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1. ABSTRACT

Macrophages are essential elements in the 
tumor microenvironment, where they can promote 
tumor growth but also influence the efficacy of 
anticancer strategies. In conventional therapies, 
chemotherapy and radiotherapy, TAMs play a 
dichotomous role, contributing to antitumor activity 
or hindering the efficacy of cytoreductive therapies. 
Macrophages express checkpoint ligands and are 
therefore targets of immunotherapy approaches 
based on checkpoint inhibitors. Targeted therapies 
with monoclonal antibodies elicit TAMs to engage 
in antitumor functions such as antibody-dependent 
phagocytosis through the activation of Fc receptors. 
New approaches to exploit macrophage effector 
functions induced by therapeutic antibodies are under 
investigation. Finally, strategies aimed at targeting 
TAM recruitment, survival and functional polarization 
are advancing towards the clinic. Collectively, TAM-
centered strategies will hopefully complement 
conventional and unconventional anticancer therapies 
to achieve improved therapeutic benefit. 

2. INTRODUCTION

The most frequently found cells within 
the tumor microenvironment are tumor-associated 
macrophages (TAMs) (1, 2). Due to their distinctive 

plasticity, macrophages are able to profoundly 
reprogram their functions in response to a wide variety 
of signals, both in physiological and pathological 
conditions. The combination of these signals 
determines the differentiation and the activation status 
of these cells.

The ability of macrophages to respond to 
different environmental cues resulting in the acquisition 
of distinct functional phenotypes has brought about a 
conventional/widely-accepted classification, referred 
to as M1/M2 dichotomy (3). Early studies indicated 
two main functional states: an activated phenotype 
(M1) and an alternatively activated phenotype 
(M2) (4). The classical M1 activation is induced by 
recognition of pathogen-associated moieties, such 
as lipopolysaccharides (LPS), via TLR ligands, and 
Th1 cytokines, such as Interferon gamma (INFg), and 
is characterized by high levels of proinflammatory 
cytokines (IL1β, TNFα, IL-6, IL-23) and chemokines 
(CXCL9, CXCL10), increased production of reactive 
oxygen/nitrogen intermediates (ROI/RNI), promotion 
of Th1 type immune responses, and strong 
microbicidal and tumoricidal activity (3). Conversely, 
M2 macrophages respond to Th2 cytokines, IL-4 and 
IL-13, and are characterized by avid phagocytic activity 
and increased expression of scavenger receptors 
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including CD163, mannose receptor (MR), and 
galactose receptor (GR), production of ornithine and 
polyamines via the arginase pathway, and reduced 
expression of inflammatory cytokines. Alternatively 
activated macrophages have an immunoregulatory 
role, and are involved in the containment of parasite 
(helminth) infections, tissue remodeling and tumor 
promotion. 

While this classification might be suitable 
for extreme activation states such as M1 in Th1 type 
responses or M2 in parasite infections, and despite the 
fact that M1 and M2 macrophages have been detected 
in several pathological contexts such as sepsis, obesity, 
and tumors, the scenario in vivo is likely to be much 
more complex (4). Recently, it has been suggested 
that macrophages exposed to excessive stimuli, both 
M1 or M2, undergo a “switching” phenotype resulting 
in the counteractive production of mediators capable 
to dampen the initial stimulus (5, 6). According to 
this scenario, they would respond to persistent 
proinflammatory stimuli by reprogramming towards 
M2 and vice versa, integrating the type of stimulus and 
the phenotypic response through various intracellular 
signaling pathways including the JNK, PI3K/Akt, Notch, 
JAK/STAT, TGF-β/SMAD/non-SMAD, TLR/NF-κB (5).

