfunction in obesity. 
A comprehensive understanding of the 
mechanisms involved in the development 
of obesity-induced metabolic and vascular 
dysfunction is necessary for the identification of 
more effective and tailored therapeutic avenues 
for their prevention and treatment. 

2. INTRODUCTION

Obesity, a condition characterized by 
the excessive accumulation and storage of fat 
in the body, is generally defined as a body mass 
index (BMI: weight-lbs/(height-inches)2 x  703) 
of 30 or greater. Obesity is considered the core 
of metabolic disorders and an independent 
risk factor for all-cause mortality in the general 
population, particularly from cardiovascular 
disease (1). The vast majority of patients with 
type 2 diabetes (T2D) exhibit obesity and 
insulin resistance (2, 3). According to the World 
Health Organization, obesity is now considered 
a serious health problem worldwide, with 
its prevalence nearly tripling over the past 
40  years due to overnutrition and reduced 
physical activity (4). A key function of adipose, 
or fat, tissue is energy homeostasis. Adipose 
tissue stores excess nutrients (ie: glucose and 
fatty acids) through the process of lipogenesis. 
In conditions of nutrient deficiency, it ensures 
a stable supply of energy to all organs and 
tissues through lipolysis (5).

Adipose tissue is the largest endocrine 
organ in the body, consisting mainly of 
adipocytes which are capable of secreting a 
variety of cell signaling cytokines, known as 
adipokines (6). These adipokines, particularly 
those in visceral adipose tissue (VAT), can 
regulate local and systemic inflammation 

as well as energy homeostasis (7). Healthy 
adipocytes are insulin sensitive, a trait 
essential for adipocyte glucose uptake and for 
the prevention of hepatic gluconeogenesis, 
which allows for the maintenance of normal 
blood glucose levels (8). Insulin resistance is 
an important feature of metabolically unhealthy 
obesity, a condition which differs from healthy 
obesity in terms of fat distribution. Metabolically 
healthy obese individuals exhibit increased 
subcutaneous adipose tissue (SAT) mass with 
less inflammation, less VAT and ectopic (liver 
and skeletal muscle) fat accumulation, and a 
normal adipokine secretion profile compared to 
metabolically unhealthy obese individuals  (9). 
Studies from many groups have led to our 
current understanding that vascular pathology 
and dysfunction of obesity-related metabolic 
dysfunction develops through a chronic and 
progressive inflammatory process (10-12).

The pathogenesis of obesity is far more 
complex than just lipid accumulation and involves 
interactions among many cell types (Figure 1). 
With expansion of the VAT, hypertrophy 
of adipocytes, and inadequate vascularity 
(impaired angiogenesis), hypoxia occurs, 
causing the release of inflammatory cytokines 
and chemokines. These factors ‘activate’ 
endothelial cells by enhancing leukocyte and 
monocyte adhesion to the endothelium and 
inducing tissue infiltration by pro-inflammatory 
macrophages. This further elevates levels of 
inflammatory factors, triggering a vicious cycle 
of inflammation (13, 14). Nitric oxide (NO) has 
been recognized as a key regulator of body 
composition, energy metabolism, and vascular 
function. NO is produced from L-arginine by 
three NO synthase (NOS) isoforms: endothelial 
NOS (eNOS/NOS3), inducible (iNOS/NOS2), 
and neuronal NOS (nNOS, NOS1)  (15,  16). 
NO produced by eNOS (nanomolar range) 
relaxes vascular smooth muscle cells and 
prevents their excessive proliferation, 
increases blood flow, and suppresses platelet 
aggregation (17‑19). This eNOS-produced 
NO also prevents ‘activation’ of endothelial 
cells by suppressing the release of factors that 
trigger migration and adhesion of leukocytes 
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and monocytes to the endothelium, preventing 
infiltration of inflammatory macrophages. 
Endothelial NO concentration and production 
are suppressed in obesity (20, 21). Inducible 
NOS (iNOS), in contrast, produces much higher 
and toxic levels of NO (micromolar range) and 
is found in adipocytes and pro-inflammatory 
macrophages. NO production by iNOS is 
elevated in obesity (22).

With the exception of nNOS, the genes 
related to the NO system (eNOS, iNOS, subunits 
of the soluble guanylate cyclase (sGC), and 
both genes encoding cGMP-dependent protein 
kinases) are expressed in subcutaneous 

human adipose tissue and isolated adipocytes. 
Under physiological conditions, eNOS appears 
to be the predominant NOS isoform in human 
adipocytes (23). Expression of eNOS has been 
reported in human, rat, and mouse adipose 
tissue (24). eNOS synthesizes NO through 
the oxidation of the semi-essential amino acid, 
L-arginine (25, 26). NO signaling mechanisms 
involve either the activation of sGC, which 
increases the levels of the secondary 
messenger cGMP, or the posttranslational 
modification of the cysteine thiol group 
(S-nitrosylation) of various proteins to form 
nitrosothiols (SNO), directly affecting signal 
transduction (27, 28). 

Figure 1. Schematic illustrating the development of metabolic and cardiovascular dysfunctions in obesity.
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Reactive oxygen species (ROS) 
are often greatly elevated in obesity and 
hyperglycemia and can have serious 
pathological effects. ROS include hydrogen 
peroxide (H2O2), superoxide (O2-), hydroxyl 
radical (OH), high levels of nitric oxide 
(NO),  and peroxynitrite (ONOO-). These 
ROS are products of numerous enzymatic 
reactions that occur within various subcellular 
compartments. Chronic hypernutrition 
induces the production of superoxide from 
NADPH oxidases, mitochondrial oxidative 
phosphorylation, and endothelial dysfunction/
eNOS uncoupling  (29‑32). Chronic 
inflammation in adipose tissue can further 
perpetuate the vicious cycle of inflammation by 
promoting the infiltration of pro-inflammatory, 
ROS-producing macrophages (33, 34). 
Obesity also is associated with the depletion 
or decreased activity of antioxidant defense 
enzymes such as superoxide dismutase, 
catalase, and glutathione peroxidase (33, 35). 
Acute changes in ROS concentration are 
important for cellular homeostasis and normal 
physiological processes where the ROS 
contribute to protective immune responses 
and act as intracellular signaling molecules 
that can induce insulin secretion and insulin 
sensitivity  (36, 37). However, if not properly 
managed, ROS accumulation that exceeds 
the cellular antioxidant capacity may lead to 
maladaptive responses that result in metabolic 
dysfunction and inflammation (38, 39). 

3. OBESITY-INDUCED ADIPOSE TISSUE 
DYSFUNCTION AND METABOLIC 
DYSREGULATION

3.1. Impaired adipogenesis 
Adipose tissue expansion occurs 

through enlargement of existing adipocytes 
(hypertrophy) and/or through increased number 
of adipocytes (hyperplasia/adipogenesis). 
Adipogenesis occurs in two consecutive 
phases: first, mesenchymal stem cells commit 
to the formation of preadipocytes, which is then 
followed by terminal differentiation (40). The 
signaling mechanisms driving adipogenesis 
are not clearly understood. What is known is 

that the commitment step involves repression 
of zinc-finger protein 521 (ZNF521) and bone 
morphogenetic protein 4 (BMP4), which 
ultimately leads to the activation of ZNF423 
and its downstream target PPAR gamma. 
The process of adipogenesis also involves 
the sequential activation of several C/EBP 
transcription factors, C/EBP beta, sigma, and 
alpha. Activated PPAR gamma and C/EBP 
alpha then drive the terminal differentiation of 
preadipocytes (41-43). 

It has been suggested that a causal 
relationship exists between adipocyte size and 
the formation of new adipocytes. Individuals 
with large subcutaneous adipocytes have poor 
differentiation capacity, either due to elevated 
dedifferentiation signals or downregulation 
of differentiation factors, both of which are 
associated with a high risk of T2D  (44‑46). 
Hypertrophied adipocytes showed reduced 
potential to recruit mesenchymal stem cells 
and promote their terminal differentiation 
into new adipocytes, secondary to impaired 
PPAR gamma activation and adipocyte 
differentiation  (46, 47). Mature, healthy 
adipocytes secrete BMP4 during adipogenesis, 
causing mesenchymal stem cell commitment 
to an adipogenic phenotype. In an attempt 
to avoid dysregulation, hypertrophied 
adipocytes secrete higher levels of BMP4 to 
recruit preadipocytes. However, this process 
becomes futile due to increased secretion 
of endogenous BMP4 antagonist, Gremlin1. 
Inhibition of Gremlin1 has been shown 
to enhance the process of adipogenesis, 
restoring some of the buffering functionality of 
these adipocytes (48). 

