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1. ABSTRACT 

Cellular therapies are a rapidly evolving 
approach to treat cancer in the light of their unique 
mechanism of action that potentially overcomes drug 
resistance and induces durable remissions. Modalities 
of adoptive cell therapy include gene-modified T cells 
expressing novel T cell receptors or chimeric antigen 
receptors (CAR) that modify the immune system 
to recognize tumor cells and carry out potent anti-
tumor effector functions. CAR T cells have shown 
very promising clinical results and several trials are 

being conducted worldwide to establish their role 
in cancer treatment. Most successful results have 
been observed in lymphoproliferative disorders with 
the use of CD19-directed CAR T cells, which led to 
their commercial approval by FDA. In this review, we 
provide a comprehensive overview of the current role 
of CAR T cell therapies in hematological malignancies 
and solid tumors, their associated toxicities and 
potential future developments in the armamentarium 
for cancer treatment.
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2. INTRODUCTION

Chimeric antigen receptors (CARs) are 
genetically constructed hybrid receptors that 
consist of a single-chain variable fragment (scFv) 
of a monoclonal antibody as the antigen-binding 
extracellular domain, an intracellular CD3ζ chain as 
the T cell receptor (TCR) signaling domain, and an 
additional co-signaling domain, mainly CD28 or 4-1BB, 
to deliver co-stimulation (1, 2). Several methods 
to transfer CARs to T cells have been evaluated 
and the current most commonly used approach is 
transfer by retroviral infection (3). Cytotoxic activity 
of CAR T cells is determined by antigen-binding to 
the scFv, leading, in turn, to phosphorylation of CD3ζ 
and additional signaling cascades by co-stimulating 
domains (4). This mechanism reproduces effects 
similar to signaling following T cell activation through 
the TCR complex. Importantly, CAR T cells recognize 
target antigens in an MHC-independent fashion. Since 
their first discovery in the late 1980s (5, 6), CAR T 
cells have undergone major improvements and most 
clinical trials have been carried out in hematological 
malignancies such as B cell non Hodgkin lymphomas 
(NHL) and acute lymphoblastic leukemias (ALL). 
CD19 was shown to be an ideal target (7-9) given its 
expression from the early stages of B cell development 
up to plasma cell differentiation. In 2003, Brentjens et 
al. at the Memorial Sloan Kettering Cancer were the 
first to show successful transduction of lymphocytes 
with anti-CD19 CARs that could lead to tumor 
reduction and even eradication in immunodeficient 
mouse models with various B cell malignancies 
(10). CARs engineering has dramatically evolved 
over time resulting in four generations of CAR 

constructs (Figure 1). Second generation CAR T 
cells carry the costimulatory domains CD28 (11) or 
4-1BB (12) and have been the most commonly used 
constructs in clinical studies. The first clinical trial to 
show clinically significant responses was performed 
by Sadelain and co-workers in 2013 in patients with 
ALL (13). Since then, most research with CAR T 
cell therapies has been performed in hematological 
malignancies, but CAR T cell technology is being 
explored in solid tumors, however achieving limited 
clinical activity thus far. Major toxicities of CAR T 
cells include cytokine release syndrome (CRS) and 
neurotoxicity that though reversible can be severe 
and life-threatening. In this review, we provide a 
comprehensive overview of the current role of CAR 
T cell therapies in hematological malignancies and 
solid tumors, their associated toxicities and potential 
future developments in the armamentarium of cancer 
treatment.

3. ANTI-CD19 CAR T CELLS

The constant and stable expression of 
CD19 on neoplastic cells in most B-cell malignancies 
makes it an ideal target for CAR T cell therapy. 
CD19 is not expressed on normal tissues besides B 
cells, thus theoretically limiting off-tumor on-target 
toxicities to B cell aplasia. CAR T cell products 
against CD19 are currently the most advanced in 
terms of clinical development and results of clinical 
trials. As of November 2018, two anti-CD19 CAR T 
cell products have been approved by US Food and 
Drug Administration (FDA) and by European Medicine 
Agency (EMA). Other constructs are already in an 
advanced phase of clinical investigation (Table 1).

Figure 1. Schematic structure of chimeric antigen receptor (CAR). First generation CAR contains the single chain variable region (scFv) derived from 
a monoclonal antibody, the T cell receptor transmembrane domain, and an intracellular signaling domain of CD3 zeta chain. Second generation CAR 
contains a single co-stimulatory domain (CD28 or 4-1BB), whereas the third generation CAR contains two or more co-stimulatory domains (e.g. CD28 
and 4-1BB). The fourth generation CAR is modified to express a molecule enhancing T cell function (e.g. cytokines or immunomodulatory molecules) or 
a controllable on-off switch (armored CAR).
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3.1. Currently approved anti-CD19 CAR T cells

3.1.1.  Tisagenlecleucel (CTL019, Kymriah®)

CTL019 (formerly known as CART19) 
engineered T cells express a chimeric antigen 
receptor which consists of an extracellular anti-CD19 
scFv, a CD8 hinge and transmembrane domain, a 
CD3ζ domain providing T-cell activation, and a 4-1BB 
(CD137) domain as costimulatory molecule. A high 
degree of in vivo expansion of CTL019 cells that 
resulted in complete remission (CR) in two children 
with refractory B-cell ALL was initially reported at 
Children’s Hospital of Philadelphia and at University of 
Pennsylvania (9). In a single-center phase I/IIa study, 
25 young patients (age range 5 to 22 years) and 5 older 
patients (age range 26 to 60 years) were treated (14). 
After leukapheresis, interim therapy at the discretion 
of the treating physician was allowed. Morphologic 
CR at one-month assessment was observed in 90% 
of patients, and 6-month event-free survival (EFS) 
was 67%. All patients developed CRS, which was 
severe in 27%, and usually associated with a higher 
disease burden. CRS was effectively managed with 
supportive measures and the administration of anti-

cytokine therapy, including the IL-6 receptor antagonist 
tocilizumab.