In general, considering the plasticity of these 
cells and the complex in vivo milieu of cytokines and 
stimuli, often macrophages in vivo present with a 
mixture of these two phenotypes. It is also possible 
for macrophages to shift from one activation state to 
another during the course of an immune response 
or pathological context (4). Given all the above, M1 
and M2 macrophages should be considered as the 
extremes of a single contiguous spectrum of activation 
states that characterize differentiated macrophages 
(4). Additionally, transcriptional profiling, within the 
“Immunological Genome Project”, of murine tissue 
macrophages in homeostatic conditions, found very 
high transcriptional diversity and minimal overlap 
between macrophages from different organs, strongly 
suggesting a highly heterogeneous and organ specific 
population of cells (7).

In the tumor context, studies have 
demonstrated that macrophages activated by bacterial 
products and cytokines acquire the capacity to kill 
tumor cells (8, 9). More frequently, though, TAMs 
are renowned for their promotion of tumor growth 
and metastasis, exerted by sustaining angiogenesis, 
matrix remodeling, and secreting growth factors and 
immunosuppressive cytokines (10–12). In accordance 
with these tumor-promoting functions, in many human 
cancer types (breast, bladder, prostate, head and neck, 
glioma, melanoma, and non-Hodgkin lymphoma), 
high numbers of TAMs have been associated to poor 
prognosis in preclinical and clinical studies (2, 13). 
However, there are some cancer types (for example 

colorectal and gastric cancer) in which high infiltration 
of TAMs correlates with better prognosis (14–16). 

The wealth of studies addressing the function 
of macrophages and their prognostic role in human 
cancer sets the foundations to explore whether these 
important effectors of the immune response have a 
role in mediating the efficacy of anticancer strategies. 
Here we review the current understanding of how 
macrophages contribute to the efficacy of anticancer 
strategies, and, in particular, of their emerging role in 
targeted therapies.

3. MACROPHAGES IN CONVENTIONAL AN-
TICANCER STRATEGIES

Many studies have demonstrated that TAMs, 
besides playing a key role in tumorigenesis, also have 
the ability to modulate the efficacy of conventional 
anticancer therapies, such as chemotherapy and 
irradiation. Both positive and negative interactions 
have been documented, reflecting the complexity of 
the microenvironment and of macrophage functions.

3.1. In chemotherapy and radiotherapy

The modulation of chemotherapy 
efficacy by macrophages is complex (Figure 1). 
Various mechanisms have been proposed for 
macrophage-mediated enhanced chemosensitivity. 
A first mechanism involves a process known as 
“immunogenic cell death” (ICD). ICD implicates the 
release of “eat-me” signals (for example extracellular 
ATP, heat shock proteins, secreted type I interferon, 
extracellular nucleic acids and many others still being 
unearthed) from tumor cells killed by cytotoxic agents, 
such as Doxorubicin, Oxaliplatin, Cyclophosphamide 
(17). These signals activate the phagocytic and 
antigen presenting abilities of innate immune cells, 
such as macrophages and DCs, which in turn are 
able to promote T cell responses against tumor 
antigens (18–22). This reinstatement of an anti-
tumor immune response triggered by conventional 
anticancer therapies acquires particular relevance in 
the perspective of combinatorial strategies. Therefore, 
efforts are ongoing to identify anticancer agents 
driving bona fide immunogenic cell death to be tested 
in combination with immunotherapeutic strategies. 
Concomitantly, the attention is focused on those 
features of the tumor immune microenvironment that 
could provide an indication regarding the efficacy of 
the anticancer strategy, for instance the presence and 
density of antigen-presenting cells and their functional 
state.

A second mechanism is related to the potential 
effect of chemotherapy on macrophage phenotype. 
Both in pancreatic (15) and colorectal cancer (16), a 
high density of macrophages associated to a better 
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prognosis only in chemotherapy-treated patients. The 
enhanced chemosensitivity hinged on the ability of the 
cytotoxic agents, gemcitabine and 5-fluorouracil, to 
reprogram macrophages from a protumoral phenotype 
to anti tumoral; such reprogramming, which was 
reflected in a change of transcriptional profile and 
surface marker expression towards M1, resulted in 
enhanced killing of tumor cells (15, 16). 