3.2. Enhanced inflammatory response and 
disrupted adipokine profile 

Adipokines are cytokines secreted 
from adipose tissue that play an important 
role in maintaining energy homeostasis (49). 
Additionally, their immunomodulatory activities 
contribute to the chronic low-grade inflammation 
associated with obesity (50). During obesity, 
there is increased secretion of several pro-
inflammatory adipokines that occurs in tandem 
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with downregulation of anti-inflammatory 
adipokines (51). This adipokine imbalance 
is pivotal in the development of metabolic 
disorders and cardiovascular disease (52). 
Obesity disrupts adipose tissue homeostasis 
through deregulation of adipogenesis, reduced 
angiogenesis, and localized hypoxia, creating 
an environment of high cellular stress (53). 
Adipose tissue of obese subjects, primarily 
their VAT and to a lesser extent, their SAT, has 
been shown to sustain a state of chronic low-
grade inflammation, which has been linked 
to the development of insulin resistance (54). 
The physiological response to this elevated 
adipocyte stress is the release of inflammatory 
cytokines and chemokines, chiefly, monocyte 
chemoattractant protein-1 (MCP-1) and tumor 
necrosis factor-alpha (TNF-alpha), which 
recruit more inflammatory cells, thus further 
perpetuating the cycle of cellular stress, 
inflammation, and impaired macrophage 
emigration (55, 56). On the molecular level, 
hypertrophied adipocytes secrete saturated 
fatty acids which activate the toll-like receptor 
(TLR)-4 on macrophages. This TLR-4 
activation results in increased activity of the 
transcription factor, nuclear factor kappa 
-light-chain-enhancer of activated B cells 
(NF-kappaB), which upregulates expression 
of TNF-alpha (57, 58). TNF-alpha increases 
adipocyte lipolysis, producing more free fatty 
acids, and also promotes adipocyte expression 
of intracellular adhesion molecule-1 (ICAM-1) 
and MCP-1. These proteins recruit circulating 
inflammatory monocytes and promote their 
differentiation into macrophages, exacerbating 
inflammation. Hypertrophied adipocytes 
also express lower levels of adiponectin, 
an anti-inflammatory adipokine that inhibits 
TLR-activated NF-kappaB, allowing the 
expression of TNF-alpha to proceed relatively 
unhindered (59-61).

Adipose tissue macrophages 
represent about 40% of all adipose tissue cells 
during metabolic stress (62, 63). In healthy 
adipose tissue, the resident macrophages 
are primarily polarized towards the anti-
inflammatory, reparative M2 phenotype. These 

cells secrete anti-inflammatory cytokines, 
like IL-10, and perform immune surveillance 
and lipid buffering functions to maintain a 
state of insulin sensitivity (64, 65). However, 
under obese conditions, hypoxic adipocytes 
secrete chemotactic molecules to recruit 
inflammatory monocytes, activated T cells, 
and B cells. The presence of activated T cells 
coupled with the reduced number of regulatory 
T cells (Tregs), the immunosuppressive 
subpopulation of T cells that downregulate the 
activation and proliferation of effector T cells, 
leads to a phenotypic shift in the macrophage 
population towards the pro-inflammatory, M1 
phenotype (66). The M1 macrophages secrete 
mainly pro-inflammatory cytokines such as 
TNF-alpha and IL-6 (67). The degree of insulin 
resistance positively correlates with the amount 
of infiltrating M1-like macrophages in adipose 
tissue (68). It has been proposed that the key 
link between inflammatory stimuli and insulin 
resistance is the intracellular activation and 
nuclear translocation of NF-kappaB in response 
to increased pro-inflammatory stimuli (69). 
Anti-inflammatory drugs, such as salicylates, 
have been shown to inhibit NF-kappaB and 
improve insulin sensitivity in obese rodents 
and diabetic patients (70). In adipose tissue 
of obese mice, the c-Jun N-terminal kinase 
(JNK)–activator protein-1 (AP-1) pathway is 
activated. Activation of the JNK/AP-1 pathway 
results in phosphorylation of insulin receptor 
substrate-1 (IRS-1) at its negative regulatory 
site, preventing interaction with the insulin 
receptor and inhibiting the insulin signaling 
pathway (71). Our recent studies showed that 
systemic administration of an arginase inhibitor 
or deletion of endothelial arginase 1, an isoform 
of arginase that competes with eNOS for 
available L-arginine, protected mice against 
obesity-induced inflammatory responses, 
indicating protective functions of NO (72, 73). 
Another study showed that arginase 2 activity 
promoted a pro-inflammatory macrophage 
response through increased generation of 
mitochondrial oxidative stress. The formation 
of excess mitochondrial ROS contributed to 
the development of insulin resistance and 
atherosclerosis (74).
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3.3 Adipokines
Adipokines are a group of proteins 

composed of cytokines, chemokines, and 
hormones that are secreted from adipose tissue. 
They play important roles in the maintenance of 
energy homeostasis, appetite, glucose and lipid 
metabolism, insulin sensitivity, angiogenesis, 
immunity and inflammation, hemostasis, 
and blood pressure (75). Adipokines are 
classified as either pro-inflammatory or anti-
inflammatory. The former has been shown 
to be elevated at the expense of the latter in 
obesity. This adipokine imbalance is believed 
to be the link between obesity, metabolic 
disorders, and cardiovascular diseases. Pro-
inflammatory adipokines include leptin, resistin, 
TNF-alpha, retinol binding protein 4, lipocalin 2, 
angiopoietin-like protein 2, and visfatin. Anti-
inflammatory adipokines include adiponectin, 
omentin, and adipolin (51, 76).

3.3.1. Leptin
Leptin is considered a pro-inflammatory 

adipokine since it induces production of ROS, 
TNF-alpha, and IL-6 by macrophages and 
monocytes, which in turn initiate the production 
of more leptin (77). However, leptin has many 
beneficial roles outside of its inflammatory 
effects. Leptin is a 16 kDa adipokine produced 
primarily in adipocytes from the LEP gene, the 
human homologue of the murine obese (ob) 
gene (78). Leptin receptors are produced from 
the diabetes (db) gene (79). Leptin regulates 
appetite and food intake by communicating 
energy status to the central nervous 
system (80). Leptin enhances glucose utilization 
and insulin sensitivity under normal conditions 
and ameliorates hyperlipidemia as shown in 
both experimental and clinical studies (81, 82). 
In mouse models, severe obesity can be 
induced by mutations in either the ob or db 
genes  (78,  83). However, hyperleptinemia is 
common in clinical settings and administration 
of exogenous leptin does not result in weight 
loss, indicating that leptin resistance could 
be due to downregulation of its receptor or 
impairment of signal transduction  (84, 85). 
The form of leptin resistance seen primarily 
in obesity occurs through inhibition of JAK2/

STAT3 signaling, which is normally activated 
once leptin binds its receptor (86). Increased 
activity of the protein suppressor of cytokine 
signaling 3 (SOCS3) inhibits activation of the 
JAK/STAT3 pathway, reducing leptin signal 
transduction (87-89). 

The cardiovascular effects of leptin 
are controversial. Elevated leptin levels 
are associated with hypertension caused 
by chronic activation of the sympathetic 
nervous system  (90, 91). Additionally, studies 
that investigated the metabolic effects of 
insulin showed that prolonged exposure of 
rat adipocytes to high leptin concentrations 
(>1 nM), resulted in dose-dependent inhibition 
of insulin-stimulated glucose uptake, which 
was paralleled by decreased lipogenesis (92). 
Inhibition of insulin-stimulated glucose uptake 
and downregulation of lipogenesis are key 
events that can lead to the development of insulin 
resistance and cardiovascular dysfunction. 
Increased serum levels of leptin and arginase 
1 have been found in obese patients (93). In 
contrast, leptin-mediated vasodilatory effects 
from increased NO production are impaired 
under pathological conditions, including obesity 
and metabolic syndrome (94). Leptin-deficient 
mice showed significant elevation in arginase 
activity in wounded skin, which correlated with 
impaired skin repair, likely due to decreases 
in endothelial cell-derived NO needed for 
angiogenic repair and unchecked inflammatory 
responses (95). The impaired tissue repair 
in leptin-deficient mice was abolished with 
administration of exogenous leptin (96).