A following phase II multicenter study with 
tisagenlecleucel was conducted in pediatric and young 
adult patients with CD19+ relapsed or refractory B-cell 
ALL (15). Before tisagenlecleucel infusion, 96% of 
patients received lymphodepleting chemotherapy, 
which was omitted at the investigator’s discretion 
in case of leukopenia. Median weight-adjusted 
dose of transduced viable T cells was 3.1x106/kg/
body weight. Seventy-five patients received a single 
infusion of tisagenlecleucel, with an overall response 
rate (ORR) of 81%, including 60% CR and 21% CR 
with incomplete hematologic recovery. Persistence 
of tisagenlecleucel in the blood was observed for as 
long as 20 months. Six-month EFS was 73%, and 
12-month EFS was 50%. Eight patients underwent 
allogeneic hematopoietic stem-cell transplantation 
(alloHSCT) while in remission. Overall survival (OS) 
for the whole cohort was 90% and 76% at 6 and 12 
months after infusion, respectively. Seventy-three% 
of patients developed grade ≥3 adverse events which 
were attributable to tisagenlecleucel, mainly occurring 
within 8 weeks after infusion. Most common non-

Table 1. Anti-CD19 CAR T constructs

Tisagenlecleucel (CTL019, 
Kymriah®)

Axicabtagene Ciloleucel 
(KTE-C19, Yescarta®)

Lisocabtagene 
Maraleucel (JCAR017)

UCART19

Construct Extracellular: anti-CD19 scFv
Hinge: CD8
Transmembrane domain: CD8
Activation domain: CD3ζ 
Costimulatory domain: 4-1BB

Extracellular: anti-CD19 scFv
Hinge: CD28
Transmembrane domain: 
CD28
Activation domain: CD3ζ 
Costimulatory domain: CD28

Extracellular: anti-CD19 scFv
Hinge: IgG4
Transmembrane domain: 
CD28
Activation domain: CD3ζ
Costimulatory domain: 4-1BB

Extracellular: anti-CD19 
scFv
Activation domain: CD3ζ
Costimulatory domain: 
4-1BB
Modified to lack CD52 
expression and the 
endogenous TRAC locus, 
and to include a RQR8 
“safety switch” 
N.B. expressed on healthy 
donor cells

Current 
status

Approved (US/Europe): 
- refractory B-cell precursor 
ALL in second relapse or 
beyond (≤ 25 years)
- large B-cell lymphoma R/R 
to ≥2 lines of therapy (adults) 

Approved (US/Europe):
- large B-cell lymphoma R/R 
to ≥2 lines of therapy (adults)1 

Under development Under development

Main clinical 
references

- Phase II, R/R B-cell ALL 
(pediatric/young adults). ORR 
81%, CR 60%, CRi 21% (15).
- Phase II, R/R DLBCL and 
FL. 3-month ORR 64%, 
6-month CR 57% (16).
- Multicenter phase II, R/R 
DLBCL (JULIET). ORR 53%, 
CR 39%, CRi 14% (17).
- Phase I, R/R CLL. ORR 
57%, CR29% (18).

- Phase II, R/R DLBCL, 
PMBCL, and transformed FL 
(ZUMA-1). ORR 82%, CR 
54% (23).
- Phase I/II , R/R 
B-precursor ALL (ZUMA-3). 
ORR 82%, CR or CRi 73% 
(24).

- Phase I, R/R B 
cell lymphomas 
(TRANSCEND-001). DLBCL 
cohort 3-month ORR 49%, 
3-month CR 40% (28). 

- Phase I, high risk R/R 
B-cell ALL (pediatric). CR/
CRi 5/5 (30). 

1including in US DLBCL not otherwise specified, PMBCL, high grade B-cell lymphoma, and DLBCL arising from FL, in whereas in Europe only DLBCL 
and PMBCL. Abbreviations: ALL: acute lymphoblastic leukemia; CLL: chronic lymphocytic leukemia; CR: complete response; CRi: CR with incomplete 
hematologic recovery; DLBCL: diffuse large B-cell lymphoma; FL: follicular lymphoma; ORR: overall response rate; PMBCL: primary mediastinal B-cell 
lymphoma; PR: partial response; R/R: relapsed or refractory. 
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hematologic adverse events of any grade were CRS 
(77%, 48% treated with tocilizumab), pyrexia (40%), 
decreased appetite (39%), febrile neutropenia (36%), 
and headache (36%). For CRS, median time to 
onset was 3 days and median duration was 8 days. 
Neurologic events occurred in 40% of patients within 
8 weeks after infusion (13% grade 3, no grade 4), and 
no cerebral edema was reported. Two deaths occurred 
within 30 days after tisagenlecleucel infusion: one 
patient died from cerebral hemorrhage and one patient 
from progressive B-cell ALL. 