Other mechanisms through which 
chemotherapy interacts with myeloid cells to the 
result of increased efficacy involve the depletion 
of immunosuppressive TAMs, as is the case of 
Trabectedin treatment for soft tissue sarcomas (23). 
This antitumor DNA-binding agent is selectively 
cytotoxic for TAMs and their circulating precursors 

(monocytes) by a mechanism involving selective 
activation of caspase-dependent apoptosis in cells of 
the monocyte lineage expressing the TRAIL-receptor. 
This macrophage-depleting effect has been shown to 
account for most of its antitumor activity (23). Another 
antitumor drug, Docetaxel, has been shown to have 
chemoimmunomodulating properties in a preclinical 
model of breast cancer (24). Here, Docetaxel 
treatment significantly reduced the expression of M2 
markers (e.g. IL-10 and mannose receptor) and raised 
the expression of M1 markers (e.g. IL-12 and CCR7) 
in myeloid derived suppressor cells (including cells of 
the monocyte-macrophage lineage).

Negative effects of macrophages 
on responsiveness to chemotherapy are also 

Figure 1. Distinct mechanisms mediating the interaction of macrophages with chemotherapy and radiotherapy. Macrophages contribute to the efficacy 
of conventional anticancer strategies by either synergizing or interfering with chemotherapy and radiotherapy. Clockwise: macrophages enhance 
sensitivity to selective chemotherapeutic agents inducing “immunogenic cell death”; some agents directly modulate macrophage polarization state, or 
selectively deplete TAMs; low-dose irradiation can drive macrophage functions to an antitumor mode, resulting in systemic tumor regression (abscopal 
effect) or directly modify macrophage activation. On the other hand, radiotherapy can negatively polarize macrophages or recruit pro-fibrotic myeloid 
cells. Interference of macrophages with chemotherapy entails macrophage capability to secrete factors nourishing and protecting tumor cells from 
chemotherapy, involvement of macrophages in the fibrotic reaction after chemotherapy induced tissue damage and recruitment of immunosuppressive 
myeloid population by chemotherapy.
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well documented, mainly in preclinical models. 
The mechanisms outlined for TAM-mediated 
chemoresistance are often direct consequence of 
the most peculiar features of macrophages, namely 
orchestrating an immunosuppressive response, tissue-
repair related functions and nourishment of tumor 
cells. In line with this, depletion of TAMs via anti-CSF1 
antibodies resulted in enhanced chemosensitivity in a 
combinatorial chemotherapeutic approach in human 
breast cancer xenografts (25). Multiple mechanisms 
mediated the enhanced chemosensitivity induced 
by depletion of TAMs, including suppression of 
genes involved in chemoresistance of tumor cells 
and downregulation of metalloproteases contributing 
to tumor matrix remodeling. This evidence strongly 
shows the potent contribution of macrophages to 
tumor growth and how this can be detrimental in 
chemotherapeutic regimens. In a similar manner, 
macrophage depletion in a murine model of breast 
cancer was found to increase responsiveness to 
paclitaxel (PTX) treatment. The damage induced by 
PTX treatment, in fact, increased the recruitment of 
immunosuppressive myeloid cells, hampering the 
adaptive antitumor immune response (26). Other 
mechanisms of TAMs fostering chemoresistance 
involve the release of factors, such as Cathepsin B, 
that protect cancer cells from chemotherapy-related 
cytotoxicity (27), or the release of survival signals for 
cancer stem cells, such as milk fat globule-epidermal 
growth factor 8 protein (MFG-E8), limiting the effect of 
cisplatin on colon and lung cancer cells (28). Moreover, 
targeting the pro-angiogenic features of TAMs, 
decreasing the expression of vascular endothelial 
growth factor (VEGF) or placental growth factor (PlGF), 
resulted in ameliorated delivery of chemotherapeutic 
agents by improving vascular leakiness (29, 30). In 
colorectal cancer, the role of TAMs is still controversial. 
In a recent paper, macrophage infiltration associated 
with chemoresistance of colon cancer cell lines to 
5-florouracil via the production of IL6 by TAMs which, 
acting on the IL6R/STAT3 axis in tumor cells, inhibited 
the tumor suppressor miR-204-5p (31).