3.3.2. Resistin
Resistin is a pro-inflammatory 

adipokine produced primarily from adipocytes 
in rodents, and monocytes and macrophages in 
humans (97). Elevated serum levels of resistin 
are associated with metabolic disorders and 
diabetic microvascular complications mediated 
by endothelial dysfunction (98). Interestingly, 
obesity is still seen in resistin-deficient mice, 
despite improved glucose tolerance and insulin 
sensitivity (99). Pro-inflammatory cytokines 
such as IL-1, IL-6, and TNF-alpha induce 
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transcription of the resistin gene (RETN) in 
human mononuclear cells, which leads to 
the expression of more pro-inflammatory 
cytokines, resulting in the precipitation of 
inflammation (100). Resistin activates SOCS3, 
an inhibitor of the insulin signaling pathway, 
thereby inducing insulin resistance (101). 
In vivo supplementation of eNOS substrate, 
L-arginine, to mice fed a high-fat diet (HFD), 
enhanced insulin sensitivity without affecting 
resistin levels (102). Previous reports have 
shown that inflammatory stimuli produce high 
levels of iNOS-generated NO which promotes 
resistin expression, while iNOS inhibition 
reduces resistin expression, confirming the 
deleterious effect of high NO levels (103, 104). 

3.3.3. Tumor necrosis factor-alpha
Tumor Necrosis Factor-alpha (TNF-

alpha) is a pro-inflammatory cytokine, which in 
obesity, is heavily produced by monocytes and 
macrophages present in the stromal vascular 
fraction of adipose tissue. TNF-alpha levels 
have been found to positively correlate with 
obesity and T2D (54). TNF-alpha plays a central 
role in the development of insulin resistance and 
inflammation by inducing a repressive form of 
insulin receptor substrate-1 (IRS-1), effectively 
halting the insulin signaling pathway (105). 
Interestingly, short-term treatment (~4  weeks) 
with TNF-alpha blockers in obese diabetic 
patients and patients with metabolic syndrome 
reduced inflammatory responses, but did not 
improve insulin signaling suppression (54, 106). 
However, patients with metabolic syndrome 
that were treated with TNF-alpha blockers for 
a prolonged period (~6 months), showed lower 
fasting glucose levels, indicating improvement 
in insulin resistance and glucose uptake (107). 
In addition to its non-vascular effects, TNF-
alpha has been shown to induce impairment of 
NO-mediated vasodilation in the small arteries 
found in the visceral fat of obese patients (108). 
It also has been shown that TNF-alpha activity 
impairs NO-induced vascular endothelial 
vasorelaxation through upregulation of arginase 
1 expression/activity in ischemia-reperfusion 
injuries (109). In addition, TNF- alpha functions 
to reduce the levels of the anti-inflammatory 

adipokine, adiponectin, and increase the level 
of the pro-inflammatory adipokine, visfatin/
NAMPT (110).

3.3.4. Retinol binding protein 4 (RBP4)
Retinol binding protein 4 (RBP4) 

is a blood transporter for retinol (vitamin  A) 
secreted by the liver, adipose tissue, and 
macrophages  (111). RBP4 serum level 
positively correlates with metabolic disorders, 
obesity, insulin resistance, and pro-atherogenic 
conditions (112). RBP4 induces insulin resistance 
by preventing insulin-initiated phosphorylation 
of insulin receptor substrate 1 (IRS-1) (113). 
RBP4 levels can be used to determine the 
predisposition of patients to atherosclerosis 
due to its positive correlation with obesity and 
pro-atherogenic markers  (112). Mice lacking 
RBP4 exhibit reduced systolic blood pressure 
through enhanced eNOS phosphorylation and 
NO-mediated vasodilation (114). 

3.3.5. Lipocalin 2
Lipocalin 2 is a carrier of retinoids, 

arachidonic acid, steroids, leukotriene B4, 
and platelet activating factor. Lipocalin 2 
is produced primarily by adipocytes and 
macrophages upon activation of NF-kappaB. 
Elevated serum levels of lipocalin 2 positively 
correlate with metabolic disorders and 
inflammation (115, 116). Lipocalin-2 has been 
shown to cause M1 macrophage polarization 
while suppressing formation of the M2 
macrophage phenotype, thereby increasing 
expression of iNOS and decreasing arginase 
1 activity in macrophages  (117). Inhibition of 
iNOS, pharmacologically or via gene silencing, 
prevents IL-1beta and IFN-gamma-induced 
lipocalin 2 expression (118). Paradoxically, 
lipocalin 2 knockout mice showed increased 
body weight, adipose tissue weight, and insulin 
resistance compared to wild type mice (119). 
Also at odds with its association with metabolic 
disorders, lipocalin 2 was recently reported to 
interact synergistically with insulin and retinoic 
acid in the activation of beige adipocytes 
with a resultant thermogenesis (120). The 
mechanisms behind these apparent contrasting 
effects of lipocalin 2 have yet to be elucidated.
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3.3.6. Angiopoietin-like protein 2 
(ANGPTL2)

Angiopoietin-like protein 2 (ANGPTL2) 
is an adipokine produced mainly from 
adipocytes, macrophages, and endothelial 
cells and is involved in the development of 
insulin resistance and inflammation (121). 
Serum and adipose tissue levels of ANGPTL2 
positively correlate with metabolic disorders 
and inflammation (122). ANGPTL2 transgenic 
mice have been shown to have reduced eNOS 
expression, which is indicative of impaired 
NO-mediated vasorelaxation (123). This is in 
contrast to another study which showed that 
ANGPTL2 improves insulin sensitivity and lipid 
profile in genetically diabetic mice (124). The 
reasons for these differing effects of ANGPTL2 
activity have not been resolved.

3.3.7. Visfatin
Visfatin, also known as cytokine 

pre-B cell colony enhancing factor (PBEF), 
or nicotinamide phosphoribosyltransferase 
(NAMPT), is produced primarily in adipocytes 
and macrophages (125, 126). This adipokine 
was initially thought to have insulin-mimetic 
effects, but this response has not been 
observed in humans (125, 127). However, 
administration of visfatin has been shown 
to ameliorate glucose intolerance and 
improve hepatic insulin sensitivity (128). The 
controversy over visfatin function was highly 
debated but more recent data indicate that 
serum levels of visfatin are higher in obese 
and T2D patients. This study suggested that 
visfatin-induced the release of pro-inflammatory 
cytokines, like TNF-alpha, which contributed to 
the onset of insulin resistance (129, 130). This 
pro-inflammatory role is reported to involve 
activation of p38 mitogen-activated protein 
kinase (p38 MAPK) and extracellular signal-
regulated kinase (ERK) pathways (131). It 
also has been reported that circulating levels 
of visfatin are markedly elevated during 
atherosclerosis and that this increase was 
closely associated with decreased levels of 
L-arginine and NO, and increased levels of 
an endogenous inhibitor of NOS, asymmetric 
dimethylarginine (ADMA) (132).

The contrasting characterizations 
of visfatin as pro-inflammatory versus anti-
inflammatory may be due to the differences 
between the extracellular and intracellular 
actions of visfatin, and whether its function is 
mediated by enzyme activity or by activation 
of the unknown visfatin receptor  (126). 
Intracellular visfatin/NAMPT produces 
NAD+. NAD+ is essential for the activity 
of sirtuin1 (SIRT1), a protein and histone 
deacetylase, which exerts many beneficial 
effects on cellular metabolism and vascular 
function  (133). SIRT1 induces eNOS activity 
and NO production and thus improves 
cardiovascular function (134). 

3.3.8. Adiponectin
Adiponectin is an anti-inflammatory 

adipokine synthesized only by adipocytes. 
Compared to most other adipokines, the 
healthy plasma concentration of adiponectin 
is high (~3-30 μg/mL) (135-137). Adiponectin 
enhances insulin sensitivity by increasing 
glucose and fatty acid metabolism through the 
activation of AMP Kinase (AMPK) and PPAR 
alpha (138-140). Conditions that adversely 
affect adiponectin concentrations are hypoxia, 
pro-inflammatory cytokines, and oxidative 
stress (141). The plasma adiponectin levels 
in obese subjects negatively correlate with 
plasma lipid peroxidation, a marker of oxidative 
stress (33). Overexpression of adiponectin in 
ob/ob mice results in healthy adipogenesis with 
expansion of the subcutaneous adipose tissue 
and insulin sensitivity similar to that of lean 
mice (142). 