CTL019 was also evaluated in the setting 
of CD19+ B-cell lymphomas. A trial conduced at the 
University of Pennsylvania enrolled patients with 
relapsed/refractory diffuse large B-cell lymphoma 
(DLBCL) or follicular lymphoma (FL) (16). Bridging 
therapy was allowed and lymphodepleting regimen was 
at the investigator’s discretion. Twenty-eight patients 
were infused (DLBCL n=14, FL n=14), with a median 
CTL019 cell dose of 5.79x106 /kg/body weight. T-cell 
manufacturing was unsuccessful for 5 patients. ORR 
at 3 months was 64%, 50% for DLBCL and 79% for 
FL, respectively. CR at 6 months was observed in 57% 
of patients (43% DLBCL, 71% FL). At a median follow-
up of 28.6 months, 57% of patients were progression-
free (43% DLBCL, 70% FL). Among 16 patients in 
CR, 14 had consistently detectable levels of CTL019 
DNA between 6 and 24 months after infusion. Severe 
CRS was observed in 5 patients with no CRS-related 
deaths, one patient was treated with tocilizumab, no 
patients received glucocorticoids. Neurologic toxic 
effects were reported in 11 patients, and 3 had grade 
≥3 encephalopathy.

A following multicenter phase II trial 
(JULIET) enrolled adult patients with relapsed/
refractory DLBCL (17). The apheresis product was 
cryopreserved, and bridging chemotherapy was 
allowed (eventually given to 90% of patients). As 
lymphodepleting chemotherapy, patients received 
fludarabine 25 mg/m2 and cyclophosphamide 250 
mg/m2 for 3 days, or bendamustine 90 mg/m2 for 2 
days. Preliminary results on 81 patients showed an 
ORR of 53.1%, with 39.5% CR and 13.6% partial 
responses (PR). Three-month CR rate was 32%, and 
6-month CR rate was 30% (for 46 evaluable patients). 
At 6 months, the probability of OS was 64.5%. Grade 
3 or 4 adverse events were observed in 86% of 
patients, and no deaths were attributed to CTL019. 
CRS occurred in 58% of patients (15% grade 3, 8% 
grade 4), 15% of whom received tocilizumab, and 
11% corticosteroids. Neurologic adverse events were 
reported in 12% of patients. 

Tisagenlecleucel is currently approved in the 
US and in Europe for the treatment of patients up to 
25 years of age with refractory B-cell precursor ALL, 
in second relapse or beyond, and for adult patients 

with relapsed or refractory large B-cell lymphoma 
(including DLBCL, high grade B-cell lymphoma and 
DLBCL arising from FL) after two or more lines of 
systemic therapy. 

Other CD19+ lymphoproliferative diseases 
can also be targeted by CTL019. As previously 
described, the pivotal trial at the University of 
Pennsylvania evaluated CTL019 efficacy in patients 
with relapsed/refractory FL with encouraging response 
rates (16). A multicenter study is expected to start 
recruitment soon (NCT03568461). Fourteen patients 
with heavily pretreated chronic lymphocytic leukemia 
(CLL) were administered CTL019 in a single center 
pilot study (18). ORR was 57%, with a CR rate of 
29%. Patients in CR showed persistent responses 
with a median duration of 40 months. Nine patients 
developed CRS, and 5 showed concurrent neurologic 
symptoms. In multiple myeloma (MM), the combination 
of CTL019 with high-dose melphalan and autologous 
stem cell transplantation (ASCT) in 10 patients, who 
had previously undergone ASCT with poor response, 
was investigated (19). The regimen was defined safe 
and feasible, with most toxicity attributable to ASCT 
without severe CRS. Two patients showed significantly 
longer progression-free survival (PFS) compared 
with that obtained after ASCT. Tisagenlecleucel is 
currently under evaluation in pediatric NHL patients 
(NCT03610724), and in combination with anti-PD-1 
monoclonal antibody pembrolizumab for the treatment 
of relapsed/refractory DLBCL (NCT03630159). In the 
B-cell ALL setting, the OBERON study (NCT03628053) 
will compare tisagenlecleucel with blinatumomab or 
inotuzumab in adult patients.

3.1.2.  Axicabtagene Ciloleucel (KTE-C19, Yescar-
ta®)

KTE-C19 construct, developed at the 
National Cancer Institute, consists of an extracellular 
anti-CD19 scFv, a CD28 hinge, transmembrane and 
costimulatory domain, and CD3ζ. The initial study 
showed its feasibility in patients with refractory 
DLBCL and indolent B-cell malignancies with a 
response in 12/15 patients, of whom 8 reached CR 
(20). A following trial on 22 patients with advanced-
stage lymphoma demonstrated the feasibility of a 
reduced dose of lymphodepleting chemotherapy 
(cyclophosphamide 300 or 500 mg/ m2 + fludarabine 
30 mg/m2 both for 3 days vs cyclophosphamide 120 
or 60 mg/kg + fludarabine 25 mg/m2 for 5 days) (21). 
The feasibility and safety of centralized manufacturing 
were demonstrated in the phase I ZUMA-1 trial, where 
4/7 patients with heavily pre-treated refractory DLBCL 
achieved CR at 1 month (22). The phase II portion of the 
ZUMA-1 trial enrolled patients with refractory DLBCL 
(cohort 1) and primary mediastinal B-cell lymphoma 
or transformed FL (cohort 2) (23). CAR T cells 
manufacturing was successful in 99% of patients. The 
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conditioning chemotherapy consisted of fludarabine 
30 mg/m2 + cyclophosphamide 500 mg/m2 on days 
−5, −4, and −3 before the CAR T cell administration, 
and systemic bridging chemotherapy was not allowed. 
Target dose of CAR T cells was 2x106/kg/body weight. 
Axicabtagene ciloleucel was administered to 101 
patients, with an objective response rate of 82% and 
a 54% CR rate, which was consistent across major 
covariates. Responses were durable: among patients 
with a ≥ 1-year follow-up (n=108), 42% maintained 
the response at the data cutoff, including 40% with 
CR. Of note, 3 patients on the phase I study had an 
ongoing CR at 24 months. Ninety-five% of patients 
developed grade ≥3 adverse events, including grade 
≥3 neutropenia in 78%, grade ≥3 anemia in 43%, and 
grade ≥3 thrombocytopenia in 38%. CRS occurred in 
93% of patients, mostly of low grade (grade 1 37%, 
grade 2 44%, grade ≥3 13%, including one death 
related to hemophagocytic lymphohistiocytosis). 
Another patient who developed CRS died from a 
cardiac arrest, and a third one died of pulmonary 
embolism. Neurologic adverse effects were reported 
in 64% of patients, 28% being grade ≥3. Tocilizumab 
was given to 43% of patients and glucocorticoids to 
27%. Axicabtagene ciloleucel is currently approved 
in the US for the treatment of adult patients with 
relapsed/refractory large B-cell lymphoma after two or 
more lines of systemic therapy (including DLBCL not 
otherwise specified, primary mediastinal large B-cell 
lymphoma, high grade B-cell lymphoma, and DLBCL 
arising from FL), and in Europe for adult patients with 
relapsed or refractory DLBCL and primary mediastinal 
large B-cell lymphoma.