Important and divergent interactions 
between macrophages and anticancer therapies 
have been shown also for radiotherapy regimens (32, 
33), although molecular mediators of immunogenic 
cell death and type of myeloid cell activation can 
significantly vary compared to the ones induced by 
chemotherapy. Besides hitting tumor cells, in fact, 
radiation therapy profoundly affects the composition 
of the tumor microenvironment, inducing important 
modifications that can affect the overall type of immune 
response. Among others, the induction of transforming 
growth factor beta (TGFb) by radiation therapy (34) 
holds a key role in the immunosuppressive polarization 
of macrophages. Also, the influx of tumor-infiltrating 
myeloid cells, including TAMs and myeloid derived 
suppressor cells, after radiotherapy has been shown 
to drive a fibrotic reaction that can promote tumor 

recurrence (35); administration of a selective inhibitor 
of CSF-1R has been shown to block this fibrotic 
reaction.

However, macrophages might be involved in 
the systemic “abscopal” effect induced by radiotherapy, 
a condition that is sometimes observed in patients 
when tumor regression occurs at sites distant from the 
irradiated lesions. The systemic reprogramming of the 
anti-tumor immune response induced by radiotherapy 
is more frequently ascribed to the antigen-presenting 
capability of dendritic cells, while macrophages 
have been more implicated as a hindrance to the 
radiation-induced immunity (36). However, reports 
have shown that neoadjuvant low-dose irradiation 
can elicit immunostimulatory macrophage functions, 
by programming the differentiation of NOS1+ M1 
macrophages in human pancreatic adenocarcinoma 
(32, 33). Collectively, macrophages have the potential 
to both reduce and magnify the efficacy of radiotherapy 
depending on the context. 

4. MACROPHAGES IN UNCONVENTIONAL 
STRATEGIES

Macrophage capability to mediate efficacy 
of immunotherapeutic strategies has been relatively 
neglected, likely due to the biased view of these 
phagocytes as mediators of tumor progression. 
However, given the important contribution of TAMs to 
tumor biology in multiple tumor types, it is expected 
that macrophages and their potential involvement in 
immunotherapy will raise growing interest.

4.1. In immunotherapy

Only a few years after the introduction in 
the clinical practice of immunomodulatory antibodies, 
including checkpoint inhibitors, macrophages have 
been shown to affect their efficacy in multiple ways. 
Immunomodulatory antibodies target membrane 
molecules with regulatory functions, such as the 
immunological checkpoint receptors CTLA-4 or PD-1, 
exploited by tumor cells to evade recognition from the 
immune system. These antibodies have been largely 
supposed to act by blocking the negative signal that 
is induced when the receptor on T cells binds with the 
corresponding ligand expressed by antigen-presenting 
or tumor cells. However, further mechanistic studies 
have shown that the in vivo activity of immunomodulatory 
antibodies encompasses interactions with members of 
the FcgR family. Specifically, FcR-mediated depletion 
of T regulatory cells by macrophages is required 
in the antitumor therapeutic effects of checkpoint 
inhibitors directed against CTLA-4 and GITR (37, 38), 
suggesting that the tissue localization of macrophages 
in the tumor microenvironment can significantly 
contribute to this function. Additionally, the expression 
of checkpoint ligands (such as PD-L1, PD-L2 and B7-1 
and B7- 2) (39–41) on macrophages makes them a 
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key component of the immunosuppressive pathways 
targeted by immune-checkpoint inhibitors, and could 
contribute to the efficacy of these treatments (2). A 
recent work has unexpectedly revealed the expression 
of PD-1 on tumor-associated macrophages and 
its negative correlation with the phagocytic activity 
against tumor cells, suggesting another mechanism of 
interaction of macrophages with checkpoint inhibitors 
(42). Prompted by the increasing number of studies 
assessing the role of macrophages in checkpoint 
treatments, numerous clinical trials are now testing the 
efficacy of therapeutic regimens combining blockade 
of macrophages by CSF1/CSF1-R inhibitors and of 
checkpoint axes (43). 