The effects of adiponectin on 
cellular metabolism and insulin sensitivity 
are important for the maintenance of good 
health (52). Adiponectin exerts an anti-
inflammatory effect by repressing TNF-alpha 
production and promoting eNOS activity (143). 
Moreover, adiponectin inhibits toll-like receptor-
induced activation of NF-kappaB and limits 
macrophage polarization to pro-inflammatory 
M1 macrophages, while simultaneously 
increasing the number of anti-inflammatory M2 
macrophages (144). 
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Adequate adiponectin levels are 
associated with proper eNOS function. eNOS-
deficient mice showed reduced adiponectin levels 
while mice overexpressing dimethylarginine 
dimethylaminohydrolase (DDAH), the 
enzyme responsible for the degradation of 
endogenous eNOS inhibitor, ADMA, showed 
higher adiponectin levels  (145,  146). In 
turn, adiponectin can enhance NO levels by 
increasing eNOS mRNA stability and eNOS 
phosphorylation (147, 148). Adiponectin has 
also been shown to impede NO degradation 
through suppression of superoxide anion 
formation (149). Additionally, global deletion of 
the mitochondrial arginase isoform, arginase 
2, induced a significant increase in adiponectin 
expression in epididymal adipose tissue with no 
significant effect on circulating adiponectin or 
hepatic levels, suggestive of a local autocrine 
effect (150). 

3.3.9. Omentin
Omentin is an anti-inflammatory 

adipokine produced in adipose tissue that 
exhibits insulin-sensitizing properties through 
activation of the Akt signaling pathway (151). 
It has been shown that circulating levels of 
omentin are decreased in obese patients with 
insulin resistance (152). Omentin expression 
in both visceral and subcutaneous adipose 
tissue was found to correlate positively with the 
expression of neuropeptide Y (NPY), the most 
potent appetite stimulating peptide, suggesting 
that omentin may play a role in appetite 
modulation (153, 154).

In addition, omentin has been 
associated with reduced inflammation, 
improved lipid metabolism and vasodilation, 
and a reduction in the development of 
obesity-related cardiovascular disease and 
atherosclerosis. Omentin induces adiponectin 
expression, resulting in improved fatty acid 
breakdown and increased insulin-mediated 
glucose uptake (155). Omentin also stimulates 
endothelial-derived NO production, resulting in 
vasorelaxation, maintained endothelial barrier 
function, and reduced inflammation (156, 157). 
In addition to its positive regulatory roles, 

omentin has been shown to suppress TNF-
alpha production (158). These various functions 
of omentin protect against atherosclerosis and 
obesity-related cardiovascular disorders.

3.3.10. Adipolin
Adipolin is an anti-inflammatory, 

insulin-sensitizing adipokine, primarily 
secreted from adipose tissue. Adipolin levels 
are reduced in obese mice and are negatively 
correlated with insulin resistance (159). Adipolin 
reduces inflammation through the inhibition of 
macrophage recruitment and secretion of pro-
inflammatory cytokines (160).

3.4. Premature cellular senescence in 
adipose tissue 

Cellular senescence is a state of 
irreversible replicative arrest that is associated 
with aging. It is initiated by a variety of factors 
including progressive telomere shortening 
through many cell cycles, buildup of reactive 
oxygen species (ROS), DNA damage, growth 
factors, and other metabolic and mitogenic 
stressors (161). This process is not only a stress 
response to severe cellular damage designed 
to protect against the proliferation of aberrant 
cells, but is also involved in development (162). 
The accumulation of these senescence-
inducing factors triggers the upregulation of 
cyclin-dependent kinase inhibitors, p16INK4a 
and p53/p21, which arrest the cell cycle (163). 
However, premature senescence has been 
observed in the preadipocytes and adipocytes 
of the visceral adipose tissue (VAT) of 
young obese humans and animals (164). 
This phenomenon is promoted by nutrient 
excess, which contributes to oxidative stress, 
adipose tissue metabolic dysregulation, and 
inflammation (33, 61, 65, 165).

The marked accumulation of senescent 
cells in the visceral adipose tissue of obese 
humans and animals, compared to their age-
matched counterparts, is correlated with 
compromised adipose tissue and mitochondrial 
function (166). The effect of obesity-
induced senescence is particularly evident 
in preadipocytes, where it contributes to the 
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reduction of adipogenesis and lipogenesis, 
leading to lipotoxicity and inflammation (167). 
Although senescent cells cannot divide, 
they remain metabolically active. Especially 
in the VAT, senescent cells readily produce 
and release pro-inflammatory cytokines, 
chemokines, and growth factors. This process, 
which has been termed the senescence-
associated secretory phenotype (SASP), 
enhances inflammation and adipose tissue 
dysfunction (166). The SASP release of MCP-1 
further exacerbates the inflammatory state 
by promoting pro-inflammatory macrophage 
infiltration (168, 169). Additionally, the 
accumulation of senescent cells in the VAT can 
induce senescence in neighboring cells in a 
feed-forward mechanism (161). 

In addition to the deleterious effects of 
obesity-induced preadipocyte and adipocyte 
senescence, senescence in VAT endothelial 
cells (EC) also plays a key role in VAT 
dysfunction (170). The process of transporting 
fatty acids (FAs) into adipocytes requires the 
microvascular endothelium. Senescence in 
these VAT EC has been reported to block 
fatty acid transport into adipocytes by a 
mechanism involving reduced PPAR gamma 
expression and activity (171, 172). The failure 
of adipocytes to take up free FAs results in 
their inability to store FAs in the VAT, leading to 
ectopic fat deposition and toxicity in the skeletal 
muscle and liver. Endothelial cells from the VAT 
of obese subjects also have been shown to 
exhibit the SASP, possessing inflammatory and 
angiogenic secretory profiles (170). 

Another cell type found in VAT that 
can be forced into senescence by overnutrition 
are T cells. T cell senescence has also been 
noted in the VAT of diet-induced obese 
mice. These senescent CD4+-associated T 
cells appear to enhance the inflammatory 
environment in obese VAT by releasing large 
amounts of osteopontin  (173). Osteopontin, 
an inflammatory cytokine, has been reported 
to be elevated in the blood of obese diabetic 
and insulin-resistant patients. This is 
correlated with the severity of coronary artery 

disease, and plays a causative role in VAT 
inflammation, macrophage infiltration, and 
insulin resistance (174, 175). 

4. IMPAIRED GLUCOSE METABOLISM 
AND INSULIN SENSITIVITY

The metabolic effects of insulin are 
mediated through a signal cascade initiated 
by the binding of insulin to its receptor 
(INSR) (Figure 2). Insulin binding triggers 
a conformational change in the receptor, 
leading to activation of the tyrosine kinase 
domain through autophosphorylation (176). 
The activated receptor phosphorylates insulin 
receptor substrates (IRSs), which in turn, 
bind phosphoinositide 3’ kinase (PI3K). PI3K-
IRS-1 phosphorylates its plasma membrane-
bound substrate, phosphatidylinositol 
(3,4)-bisphosphate (PIP2) forming 
secondary messenger, phosphatidylinositol 
(3,4,5)-triphosphate (PIP3). PIP3 is required 
for the activation of protein kinase B (PBK 
or Akt), which once activated, mediates the 
translocation of glucose transporter 4 (GLUT4) 
to the plasma membrane (176). In addition to 
promoting cellular glucose uptake, insulin also 
increases the expression of transcription factor 
adipocyte determination and differentiation-
dependent factor 1 (ADD1). ADD1 upregulates 
expression of two genes: fatty acid synthase 
(FAS), an enzyme critical in lipogenesis, 
and leptin, which is responsible for appetite 
suppression (177). 

Obesity is associated with a decrease 
in insulin-dependent GLUT4 expression and 
membrane translocation, which results in 
reduced glucose uptake and the subsequent 
development of hyperglycemia (178-180). 
The mechanism for the development of insulin 
resistance is not fully understood, but it is 
postulated that insulin resistance manifests 
as a defensive response from hypertrophied 
adipocytes (181). The onset of insulin 
resistance is an initial step in the development 
of T2D (181). Cell starvation from the lack of 
intracellular glucose results in an increase 
in pancreatic insulin secretion, triggered by 
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increased fat metabolism and the production 
of ketones (182, 183). This increase in insulin 
results in hyperinsulinemia because the 
insulin receptors no longer respond properly 
to insulin  levels. Sustained, elevated insulin 
release leads to dysfunction in its production 
and pancreatic beta-cell failure, with ensuing 
hypoinsulinemia and hyperglycemia (184).