Other CD19+ lymphoproliferative 
histologies were included in the initial studies with 
KTE-C19. Axicabtagene ciloleucel is currently 
under investigation for the treatment of mantle cell 
lymphoma (NCT02601313), CLL (NCT03624036), 
and other indolent NHL (NCT03105336). Additionally, 
the combination of axicabtagene ciloleucel with 
the anti-PD-L1 monoclonal antibody atezolizumab 
(NCT02926833) and with the anti-4-1BB monoclonal 
antibody utomilumab (NCT03704298) are under 
evaluation in refractory DLBCL. As part of the 
development program, KTE-C19 is also under 
investigation for the treatment of B-cell ALL. The 
phase I/II ZUMA-3 trial (NCT02614066) is evaluating 
KTE-C19 in adult patients with relapsed/refractory 
B-precursor ALL. KTE-C19 are infused after a 
lymphodepletion consisting of fudarabine 25 mg/m2 for 
3 days and cyclophosphamide 900 mg/m2 for one day. 
Sixteen patients were treated and one experienced a 
grade 5 event of CRS. Grade ≥3 CRS and neurologic 
events were reported in 25% and 63% of patients, 
respectively. Eleven patients were evaluable for 
efficacy, with an ORR of 82% (73% CR or CR with 
partial hematopoietic recovery) (24). KTE-C19 also is 
under evaluation in pediatric/adolescent patients with 

relapsed/refractory B-cell ALL in the phase I/II ZUMA-4 
trial (NCT02625480).

3.2. Other anti-CD19 CAR T cell products under 
development

3.2.1.  Lisocabtagene Maraleucel (JCAR017)

JCAR017 construct was developed at the 
Fred Hutchinson Cancer Research Center. It is 
composed by an extracellular anti-CD19 scFv, a IgG4 
hinge domain, a CD28 transmembrane domain, a 
CD3ζ activation domain, and a 4-1BB costimulatory 
domain.

Based on preclinical work in a mouse model 
showing that different T cell subsets are transduced 
efficiently but differ in their effector functions, and that 
CAR T products composed of defined T-cell subsets 
can have an increased potency (25), investigators led a 
phase I clinical trial using a predefined 1:1 CD4:CD8 T 
cell ratio for the treatment of CD19+ B cell malignancies 
(with an enrichment of CD8+ central memory T cells, 
when feasible). Thirty-two patients with different 
relapsed/refractory B-cell NHL (mainly DLBCL and 
transformed large cell lymphoma), including patients 
relapsed after ASCT or alloHSCT, were treated (26). 
Different lymphodepleting regimens were allowed, and 
cells were infused at a dose of 2x105/kg, 2x106/kg, or 
2x107/kg. ORR was 63%, with a CR rate of 33%. CRS 
was detected in 13% of patients, and 28% had grade ≥3 
neurotoxicity. Thirty patients with relapsed or refractory 
CD19+ B-cell ALL were also treated with the same 
regimen, and 93% achieved a bone marrow remission, 
as determined by flow cytometry (27). Eighty-three% 
of patients developed CRS, and 50% had severe 
neurotoxicity. There were 2 deaths due to toxicity, one 
related to CRS, and the second to neurotoxicity. The 
TRANSCEND-001 multicenter trial is testing JCAR017 
in relapsed/refractory B cell lymphomas, including 
DLBCL, transformed FL, grade 3B FL, mantle cell 
lymphoma, and primary mediastinal B cell lymphoma 
(28). Bridging therapy is allowed, lymphodepleting 
chemotherapy consists of fludarabine 30 mg/m2 and 
cyclophosphamide 300 mg/m2 for 3 days, and different 
dose levels of infused cells are tested. Preliminary data 
from the DLBCL cohort (n=69) showed ORR of 49% 
and 40% at 3 and 6 months, respectively, with 40% 
and 37% CR at 3 and 6 months, respectively. CRS 
was reported in 30% of patients, with a single grade 
4 event. Neurotoxicity developed in 20% of patients, 
including 14% with grade 3-4 events. No deaths were 
attributable to CRS or neurotoxicity. A randomized 
phase III trial will evaluate JCAR017 compared 
to standard of care in adult patients with high-risk 
transplant-eligible relapsed/refractory aggressive 
B-cell NHL (NCT03575351). The PLATFORM trial will 
evaluate JCAR017 in relapsed/refractory aggressive 
B-cell lymphomas, in combination with different agents 
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such as anti-PD-L1 monoclonal antibody durvalumab, 
or the new generation immunomodulatory drug CC-
122 (NCT03310619). JCAR017 is also currently under 
evaluation for the treatment of patients with relapsed/
refractory CLL (NCT03331198).