Very recently, histo-pathological analysis of 
non-small cell lung cancer specimens from patients 
treated with anti-PD1 in neoadjuvant regimen has 
evidenced macrophages in the regression bed (the 
area of immune-mediated tumor clearance) and their 
assessment has been used to build an irPRC (immune-
related pathologic response criteria) scoring system 
(44) which could be exploited to identify standardized 
assays to assess immunotherapeutic efficacy. 

Macrophages have also been implicated 
in the mechanism of action of agonistic antibodies 
targeting the co-stimulatory receptor CD40, by a 
mechanism involving polarization towards an antitumor 

mode of action (45). The original studies proposing 
macrophages as target cells of the CD40 agonists 
opened a new vista on the potential exploitation of 
these phagocytes for therapeutic purposes. In the 
wealth of efforts aimed at depleting macrophages in 
cancer, Beatty and colleagues showed that, when 
properly re-educated by immunomodulating agents, 
CD40 agonists in this case, macrophages turned into 
a favorable element in the tumor microenvironment, 
suggesting that reprogramming strategies could be 
efficacious approaches to enhance other forms of 
immunotherapy. CD40 agonists are now being tested in 
combination with chemotherapy, checkpoint inhibitory 
antibodies, and other immune modulators (46).

4.2. In targeted therapy

The number of therapeutic antibodies 
targeting tumor-specific antigens currently being used 
in the clinical setting is growing. Their mode of action 
encompasses different mechanisms, including block of 
tumor survival signals, neutralization of tumor growth 
factors, complement activation and engagement of 
effector immune cells expressing the FcR (47–49).

The strategic tissue localization and the 
high concentration of macrophages in the tumor 
microenvironment (Figure 2) of many cancer types 
make these phagocytes ideal mediators of the efficacy 

Figure 2. TAMs within the tumor microenvironment. TAMs accumulate in high numbers in the tumor microenvironment, making them ideal candidates 
for therapeutic approaches and important effectors of targeted therapies. CD68+ and CD163+ (yellow and red respectively) macrophages, CD20+ B cells 
(green), CD8+ T cells (magenta) and CD34+ vessels (white) in a human section of colo-rectal liver metastasis.
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of antibody-based targeted therapies. Early studies 
from the 1980’s assessed and demonstrated the 
contribution of macrophages to the mechanism of action 
of monoclonal antibodies in vivo (50–52); however, 
whether the exact mode of action was phagocytosis of 
tumor cells rather than cytotoxicity or a mixture of both 
was not very clear. As professional phagocytes, in fact, 
macrophages recognize and engulf harmful materials 
by specialized receptors, including pattern recognition 
receptors, scavenger receptors and receptors for the 
Fc (fragment crystallizable) portion of antibodies (53); 
therefore, they are fully equipped to perform important 
anti-tumor functions such as phagocytosis (54) and 
tumor cell lysis (49).

From an immune cell standpoint, the 
therapeutic antibody serves to connect the target cell 
with the activating type I FcR, primarily expressed on 
effector natural killer cells and phagocytes. Effector 
cells are activated to induce antibody-dependent 
phagocytosis (ADP) of the opsonized target or exert 
cytotoxicity through the release of cytotoxic mediators 
and antibody-dependent cell-mediated cytotoxicity 
(ADCC). Examples of therapeutic antibodies for 
which effector macrophages expressing the FcR are 
involved include Rituximab, targeting the CD20 B 
cell-differentiation antigen expressed by lymphoma 
and leukemia B cells (55, 56), Trastuzumab, an 
antibody against the erb-b2 receptor tyrosine kinase 
2 (ERBB2 or HER2) (47, 57–59), Cetuximab, targeting 
the epidermal growth factor receptor (EGFR) (49), 
Daratumumab targeting CD38 in myeloma cells (60). 
Accordingly, functional polymorphisms in human 
FcgRIIIA have been identified that may affect the ADCC 
of natural killer cells and monocyte/macrophages and 
correlate with response rates in lymphoma patients 
treated with Rituximab (61), breast cancer patients 
treated with Trastuzumab (59) and metastatic colo-
rectal cancer treated with Cetuximab (62). 