Many factors are associated with the 
development of insulin resistance in obesity 
including adipocyte dysfunction, elevated 
oxidative stress, and high levels of NO produced 
by iNOS. Adipocyte hypertrophy occurs as a 
buffering response to chronic overnutrition that 
protects other tissues from lipotoxicity (185). 
The development of adipocyte hypertrophy 
has systemic deleterious effects, in addition 
to promoting adipocyte dysfunction. In fact, 

genetic deletion of GLUT4 from adipose tissue 
resulted in systemic insulin resistance similar 
to that seen with the same deletion in skeletal 
muscle, tissue crucial for glucose uptake. In 
obese women, adipose tissue expression of 
GLUT4 and IRS-1 were found to be significantly 
reduced, indicating that obesity-induced 
adipocyte hypertrophy is linked to development 
of insulin resistance (186). This decrease 
in GLUT4 expression in subcutaneous 
adipocytes was also seen in patients who 
developed T2D (187). Obesity has also been 
shown to induce systemic and local oxidative 
stress, which is suggested to be critical in 
the pathogenesis of metabolic syndrome. 
Reactive oxygen species (ROS) are produced 
from many sources in response to the increase 
in fatty acids present in visceral adipose tissue 
under obese conditions (33, 188). A transient 

Figure 2. Insulin signaling pathway. Insulin binds to the inactive insulin receptor (INSR) and elicits a conformational change. This allows IRS-1 
to bind to the intracellular domain of the INSR, where it is phosphorylated and subsequently able to bind to p85, the regulatory domain of 
PI3K. The binding of the p85 domain in PI3K activates its kinase domain, p110, which phosphorylates PIP2, producing PIP3. PIP3 is bound by 
phosphoinositide-dependent kinase-1 (PDPK1), which activates Akt through phosphorylation. Activated Akt acts through a signaling cascade 
to promote GLUT4 translocation to the plasma membrane to facilitate glucose uptake.
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increase of intracellular ROS is essential for 
insulin signaling and glucose uptake. However, 
chronic elevation of intracellular ROS induces 
insulin resistance through suppression of the 
insulin signaling pathway (33, 178-180, 189). 
Another mechanism that contributes to 
the pathogenesis of insulin resistance is 
abnormal eNOS and iNOS activity. Insulin-
stimulated glucose uptake in adipose tissue 
and skeletal muscle is NO-dependent, and 
these physiological levels of NO are produced 
by constitutively active eNOS  (190,  191). 
In obesity, proper eNOS function is 
compromised  (192). Mice fed a high-fat diet 
(HFD) become obese, but supplementation with 
L-arginine, the substrate for eNOS, increased 
NO production and improved their insulin 
sensitivity (102). Inducible NOS (iNOS) has a 
pro-inflammatory role in the immune response 
and is upregulated in obesity, diminishing 
insulin sensitivity (193). Interestingly, inhibition 
of all NOS isoforms restored adipocyte insulin 
sensitivity, suggesting that inhibition of the 
detrimental iNOS activity is more important 
than the beneficial, constitutive activity of 
eNOS in regards to the maintenance of the 
homeostatic insulin response (103, 194, 195). 
These compounding effects promoted in 
obesity contribute to the type 2 diabetic state 
consisting of impaired glucose metabolism and 
insulin resistance. 

5. IMPAIRED PROTEIN AND MUSCLE 
METABOLISM

In contrast to the increased adiposity 
seen in obesity and T2D, muscle mass in these 
conditions decreases due to impaired protein 
synthesis and increased muscle degradation in 
a process known as sarcopenia. The process of 
sarcopenia is accelerated with aging. In healthy 
subjects, insulin stimulates protein anabolism 
by simultaneously promoting protein synthesis 
and reducing protein catabolism  (196). A 
large survey reported an inverse relationship 
between the skeletal muscle (SM) index 
(ratio of SM mass to body weight) and insulin 
resistance, indicating that patients with insulin 
resistance were likely to have increased 

muscle atrophy  (197). Furthermore, muscle 
from obese and/or T2D patients has been 
found to exhibit increased levels of myostatin, 
a hormone known to reduce skeletal muscle 
mass (198, 199). Additionally, obese women 
have been shown to display more resistance 
to insulin-stimulated protein anabolism than 
lean women (200). Ectopic fat deposition in 
the skeletal muscle, or myosteatosis, has 
been shown to contribute to impaired protein 
anabolism and muscle function (201, 202). 
Diets high in protein and essential branched-
chain amino acids (BCAA - leucine, isoleucine 
and valine) are very important for promotion 
of protein anabolism and the maintenance of 
muscle mass (203). Activation of mammalian 
target of rapamycin complex 1 (mTORC1) is 
believed to be centrally involved in this process.

Adipocytes also catabolize BCAAs 
to produce precursors required for fatty acid 
and sterol biosynthesis. This catabolic process 
increases dramatically with adipogenesis 
indicating that homeostasis of protein 
metabolism is distorted in obesity (204). Mice 
deficient in the enzyme responsible for BCAA 
catabolism showed decreased adiposity 
despite higher food intake and enhanced 
energy expenditure (205). Mice fed a leucine-
deficient diet showed reduced adipose tissue 
weight and lipogenesis, with enhanced lipolysis 
and energy expenditure (206). 

6. IMPAIRED LIPID METABOLISM

One of the primary functions of 
adipocytes is the storage of lipids in the form of 
triacylglycerol (TAG), which constitutes about 
90% of adipocyte volume. The effect of insulin 
on lipid metabolism is highly coordinated. It 
simultaneously stimulates fatty acid anabolism 
(lipogenesis) through upregulation of lipogenic 
enzymes like acetyl-CoA carboxylase (ACC) 
and fatty acid synthase (FAS), while preventing 
lipid catabolism (lipolysis) by inhibiting the 
phosphorylation and activation of hormone-
sensitive lipase (HSL) (207-209). In obesity, 
adipocytes are abnormally enlarged and 
the usually, tightly regulated effects of 
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insulin on lipid metabolism are lost. Basal 
lipolysis is increased in obesity, resulting in 
hyperlipidemia due to increased secretion of 
lipolytic adipokines, serum amyloid A (SAA), 
IL-6, and TNF-alpha, from the hypertrophied 
adipocytes  (210, 211). Concurrently, these 
dysfunctional adipocytes exhibit lower rates of 
lipogenesis as the rates of lipolysis increase, 
a phenotype commonly seen in insulin 
resistance (212). During obesity, the increased 
levels of free fatty acids and cholesterol result 
in myosteatosis and hepatosteatosis, or the 
build of ectopic lipid deposits in the skeletal 
muscle and liver (213-215). 

Lipoprotein lipase (LPL) is an enzyme 
critical for the hydrolysis of TAG in circulating 
chylomicrons and very low-density lipoproteins 
(VLDL). LPL hydrolyzes TAG into two free 
fatty acids and one monoacylglycerol  (216). 
LPL is expressed in adipocytes and 
subsequently transported to the capillary 
endothelium (217, 218). In adipose tissue, LPL 
influences fatty acid (FA) uptake for lipid storage 
and in skeletal and cardiac muscle, LPL induces 
FA uptake to provide these energetically-active 
cells with fuel (219, 220). Previous studies in 
mice on a high-fat diet (HFD) have shown that 
the skeletal muscle-specific deletion of LPL 
reduced lipid deposition and increased insulin 
sensitivity in the muscles (221, 222). This result 
indicates that LPL-induced uptake of fatty acids 
in skeletal muscle is detrimental in obesity due 
to the extreme excess of circulating lipids. When 
transgenic mice, overexpressing LPL in their 
adipose tissue, were challenged with a HFD, 
they exhibited elevated adiponectin levels, 
improved glucose and insulin tolerance, and 
increased energy expenditure when compared 
to control mice on the same diet (223). The 
positive, anti-inflammatory effect of LPL seen 
in adipocytes was suppressed in cultured 
adipocytes treated with TNF-alpha due to the 
activation of inducible nitric oxide synthase 
(iNOS), which produced toxic levels of nitric 
oxide (224). Other in vitro studies demonstrated 
that both a NO-releasing compound and the 
NOS substrate (hydroxylamine and L-arginine, 
respectively) increased LPL activity as 

seen by adipocyte differentiation and lipid 
accumulation  (225). These data indicate 
that the toxic levels of NO from iNOS have 
a deleterious effect on LPL function, while 
moderate levels of NO promote LPL activity. 