3.2.2. UCART19

In the attempt to overcome manufacturing 
issues, particularly occurring in heavily pre-treated 
patients, universal anti-CD19 CAR T products, 
derived from healthy donor cells, are currently under 
development. UCART19 express an anti-CD19 
scFv-4-1BB-CD3ζ molecule, and is also modified to 
lack both CD52 expression (in order to render these 
cells resistant to anti-CD52 monoclonal antibody 
alemtzumab) and the endogenous TRAC locus (to 
prevent UCART exhaustion), and to include a RQR8 
“safety switch” (allowing targeted elimination through 
anti-CD20 monoclonal antibody rituximab) (29). After 
the initial results reported in two young patients with 
B-cell ALL who achieved molecular remissions ahead 
of alloHSCT (29), a phase I trial in pediatric patients 
with high risk relapsed refractory CD19+ B-cell ALL 
was initiated. Patients receive a lymphodepleting 
treatment consisting of cyclophosphamide and 
fludarabine with or without alemtuzumab, following the 
infusion of 2x107 total cells, with the aim of achieving 
molecular remission and proceeding to alloHSCT. 
All the first 5 children who were treated achieved 
CR with incomplete blood count recovery, and were 
able to proceed to alloHSCT, and 2 of them remain in 
molecular remission 2 and 2.5 months post-transplant 
(30). All patients experienced reversible CRS, 2 
patients presented mild neurological symptoms that 
recovered without treatment, and grade 1 acute skin 
graft-versus-host disease was reported in 2 patients. 
UCART19 is also currently under investigation for the 
treatment of adult patients with relapsed/refractory 
B-cell ALL (NCT02746952).

4. ALTERNATIVE TARGETS FOR CAR T 
CELLS

4.1. Novel T-cell targets for B-cell malignancies

Although highly and uniformly expressed on 
B cell malignancies, CD19 may be downregulated or 
mutated in tumor cells (31), and antigen loss variants 
have been reported as responsible of the majority (70%) 
of relapses in ALL (32). Alternative surface molecules, 
including CD20, CD22 and the immunoglobulin light 
chain are also frequently expressed in B cell tumors 
and CARs targeting these alternative lymphoma-
associated antigens are currently under development 
for the treatment of B-cell malignancies (Table 2). 
Successful results obtained with anti-CD20 monoclonal 
antibodies have formally supported the development 
and clinical testing of anti-CD20 CAR-T cell therapy. 

CD20 has been targeted with a third generation 
CD28/4-1BB/CD3ζ CAR and transient responses 
were observed in 3 of 4 patients (33). Inclusion of dual 
costimulatory domains (CD28 and 4-1BB) enhanced 
anti-CD20 CAR T cells persistence in patients with 
indolent B cell and mantle cell lymphoma (34). In this 
study, anti-CD20 CAR T cells could be detected up to 
one year post transfer, and 2/3 patients treated had 
a PFS at 24-month follow-up. Based on preclinical 
results showing their antitumor efficacy, anti-CD22 
CAR T cells are currently under evaluation in early-
phase clinical trials. Results from a phase I trial testing 
anti-CD22 CAR T cells in 21 children and adults with 
B-cell ALL, including 15 patients previously treated with 
anti-CD19 CAR T cells, showed a dose-dependent 
anti-leukemic activity, with CR obtained in 73% (11/15) 
of patients - including 5 of 5 patients with CD19dim or 
CD19- B-ALL - and a median remission duration of 
6 months (35). The immunoglobulin kappa (k) light 
chain antigen is another attractive target because its 
expression on k-restricted B-cell lymphomas, and not 
on non-malignant B cells, may avoid complete B-cell 
aplasia and minimize humoral immunity impairment. 
In a phase I clinical trial, 16 patients with relapsed 
or refractory k+ NHL/CLL or MM were treated with 
autologous T cells genetically modified to express 
a CAR specific for the k light chain (36). Overall, of 
9 patients with relapsed NHL or CLL, 2 achieved a 
CR remission and one a PR. Of 7 patients with MM, 
4 had stable disease (SD) lasting 2–17 months. No 
toxicities attributable to anti-k light chain CAR T cells 
were observed. Another potential tumor antigen is the 
receptor tyrosine kinase-like orphan receptor (ROR1), a 
transmembrane glycoprotein expressed on embryonal 
tissue and aberrantly on many adult malignant tissues, 
such as B-cell tumors (e.g. CLL, mantle cell lymphoma, 
B-cell ALL) and numerous types of solid tumors (37-
40). Due to its high-level surface expression as well 
as to its crucial role in tumor cell proliferation, survival, 
and metastasis, a number of pharmacological agents 
targeting ROR1 are under development, such as 
humanized monoclonal antibodies, small molecule 
inhibitors, bispecific T-cell engagers (BiTE) and anti-
ROR1 CAR T cells (41-43). ROR1-targeted T cells 
have demonstrated to generate cytotoxicity against 
human ROR1 positive B cell malignancies in preclinical 
studies (39), without causing overt cytotoxicity in non-
human primates (44).