An important confirmation of the relevant 
role of macrophage phagocytosis induced upon 
recognition of therapeutic antibodies comes from 
the studies on the CD47/SIRP axis. SIRP is a 
negative regulator of macrophage phagocytosis and 
its engagement by CD47, widely expressed by many 
cell types, is perceived as a “don’t eat me signal” by 
the phagocytes. Overexpression of CD47 by tumor 
cells (63–66) has been implicated in resistance of 
tumor cells to macrophage phagocytosis and its 
therapeutic targeting is being evaluated in clinical 
settings (67). Notably, the inhibition of macrophage 
phagocytic activity by the CD47/SIRPa  axis suggests 
that targeting of this axis could complement antitumor 
antibodies and possibly reinforce their efficacy. This 
hypothesis has been tested and proven effective. 
CD47-blocking antibodies have shown synergistic 
activity in combination with Rituximab (63) and non-
functional engineered SIRP variants have been 

used as adjuvants for antitumor antibodies including 
Rituximab, Cetuximab and Trastuzumab (68).

5. TARGETING TAMs

Based on all the preclinical and clinical 
evidence highlighting a tumor-promoting role for 
macrophages, in recent years, many strategies 
targeting TAMs have been proposed. Mainly, the 
approaches have been focused on impeding the 
recruitment of monocytes/macrophages to the tumor 
site (by blocking the CCL2/CCR2 or the CXCL12/
CXCR4 axes), interfering with differentiation and 
survival (targeting the CSF-1/CSF-1R pathway), and 
acting on polarization. 

Monocyte recruitment to tumor tissues relies 
on several molecules including chemokines (CCL2/
CCR2 and the CXCL12/CXCR4 axes), CSF-1 and 
VEGF. Several preclinical models of melanoma, 
breast, liver, lung, and prostate cancer treated with 
specific antibodies anti-CCL2 have shown a reduction 
in tumor growth and metastasization (2). In clinic 
however, interfering with the CCL2/CCR2 pathway has 
given contradictory and rather unsatisfactory results 
in terms of efficacy, even if generally well tolerated 
(69, 70). This could be due to the robustness of the 
chemokine family and compensatory mechanisms 
involving other macrophage-recruiting chemokines. 
CNTO88 (carlumab), a specific, inhibitory monoclonal 
antibody anti-CCL2, entered a phase I clinical trial for 
advanced solid tumors, but only showed a transient 
CCL2 suppression (71). Another phase I clinical 
trial was conducted with carlumab in combination 
with different chemotherapy regimens for patients 
with solid tumors, but again only transient depletion 
of CCL2 was achieved and no increased efficacy 
compared to chemotherapy alone (69). However, in a 
phase I study for pancreatic adenocarcinoma, another 
selective CCR2 inhibitor (PF-04136309) showed more 
promising results in combination with chemotherapy. 
Approximately 50% of patients receiving the combined 
treatment showed partial tumor response (70). 

In a similar manner, targeting the CSF-1/CSF-
1R pathway has yielded better results in combination 
regimens rather than alone. CSF-1 is the main cytokine 
for differentiation and survival for the monocyte/
macrophage lineage. With the additional advantage 
of the receptor (CSF-1R) being expressed exclusively 
on monocytes, it represents an evident candidate to 
target macrophages. CSF-1 is also over-expressed by 
many tumor types, and its expression correlates with 
bad prognosis in various cancer types (2).