In addition to LPL dysfunction, 
mitochondrial lipid metabolism also is 
adversely affected by obesity. In lean 
conditions, fatty acids are internalized and 
transported into mitochondria, where they 
undergo beta-oxidation to produce acetyl-
CoA. Acetyl-CoA is subsequently shuttled 
into the citric acid cycle to produce energy for 
the cell. In obesity, the mitochondria in white 
adipose tissue are inundated with excess 
lipids and incomplete beta-oxidation occurs. 
Incomplete beta-oxidation coupled with lipid 
overloading results in accumulation of toxic 
lipid intermediates and ROS, which promote 
insulin resistance (226, 227). 

7. ROLE OF MITOCHONDRIAL 
DYSFUNCTION AND ER STRESS IN 
OBESITY

Mitochondria are dynamic organelles, 
critical for the maintenance of energy 
homeostasis. The mitochondria produce ATP, 
a form of cellular energy currency, through a 
sequence of processes that terminate with 
the electron transport chain (ETC): the citric 
acid cycle (CAC), pyruvate decarboxylation, 
fatty acid beta-oxidation, branched chain 
amino acid degradation, and oxidative 
phosphorylation  (228). Mitochondria also 
internalize Ca2+, an important physiological 
process that influences mitochondria 
metabolism, intracellular Ca2+ signaling, and 
under conditions of oxidative stress, this uptake 
leads to initiation of apoptosis, or programmed 
cell death (229). 

7.1. Mitochondrial dysfunction 
In response to increased energy 

expenditure, healthy cells undergo 
mitochondrial biogenesis, a process where 
cells increase their mitochondrial mass in order 
to increase their individual ATP production. 
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Mitochondrial biogenesis is closely associated 
with the process of adipogenesis, indicating 
the importance of mitochondria to healthy 
adipocyte physiology and function (230-234). 
In adipose tissue, eNOS-produced NO plays 
an important role in mitochondrial biogenesis 
by increasing oxygen consumption and energy 
expenditure, inducing gene expression, and 
promoting protein kinase G (PKG)-dependent 
phosphorylation of AMP-activated protein 
kinase (AMPK) (20, 235). Activation of AMPK 
promotes expression of PPAR gamma 
coactivator 1 alpha (PGC-1 alpha), leading to 
increased expression of PPAR gamma, a protein 
that upregulates adipogenesis (236, 237). 

Mitochondrial dysfunction, a process 
defined by poor ATP production, often occurs 
in obesity. There is still some debate on 
whether mitochondrial dysfunction is a cause 
or consequence of obesity and overnutrition. 
However, there have been data revealing that an 
excess of nutrients, as seen in obesity and type 
2 diabetes, overwhelms the handling capacity 
of the mitochondrial metabolic processes, 
resulting in mitochondrial dysfunction (238). 
In the mouse preadipocyte cell line, 3T3-L1, 
mitochondrial dysfunction was manifested as 
reduced fatty acid oxidation, which resulted 
in TAG accumulation and increased glucose 
uptake, that latter of which is suggested to 
increase glycerol 3-phosphate synthesis, 
leading to further lipid accumulation. Increased 
lipid accumulation in adipocytes leads to 
the eventual loss of the lipotoxicity buffering 
capacity of these cells. The excess free fatty 
acids are released into the bloodstream resulting 
in ectopic fat deposition, which is believed to 
be the underlying cause of the development of 
insulin resistance in obesity (239). 

In addition to the adverse effects 
seen from systemic lipid inundation and 
the subsequent steatosis, mitochondrial 
dysfunction also results in increased ROS 
production, as seen in both clinical and 
experimental studies  (240, 241). The electron 
transport chain (ETC), primarily complexes I, II, 
and III, are considered to be major sources of 

ROS generation due to the capacity for electron 
leakage (242‑244). Electron leakage directly 
correlates with mitochondrial membrane 
potential (245). Activation of the uncoupler 
protein (UCP) by ROS serves as a feedback 
mechanism to lower membrane potential (246). 
These detrimental by-products of metabolism 
can induce metabolic dysfunction, inflammation 
(through upregulation of TNF-alpha), tissue 
damage, and the development of insulin 
resistance (38, 39). ROS have also been shown 
to increase expression of activating transcription 
factor 3 (ATF-3), a protein responsible for the 
downregulation of adiponectin expression (33). 
Though adipocytes, unlike other cell types, 
can endure high levels of ROS without 
sustaining substantial damage, chronic 
ROS elevation is detrimental and decreases 
adiponectin expression (247). In contrast, 
increased mitochondrial biogenesis has 
been correlated with increased adiponectin 
levels, reduced oxidative stress, improved 
mitochondrial function, and increased insulin 
sensitivity (33, 248).

These findings suggest an important 
link between oxidative stress, mitochondrial 
dysfunction, and metabolic dysregulation 
during obesity. Thus, further investigation is 
warranted to combat obesity and obesity-
related dysregulations by targeting any or all of 
these disorders.

Paradoxically, mild mitochondrial 
dysfunction, in the absence of oxidative stress, 
protects against obesity as seen in mice with 
a fat-specific deletion of the mitochondrial 
transcription factor A (TFAM). These mice 
exhibited decreased mitochondrial DNA 
(mtDNA) copy number and altered expression 
of ETC proteins, with decreased expression 
of complex I, the main site of superoxide 
formation in the ETC (249). These mice 
also exhibited a compensatory increase in 
complex II, which resulted in increased oxygen 
consumption, uncoupling, and decreased ROS 
production (250). The overall effect of the fat-
specific deletion of TFAM in mice challenged 
with a HFD was higher energy expenditure and 
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protection from diet-induced obesity, insulin 
resistance, and steatosis (250). 

7.2. Compromised mitochondrial dynamics 
Mitochondria are highly dynamic 

organelles, exhibiting fission, fusion, and 
mitophagy. Mitochondrial fusion is the process 
by which two mitochondria physically merge 
their inner and outer membranes to form a larger, 
mitochondrion (251). This process is controlled 
by several proteins, including the dynamin-
related GTPases, mitofusin-1 and mitofusin-2 
(MFN-1 and MFN-2), and optic atrophy protein 1 
(OPA-1), the former are responsible for the outer 
mitochondrial membrane fusion and the latter is 
required for the fusion of the inner mitochondrial 
membranes  (252). Mitochondrial fission is the 
opposite of fusion, and is where a mitochondrion 
divides to form two mitochondria (251). Fission 
is controlled by dynamin-related protein 1 
(DRP1), a protein recruited from the cytosol 
to the mitochondrion where it can then bind its 
receptors, fission 1 (FIS1) and mitochondrial 
fission factor (MFF)  (253). The processes of 
fusion and fission occur cyclically. Fusion allows 
two mitochondria to mix their components 
and is typically followed within minutes by 
fission, which returns the fused mitochondria 
back into two distinct organelles (254). This 
dynamic process of mitochondrial fusion and 
fission in healthy cells is believed to be critical 
for cell health and aberrant function of this 
process is associated with several disease 
states  (255,  256). Mitochondria with high 
membrane potential will continue the fission/
fusion cycle while those with a low potential 
will remain depolarized until recovery  (254). A 
continuous, but precisely controlled, cycle of 
fission and fusion is important for the proper 
distribution of mitochondria throughout the 
cell, repair of damaged mitochondria, and for 
mitochondrial quality control (256). Mitochondria 
that are damaged/ depolarized and unable 
to recover, do not undergo fusion and are not 
incorporated into the healthy mitochondrial 
network (257). They form autophagosomes 
that eventually undergo mitophagy (258). 
Mitophagy is a catabolic process in which 
damaged mitochondria are degraded by 

lysosomes  (258). This process is initiated by 
PARKIN and (PTEN)-induced putative kinase 
1 (PINK1), which induce ubiquitination and 
degradation  of  fusion‑promoting proteins 
MFN-1 and 2 (259). 