4.2. T-cell targets for multiple myeloma

Novel cell therapies and several potential 
targets for CAR T cells are under investigation in MM 
(45, 46) (Table 2). Anti-CD38 and anti-SLAMF7 CAR 
T cells showed anti-MM effects in preclinical models 
(47, 48), but the expression of both target antigens on 
other normal tissues including hematopoietic lineages 
and immune effector cells may cause off-tumor toxic 
effects limiting their long-term clinical use. Being 
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Table 2. Alternative targets for CAR T cells

Target Construct details Patient population Results Location NCT identifier Reference

CD20
CD28/4-1BB/
CD3ζ, plasmid 
electroporation 

R/R CD20+ indolent 
B-cell NHL or MCL

9 patients treated (8 FL 
and 1 MCL): 2 NED, 1 
PR, 6 SD (2 PR)

Fred Hutchinson Cancer 
Research Center, Seattle, 
USA

NCT00012207 (33)

CD20
CD28/4-1BB/
CD3ζ, plasmid 
electroporation 

R/R CD20+ indolent 
B-cell NHL or MCL

4 patients treated (3 
MCL and 1 FL): 1 PR, 
2 SD (CR)

Fred Hutchinson Cancer 
Research Center, Seattle, 
USA

NCT00621452 (34)

CD22 4-1BB/CD3ζ, 
lentiviral vector R/R B-cell ALL

21 patients treated: 12 
CR; median DOR 6 
months

National Institutes of Health, 
Bethesda, USA NCT02315612 (35)

k light 
chain

CD28/CD3ζ, 
retroviral vector R/R NHL/CLL or MM

16 patients: 2/9 CR 
and 1/9 PR in NHL/
CLL; 4/7 SD in MM

Baylor College of Medicine, 
Houston Methodist Hospital 
and Texas Children’s 
Hospital, Houston, USA

NCT00881920 (36)

BCMA CD28/CD3ζ, 
retroviral vector R/R MM 16 patients: 81% ORR, 

63% VGPR or CR
National Institutes of Health, 
Bethesda, USA NCT02215967 (49)

BCMA 4-1BB/CD3ζ, 
lentiviral vector Refractory MM

21 treated patients: 
13/20 ORR (8/20 PR 
or better)

University of Pennsylvania, 
USA NCT02546167 (50)

BCMA 4-1BB/CD3ζ, 
lentiviral vector R/R MM

21 patients treated 
(18 evaluable for 
response): ORR 89%

National Institutes of Health 
Clinical Center, Bethesda, 
MD

NCT02658929 (51)

CD30 4-1BB/CD3ζ, 
lentiviral vector R/R HL 18 patients treated: 7 

PR and 6 SD
Chinese PLA General 
Hospital, Beijing, China NCT02259556 (64)

CD30 CD28/CD3ζ, 
retroviral vector R/R HL or ALCL

7 patients treated 
with HL: 2 CR and 3 
transient SD; 
2 patients treated with 
ALCL: 1 CR

Baylor College of Medicine, 
Houston, Texas, USA. NCT01316146 (65)

CD123  CD28-CD3ζ, 
lentiviral vector R/R AML, BPDCN 7 patient treated: 3 CR, 

1 MLFS, 2 PR, 1 PD City of Hope, Duarte, USA NCT02159495 (86)

CD123
TCR/4-1BB, 
electroporated 
RNA

R/R AML 5 patients treated: no 
response

University of Pennsylvania, 
USA NCT02623582 (70)

CD123
CD28/CD137/
CD27/CD3fiCasp9 
(4th generation)

R/R AML 1 patient treated: PR
The First Affiliated Hospital 
of Zhejiang University, 
China

NCT03125577 (85)

CD33 4-1BB-CD3ζ R/R AML 1 patient treated: short 
lasting PR PLA Hospital, Beijing, China NCT01864902 (84)

LeY CD28-CD3ζ R/R AML 4 patients treated: 
short lasting PR/SD

Peter MacCallum Cancer 
Centre, Melbourne, Australia NCT01716364 (82)

NKG2D CD3ζ plus DAP10 
signal R/R AML, MDS, MM 6 R/R AML or MDS  

treated: no response
Dana-Farber Cancer 
Institute, Boston, USA NCT02203825 (56)

NKG2D CD3ζ plus DAP10 
signal

R/R AML, MM, 
epitelial cancers 1 AML treated: CR Multiple sites in Belgium 

and USA NCT 03018405 (90)

CLL1-
CD33 NA R/R AML or MDS 1 AML treated: CR

The General Hospital of 
Western Theater Command, 
China

NCT03795779 (91)

CEA
CD28-CD3ζ 
(intra-arterial 
administration)

Colorectal carcinoma 6 patients treated: 
1 SD 

Roger Williams Medical 
Center, Providence, USA NCT00673322 (108)

CEA CD28-CD3ζ Colorectal carcinoma 10 patients treated: 
7 SD

Southwest Hospital, Third 
Military Medical University, 
China

 NCT03267173 (137)

CEA CD3ζ CEA positve 
malignancies No response

The Christie NHS 
Foundation Trust, 
Manchester, UK

NCT01212887 (101)