In experimental models, the monoclonal 
antibody RG7155 (Emactuzumab), which targets 
CSF-1R, was able to reduce the influx of TAMs and 
skew the adaptive immune infiltrate towards CD8 
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lymphocytes (72). Another molecule targeting CSF-
1R, PLX3397 (Plerixafor) was tested for recurrent 
glioblastoma and demonstrated improved efficacy 
only when in combination with radiotherapy (73). 
Furthermore, in a preclinical transgenic model of 
pancreatic adenocarcinoma, the CSF-1R inhibitor 
GW2580, enhanced chemosensitivity to gemcitabine 
(74). 

Finally, as already mentioned in the previous 
paragraph, macrophage targeting to the aim of 
functional activation was unexpectedly observed 
after treatment with a CD40 agonist antibody in a 
small group of patients treated with gemcitabine. This 
was reproduced in a genetically engineered mouse 
model of pancreatic cancer, with the result of reduced 
tumor growth, due to repolarization of macrophages 
towards a tumoricidal phenotype. Surprisingly, 
the mechanism was shown to be both T-cell and 
gemcitabine independent (45). This promising study 
led to a phase I clinical trial on a small group of 
advanced pancreatic cancer patients, testing the 
CD40 agonist antibody (CP-870,893) in combination 
with gemcitabine, which yielded only a partial tumor 
response (75). 

A more recent study has shown that targeting 
the Bruton Tyrosine Kinase (BTK) pathway in a preclinical 
model of pancreatic cancer can lead to reactivation of 
the adaptive immune response, via repolarization of 
TAMs towards an M1-like phenotype (76). 

Taken together, the preclinical and clinical 
evidence convincingly indicate that targeting TAMs will 
bring best results when in combination with standard 
therapies.

6. CONCLUDING REMARKS

Macrophages are essential elements of 
the immune ecosystem of tumors, often present 
in high numbers and characterized by a peculiar 
malleability, which allows them to acquire both 
protumor and antitumor functional states. Most studies 
have documented the relevance of the macrophage 
population as a whole; however, dissecting the 
heterogeneity of TAMs could provide new insights on 
their role in the tumor microenvironment.

TAMs are important mediators of the efficacy 
of anticancer strategies (Figure 3). In conventional 

Figure 3. TAMs are important mediators of the efficacy of anticancer strategies. Synergism between TAMs and conventional therapies, chemotherapy and 
radiotherapy, encompasses mechanisms such as imunogenic cell death, TAM depletion and TAM reprogramming. Interference of TAMs with therapeutic 
effect includes orchestration of tissue fibrosis and M2-like functions. The in vivo activity of immunomodulatory antibodies encompasses also interactions 
with members of the FcgR family, expressed on macrophages. Macrophages express checkpoint ligands (such as PD-L1, PD-L2), thus representing a 
key component of the immunosuppressive pathways targeted by immune-checkpoint inhibitors. In targeted therapies, monoclonal antibodies engage 
macrophage antitumor functions, such as their ability of eliminating cancer cells by antibody-dependent phagocytosis and cytotoxicity. 
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therapies, chemotherapy and radiotherapy, 
macrophages have been shown to both boost and limit 
the therapeutic effect. These observations suggest 
that strategies aimed at reprogramming macrophages 
towards an anti-tumor phenotype could yield promising 
results in combination with conventional cancer 
therapies. However, preclinical and clinical evidence 
varies significantly in a context-dependent manner, 
occasionally highlighting contradictory roles for TAMs.

 Recent studies have evidenced a role for 
TAMs in immunomodulatory and targeted anticancer 
therapies. Monoclonal antibodies engage macrophage 
antitumor functions, such as their ability of eliminating 
cancer cells by antibody-dependent phagocytosis 
and cytotoxicity. Therapeutic strategies exploiting 
the engagement of macrophages to unleash the 
full potential of the innate immune system are now 
approaching the clinic. Hopefully, such strategies will 
complement conventional therapies to reach improved 
therapeutic benefits. 
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