Mitochondrial dynamics represent 
cellular adaptation to fluctuations in metabolic 
demand. Increased energy demand and 
decreased supply of nutrients are both 
associated with inhibition of mitochondrial 
fission and the promotion of fusion, or 
increased mitochondrial elongation, which 
allows respiration to be coupled to ATP 
synthesis (260). During conditions of increased 
energy expenditure, expression of MFN-2 
is increased in skeletal muscles and brown 
adipose tissue (261, 262). Moreover, exercise 
improves insulin sensitivity in skeletal muscles 
of insulin resistant patients and is associated 
with decreased DRP1 and increased MFN-1 
and MFN-2 expression (263). On the flipside, 
mitochondrial fragmentation and uncoupled 
respiration predominate under conditions of 
excess nutrient supply, where the promotion of 
thermogenesis is necessary to dispose of the 
caloric excess (264). Increased DRP1 activity in 
brown adipocytes is associated with increased 
levels of uncoupling protein-1 (UCP-1) (265). 
In fact, brown/beige adipocytes rely greatly 
on fission to enhance the uncoupling process, 
allowing for increased oxygen consumption. 
Though mitochondrial fission is considered to 
be a physiological adaptation to bioenergetic 
stressors rather than a harmful process, 
excessive mitochondrial fission events can be 
deleterious for the cell (264). 

Disruption of the tightly regulated 
mitochondrial dynamics is associated with 
metabolic disorders and insulin resistance seen 
in diabetic and obese patients (264). One study 
showed that mice lacking DRP1 or MFN-1 in 
the liver were resistant to high-fat diet-induced 
obesity and insulin resistance  (266). Another 
study reported that increased hepatic levels 
of PINK1, a protein that promotes mitophagy, 
were positively correlated with increased 
insulin sensitivity. This effect is likely due 
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to successful degradation of dysfunctional 
mitochondria, which can produce elevated 
levels of ROS  (267‑269). In pancreatic beta-
cells, exposure to hyperglycemia and high 
levels of palmitate (obese conditions) resulted 
in reduced mitochondrial fusion (270). This 
environment also caused the same effect 
in leukocytes, which led to their enhanced 
adhesion to endothelial cells and subsequent 
inflammation (271). Skeletal muscle of 
Zucker obese rats showed decreased 
mitochondrial size, mitochondrial volume/unit 
of mitochondrial surface ratio, and MFN-2 
expression (272). MFN-2 expression was 
found to be downregulated in human obese 
and type 2 diabetic patients (273, 274). MFN-
2-deficient mice exhibited impaired insulin 
signaling in the liver and muscle, and increased 
ER stress through a mechanism involving 
increased ROS and JNK activation  (272). 
Additionally, adipocyte-specific deletion of 
MFN-2, but not MFN-1, was associated 
with brown adipose tissue dysfunction and 
impaired lipid metabolism (275). Given the 
importance of proper mitochondrial dynamics 
in the maintenance of cell health and insulin 
sensitivity, the mitochondrial fission/fusion cycle 
is a promising therapeutic target for combating 
metabolic disorders (276).

7.3. Endoplasmic reticulum stress 
The endoplasmic reticulum (ER) 

is the organelle where protein synthesis, 
folding, and maturation occurs (277, 278). 
Accumulation of misfolded proteins in the ER 
lumen is problematic and can eventually lead 
to cell death. During ER stress, mammalian 
cells trigger the unfolded protein response 
(UPR), a highly conservative response system 
intended to rectify the aggregation of misfolded 
proteins in the ER (279). The UPR begins with 
the activation of signaling pathways involved 
in either suppression of protein translation, to 
prevent more proteins from being misfolded, 
or the upregulation of chaperone protein 
expression, to coordinate and regulate proper 
protein folding (280-282). Hypoxia and ROS 
can increase the production of free fatty acids 
in adipocytes, oxidize proteins, and decrease 

calcium levels in ER lumen; all processes that 
impair ER protein folding in adipocytes and 
lead to ER stress (33, 283-286). Inflammatory 
cytokines also trigger ER stress by promoting 
ROS formation, or by increasing iNOS activity 
to pathological levels, which impedes the 
function of the ER Ca2+ pump (281, 287-289). 
Indicators of ER stress have been shown to be 
elevated in adipose tissue of obese mice and 
humans (290, 291). Administration of chemical 
chaperones that block ER stress, like 4-PBA, 
to mice on a high-fat diet (HFD), reduced 
adipose tissue inflammation, increased insulin 
sensitivity, and suppressed HFD-induced 
weight gain (292). Additionally, weight loss has 
been shown to be associated with reduced 
expression of ER stress markers (293). 

In addition to triggering the unfolded 
protein response, ER stress has been shown 
to disrupt lipid metabolism. This mechanism 
involves activation of sterol regulatory element-
binding protein (SREBP), which induces 
transcription of fatty acid synthase (FAS) and 
3-hydroxy-3-methylglutaryl-CoA reductase 
(HMG-COA), genes involved in lipid and 
cholesterol synthesis, respectively. Upregulation 
of these genes leads to excessive lipid 
production, resulting in fatty acid accumulation 
in the liver (294). Interestingly, deletion of ER 
stress sensor inositol-requiring enzyme 1 
alpha (IRE1 alpha) in mouse adipose tissue 
macrophages halted the progression of obesity, 
insulin resistance, and hepatic steatosis when 
the mice were challenged with a HFD (295). This 
mutation also increased energy expenditure by 
inducing the browning of white adipose tissue, 
increased the metabolic activity of brown adipose 
tissue, and promoted macrophage polarization 
to the anti-inflammatory, M2 phenotype (295). 
Prevention of ER stress activation may be an 
effective therapeutic strategy for the treatment 
of metabolic syndrome (294).

8. NITRIC OXIDE SYNTHASE (NOS) 
DYSFUNCTIONS

Nitric oxide (NO) is well known for its 
vasodilatory, anti-thrombotic, anti-proliferative, 
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and anti-inflammatory effect in the 
vasculature  (296-299). NO production and 
effects occur in a variety of cells and tissues. 
NO is produced from L-arginine by endothelial, 
neuronal, and inducible NO synthase (eNOS, 
nNOS, and iNOS). NO triggers a signal 
cascade by binding soluble guanylate cyclase 
(sGC), initiating the conversion of guanosine 
5’-triphosphate (GTP) to the secondary 
messenger, cyclic 3’,5’-monophosphate 
(cGMP) (300). cGMP activates cGMP-
dependent protein kinase (PKG) which then 
phosphorylates target proteins involved in 
mediating the vasodilatory response (301). 

Adipose tissue (AT) from mice 
lacking eNOS (eNOS-/-) was reported to 
exhibit increased pro-inflammatory gene 
expression and macrophages, in addition to 
increased ROS and decreased mitochondrial 
biogenesis and adiponectin levels (146, 299). 
In contrast to these findings, another study 
reported that the lack of eNOS in mice did 
not promote AT inflammation (302). Use of 
a phosphodiesterase-5 (PDE5) inhibitor, 
such as sildenafil, blunted obesity-induced 
adipose tissue inflammation and macrophage 
infiltration, through the prevention of PDE5-
mediated cGMP degradation (299). PDE5 
inhibition resulted in enhanced NO-cGMP-
PKG signaling, promotion of vasorelaxation, 
increased energy expenditure, and elevated 
insulin sensitivity (303). Other studies have 
demonstrated that eNOS expression and 
activity are tightly regulated in adipose tissue 
and muscle, and that eNOS is necessary for 
caloric restriction-induced upregulation of 
SIRT1, a protein involved in promotion of 
insulin sensitivity and amplification of eNOS 
activity (235, 304, 305). Further, eNOS-/- mice 
failed to exhibit the beneficial effects of swim 
training-induced increases in mitochondrial 
biogenesis, mtDNA copy number, and glucose 
uptake in the subcutaneous adipose tissue as 
compared with wild-type mice. In the same 
study, the NO donor, DETA-NO, was found to 
promote mitochondrial biogenesis, glucose 
uptake, and increased GLUT4 membrane 
density in cultured murine and human 

adipocytes (306). These results indicate that 
physiological levels of NO play a pivotal role 
in maintaining healthy metabolic function of 
adipose tissue.