HER-2 CD28-CD3ζ Sarcomas

17 patients 
treated: 4 SD. After 
lymphodepletion,6 
patients treated: 1 CR

Baylor College of Medicine, 
Houston, USA NCT00902044 (134, 135)
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expressed on plasma cells of all MM patients but not on 
normal tissues, BCMA - a member of the TNF receptor 
family - is at present the most promising target in this 
disease setting. A first in-human phase I clinical trial 
conducted at the National Cancer Institute in heavily 
pre-treated MM patients demonstrated the safety and 
efficacy of adoptively transferred autologous T cells 
transduced with a retroviral vector incorporating an 
anti-BCMA scFv, a CD28 costimulatory domain, and 
the CD3ζ T-cell activation domain. Updated results 
from this study showed an ORR of 81%, with 63% very 
good partial response or CR, and a median EFS of 
31 weeks (49). Another phase I study, conducted at 
the University of Pennsylvania, is currently exploring a 
different CAR, developed in collaboration with Novartis 
and consisting of a fully human anti-BCMA scFv with 
a 4-1BB costimulatory domain that is packaged in 
a lentiviral vector (50). Three cohorts have been 
enrolled sequentially, with the aim of collecting 
preliminary data about safety, efficacy, and kinetics 
of expansion - both with and without lymphodepleting 
chemotherapy. Preliminary results presented at 2017 
American Society of Hematology meeting showed 
that, based on  IMWG criteria, in cohort 1 (CAR T 
cells alone at a dose of 1-5x108 cells, n=9) 6/9 patients 
responded, with 1 ongoing CR at 21 months, and 
other responses lasting 1.5 to 5 months. In cohort 2 
(cyclophosphamide 1.5 g/m2 with 1-5x107 CAR T cells, 
n=5), 2/5 patients responded but progressed at 4 and 
2 months, respectively. In cohort 3 (cyclophosphamide 

1.5 g/m2 with 1-5x108 CAR T cells, n=10), the 
incorporation of cyclophosphamide with the higher 
dose of CAR T cells led to a disease response in 5/6 
patients, and one was not yet evaluable at the time 
of data submission. Berdeja et al. reported updated 
data about the dose-escalation portion of a third 
BCMA CAR T-cell trial (NCT02658929) at the 2017 
American Society of Hematology meeting (51). This 
was a multicenter study sponsored by Bluebird Bio, 
which used a second-generation CAR called bb2121 
that contained a murine anti-BCMA scFv (the same 
one used in the National Cancer Institute trial) and a 
4-1BB costimulatory domain, transduced by a lentiviral 
vector. Preliminary data from this phase I study showed 
that 89% of patients treated with bb2121 responded 
to treatment with 8 ongoing clinical responses at 6 
months, and one patient demonstrating a sustained 
response beyond one year. Based on these promising 
results, two phase II multicenter studies evaluating the 
efficacy and safety of bb2121 in subjects with relapsed/
refractory MM are currently ongoing in the US and in 
Europe (NCT03361748 and NCT03601078). Of note, 
BCMA is also expressed in a substantial number of 
lymphoma samples, as well as primary CLL B cells. 
Preclinical data have shown that treatment with 
bb2121 results in rapid and sustained elimination of 
the tumors and 100% survival in NOD/SCID gamma 
mouse models of human lymphomas, thus supporting 
the further development of anti-BCMA CAR T cells as 
a potential treatment for not only MM but also some 

HER-2  4-1BB-CD28-
CD3ζ Colorectal carcinoma Fatal CRS in 1 patient National Cancer Institute, 

Bethesda, USA NA (99)

HER-2
CD28-CD3ζ plus 
IL-4 chimeric 
receptor

HNSCC 13 patients treated: 
disease control in 9

Guy’s and St Thomas’ 
Hospitals, London, UK NCT01818323 (140)

HER-2 CD28-CD3ζ Glioblastoma 17 patients treated: 1 
PR, 7 SD

Baylor College of Medicine, 
Houston, USA NCT01109095 (143)

CAIX NA Renal cell carcinoma No response Erasmus University Medical 
Center, The Netherlands NA (100)

Mesothelin
 4-1BB-CD3ζ, 
electroporated 
RNA

Pancreatic cancer 6 patients treated: 
2 SD

University of Pennsylvania, 
USA NCT03323944 (105)

GD-2  CD28-CD3ζ-OX40 Neuroblastoma 11 patients treated: 
3 CR

Baylor College of Medicine, 
Huston, USA NCT00085930 (136)

GPC3 NA Hepatocellular 
carcinoma

13 patients treated: 1 
PR, 3 SD

Shanghai Jiaotong 
University, China NCT02395250 (138)

CD133 CD137-CD3ζ Epithelial 
malignacies

23 treated patients: 3 
PR, 14 SD

PLA General Hospital, 
Beijing, China. NCT02541370 (139)

EGFRvII  4-1BB-CD3ζ Glioblastoma 10 patients treated: 1 
persistent SD

University of Pennsylvania, 
USA NCT02209376 (142)

IL-13Rα2
 4-1BB-CD3ζ  
(intra-cranial 
admnistration)

Glioblastoma
Of the first 3 patients 
treated: 2 PR, then 1 
CR reported 

City of Hope, Duarte, USA NCT00730613/
NCT02208362 (147, 148)

Abbreviations: ALCL: anaplastic large cell lymphoma; ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; BPDCN: blastic plasmacytoid 
dendritic cell neoplasm; CLL: chronic lymphocytic leukemia; CR: complete response; CRS: cytokine release syndrome; DOR: duration of response; FL: 
follicular lymphoma; HL; Hodgkin lymphoma; HNSCC: head and neck squamous-cell carcinoma; MCL mantle cell lymphoma; MDS: myelodysplastic 
syndromes; MLFS: morphologic leukemia free status; MM: multiple myeloma; NED: no evidence of disease progression; NHL: non Hodgkin lymphoma; 
PD: progressive disease; R/R: relapsed or refractory; PR: partial response; SD: stable disease; VGPR: very good partial response.
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lymphomas (52). Preliminary results from a fourth 
anti-BCMA CAR T cells trial, conducted by Nanjing 
Legend Biotech in China in relapsed/refractory MM 
patients, were reported at the 2017 American Society 
of Clinical Oncology Annual Meeting (53). This CAR, 
called LCAR-B38M, uses a novel antigen-binding 
domain that binds BCMA at two separate epitopes. 
At the time of presentation, 100% (19/19) of patients 
experienced a response, including 74% with a CR. 
During a median follow-up time of 6 months, no patient 
with CR experienced relapse. Toxicity was modest: 
83% developed CRS, but only 6% had grade 3 CRS 
and no grade 3-4 neurotoxicity was seen. Several 
additional antigens are currently under investigation 
in MM as potential targets for CAR T cell therapies, 
including CD44v6 (54), Lewis Y (55), NKG2D ligands 
(56), CD229 (57), and integrin β7 (58).