Data from both human and animal 
studies have shown reduced expression and 
activity of eNOS and NO production under obese 
conditions (307-310). Suggested mechanisms 
for decreased NO levels include upregulation 
of cell membrane caveolin1 (CAV1), a negative 
regulator of eNOS activity, and increased 
levels of ceramide, a disruptor of the eNOS/
Akt/HSP-90 complex (311, 312). However, a 
mechanism involved in the obesity-induced 
reduction of eNOS-produced NO supported 
by substantial evidence is the elevation of 
arginase expression/activity. Arginase is an 
enzyme that competes with NOS for their 
common substrate, L-arginine (313). Reduced 
availability of L-arginine leads to decreased 
NO production and NOS uncoupling. NOS 
uncoupling results in production of the ROS 
superoxide (O2

-), which can subsequently 
react with NO to form peroxynitrite (ONOO-), 
another toxic oxidative species (313). Several 
studies that used HFD and rodent models of 
obesity have shown prominent involvement of 
arginase in both visceral adipose inflammation 
and vascular dysfunction and inflammation 
through genetic deletion of arginase or use of 
arginase inhibitors (14, 73, 314). Our lab also 
found that mice specifically lacking arginase 1 
in endothelial cells were protected from high-
fat diet-induced systemic vascular dysfunction, 
hypertension, reduced vascular NO, elevated 
ROS levels, adipose tissue inflammation, 
fibrosis, and reduced vascularity (73, 313). 

NO from endothelial or neuronal NOS 
at low to moderate concentrations stimulates 
glucose and fatty acid oxidation and inhibits 
synthesis of glucose, triacylglycerol, and 
low-density lipoproteins. These beneficial 
effects are linked to increased mitochondrial 
biogenesis and oxidative phosphorylation, 
as well as development and activity of 
brown adipose tissue  (16). NOS function in 
mitochondria, along with cytoplasmic NO 
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Table 1. Therapeutic interventions applied to obesity models and the observed effects
Intervention Model Effect

Treatment with arginase inhibitor, 
Nω‑hydroxy‑nor‑L‑arginine (nor‑NOHA)

C57BL/6 mice fed high‑fat 
diet (HFD)

Prevented HFD‑induced increases in body weight, 
hepatic metabolic abnormalities (323), endothelial 
dysfunction (324) and adipose tissue inflammation (314).

Zucker obese rats Prevented obesity‑induced hypertension and endothelial 
dysfunction (318).

Treatment with arginase inhibitor, 
S‑(2‑boronoethyl)‑L‑cysteine (BEC)

Zucker obese rats Prevented obesity‑induced hypertension and endothelial 
dysfunction (318).

Treatment with arginase inhibitor, 
2‑(S)‑amino‑6‑boronohexanoic 
acid (ABH)

C57BL/6 mice fed high‑fat 
diet (HFD)

Prevented obesity‑induced bone loss (325), endothelial 
dysfunction, hypertension (73) and visceral adipose 
tissue (VAT) inflammation (14). No effect on body weight.

Endothelial specific Arginase 1 
knockout (eNOS‑/‑)

C57BL/6 mice fed high‑fat 
diet (HFD)

Prevented obesity‑induced endothelial dysfunction, 
hypertension (73) and visceral adipose tissue (VAT) 
inflammation (14). There was no effect on body weight. 

Global deletion of Arginase 2° C57BL/6 mice fed high‑fat 
diet (HFD)

Prevented obesity‑induced renal oxidative stress and 
inflammation (326), endothelial dysfunction (327), 
hepatic steatosis (150), insulin resistance, adipose tissue 
inflammation (74), and pancreatic ductal adenocarcinoma 
growth (328).

Supplement with sepiapterin 
and L‑citrulline; precursor of 
BH4 (tetrahydrobiopterin) and substrate 
for L‑arginine synthesis, respectively

Db/db mice Prevented cardiomyopathy in obese T2D mice (329).

L‑arginine supplementation (potential 
mechanism of increased NO availability)

Zucker obese rats Anti‑inflammatory effects in obese rats (330) and 
decreased macrophage inflammatory response (331).

  Prevented obesity‑induced hypertension and endothelial 
dysfunction (318). 

Healthy patients with metabolic 
syndrome 

Improved endothelial function and glucose metabolism in 
metabolic syndrome patients (332).

C57BL/6 mice fed high‑fat 
diet (HFD)

Anti‑obesity effects, reduced white fat mass and plasma 
lipids, increased skeletal muscle and brown fat, insulin 
sensitivity, and increased energy expenditure (321, 333).

Sodium nitrite treatment Streptozotocin (STZ)‑induced 
diabetic rats fed HFD 

Decreased body weight and induction of white adipose 
tissue browning (334).

Global iNOS‑/‑ knockout Ob/ob obese mice given high dose 
of insulin via implanted insulin pump 

Prevented hyperinsulinemia‑induced inflammation, fibrosis 
and insulin resistance in adipose tissue (335, 336).

Phosphodiesterase‑5 
inhibitor (Sildenafil)

C57BL/6 mice fed high‑fat 
diet (HFD)

Long term treatment (12 weeks): anti‑obesity and insulin 
sensitizing (337).

C57BL/6 mice Short term (7 days): browning of white adipose tissue (338).

Global iNOS‑/‑ knockout mice Model of metabolic syndrome ‑ 
Isolated muscle mitochondria 

Lower metabolic activity, reduced mitochondrial density 
and muscle fatty acid oxidation (339).

Global iNOS‑/‑ knockout mice 
supplemented with sodium nitrate

Model of metabolic syndrome Reduced visceral fat mass, circulating triglyceride and 
glucose levels (340). 

eNOS transgenic mice C57BL/6 mice fed high‑fat 
diet (HFD)

Enhanced fatty acid oxidation in adipose tissue, resistant to 

diet induced obesity without affecting insulin resistance (20).
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production, have been shown to induce 
mitochondrial biogenesis  (235,  315). An 
in vitro study showed that NO acutely inhibits 
brown adipocyte proliferation but stimulates 
adipogenesis as shown by increased 
expression of peroxisome proliferator-
activated receptor gamma (PPAR gamma) and 
uncoupling protein 1 (UCP 1) (316). In spite of 
the multitude of beneficial effects of NO at low to 
moderate concentrations, high concentrations 
of NO produced by iNOS is cytotoxic and can 
generate detrimental peroxynitrite and hydroxyl 
radicals (317). Under conditions of low L-arginine 
bioavailability, such as increased arginase 
activity, providing supplemental L-arginine 
restored NO production (318). In Zucker 
obese/diabetic rats, dietary supplementation 
with L-arginine suppressed weight gain and 
other features of metabolic syndrome, while 
elevating the respiratory exchange ratio (RER) 
and heat production (319, 320). L-arginine 
supplementation also improved metabolic 
disturbances by increasing insulin sensitivity in 
mice challenged with a low protein diet (321). 
Human studies also reported the effectiveness 
of supplemental L-arginine in the improvement 
of insulin sensitivity in patients with metabolic 
syndrome (165, 322). 

Summaries of studies that have 
investigated means of enhancing constitutive 
NO production from NOS to prevent or reduce 
obesity-induced metabolic and vascular 
dysfunctions are provided in Table 1.

9. PERSPECTIVE/SUMMARY

Historically, adipocytes were 
considered to be inert lipid reservoirs, however, 
recent studies have shown the important, 
systemic endocrine function of adipocytes, 
which is intimately involved in the regulation 
of insulin sensitivity, energy homeostasis, 
and cardiovascular function. The rapidly 
growing prevalence of obesity worldwide 
affects individuals of all genders, ages, ethnic 
groups, and socioeconomic levels. Obesity 
greatly increases the risk of developing various 
comorbidities, indicating the dire need to better 

understand the intricate mechanisms behind 
obesity-induced metabolic and cardiovascular 
dysfunctions. At physiological levels, the 
vasoprotective molecule, NO, plays a prominent 
role in maintaining adipocyte and vascular 
function. However, expression of inducible 
NOS leads to high levels of NO, which are 
detrimental to metabolic and cardiovascular 
function. In obesity, arginase and NOS and are 
dysregulated. Given the deleterious effects of 
elevated arginase activity/expression seen in 
obesity-related metabolic and cardiovascular 
disorders, targeting this enzyme could be a 
possible therapeutic strategy in the treatment 
of obesity-induced diseases. Complicating this 
potential strategy is the fact that arginase has two 
isoforms, A1 and A2, and not enough is known 
about the ability and effect of preferentially 
targeting them. Additionally, the effect of 
systemic arginase inhibition in the presence 
of comorbidities or on other organ systems is 
not well known. Currently, there are only a few 
clinical trials testing the efficacy of arginase 
inhibition in different pathologies. Exploring 
tissue-specific, cell-specific or isoform-specific 
arginase inhibitors or modulators may prove 
to be an effective therapeutic strategy for 
combating obesity-related disorders. However, 
further studies of the complex mechanisms 
behind the development of metabolic and 
cardiovascular disease induced by obesity are 
required to address future treatment strategies 
for this ever-growing health problem.
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