4.3. T-cell targets for non-B-cell lymphoprolifera-
tive disorders

Broadening of CAR T cells to treat T-cell 
malignancies has proven challenging, mainly because 
many targetable antigens are also expressed on 
normal T lymphocytes. This shared antigenicity 
can cause fratricide in CAR T cells, inhibiting their 
proliferation and viability, and leading to normal T cells 
depletion and deep impairment of host immunity. To 
avoid this drawback, an anti-CD5 CAR transduced 
into a human Natural Killer (NK) cell line was tested 
(59). This approach showed potent anti-tumor activity 
against a variety of T-cell leukemia and lymphoma 
cell lines as well as primary tumor cells, and was 
able to demonstrate significant inhibition of disease 
progression in xenograft mouse models of T-cell ALL. 
Recent data reported by Gomes-Silva et al. showed that 
targeted disruption of the CD7 gene using clustered, 
regularly interspaced short palindromic repeats 
(CRISPR)/Cas9 prior to CAR expression minimizes 
fratricide in T cells and allows the expansion of the 
CD7-knockout (CD7KO) anti-CD7 CAR T cells with 
robust antitumor properties in preclinical models (60). 
An alternative strategy to limit fratricide is to employ 
T cells transduced with a CAR specific for the T-cell 
receptor (TCR) β chain constant region expressed by 
the malignant cells (i.e. TCRBC1 or TCRBC2), thus 
sparing the normal T cells that express the alternative 
TCRBC chain. Recent data demonstrated that ex vivo 
selected TCRBC2-positive T cells transfected with a 
CD28/OX40/CD3ζ anti-TCRBC1 CAR specifically 
recognized TCRBC1-positive T cell leukemia and 
lymphoma cells in vitro and in xenograft murine models 
(61). 

Promising results and limited toxicities 
obtained with toxin-conjugated CD30-specific 
monoclonal antibodies (such as brentuximab vedotin) 
(62, 63) have encouraged the development and 
clinical testing of CD30-directed CAR T cell therapies 

in Hodgkin lymphoma (HL) and anaplastic large cell 
lymphoma (ALCL) (Table 2). The clinical efficacy of this 
approach in relapsed or refractory HL patients was first 
demonstrated by results obtained in a phase I study 
conducted in China, which tested the adoptive transfer 
of autologous T cells transfected with a lentiviral vector 
encoding for a second generation CAR containing an 
anti-CD30 scFv combined with a 4-1BB costimulatory 
domain (64). Within this study, CART-30 cell infusion 
was well tolerated, with grade ≥3 toxicities occurring 
only in 2 of 18 patients, and effective, with 7 patients 
achieving PR and 6 achieving SD. Promising results 
were obtained by a second phase I dose-escalation 
study evaluating the safety of autologous T cells gene-
modified with a retroviral vector to express an anti-
CD30 CAR combined with the CD28 costimulatory 
domain (65). In this study, of 7 patients with relapsed 
HL, one entered CR lasting more than 2.5 years after 
the second infusion of anti-CD30 CAR T cells, one 
remained in continued CR for almost 2 years, and 3 had 
transient SD. Of 2 patients with ALCL, one had a CR 
that persisted 9 months after the fourth infusion of anti-
CD30 CAR T cells. No toxicities were observed and 
even though CD30 may also be expressed by normal 
activated T cells, no patients developed impaired 
virus-specific immunity. These studies demonstrate 
that targeting CD30 with CAR T cells is safe and can 
have antitumor activity in CD30+ malignancies.

4.4. CAR T cells for myeloid diseases

Despite the increasing availability of new 
targeted molecules, including IDH, FLT3 and BCL2 
inhibitors, the prognosis of relapsed and refractory 
acute myeloid leukemia (AML) remains dismal. 
AlloHSCT is the only realistic curative option but it is not 
feasible in many patients and results are unsatisfactory 
in this setting, especially if a good quality remission 
is not achieved before transplantation (66). Despite 
considerable efforts, the development of CAR T cells 
in AML represents a major challenge mainly due to the 
absence of a leukemia-specific surface antigen (67) 
(Table 2). First, the co-expression of AML antigens 
on extra-hematopoietic tissues (e.g. CD33 in hepatic 
Kupffer cells, CD123 on endothelial cells) poses 
important safety concerns. Besides, currently known 
AML surface targets are also expressed on normal 
hematopoietic stem and progenitor cells (HPSCs), 
leading to a very high risk of severe hematologic 
toxicities. Given that a long-term pan-myeloablation 
following AML-directed CAR T cells infusion may 
not be tolerable, unlike B cell aplasia due to CD19-
targeted therapy, different solutions are being tested 
(68). AlloHSCT represents the logical rescue strategy, 
but the persistence of even a few CAR T cells after 
transplantation could lead to graft rejection (67). 
Therefore, some groups explored the possibility of 
developing short-term living CAR T cells as a “bridge to 
transplant”. The University of Pennsylvania employed 
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for this purpose CAR mRNA electroporation, in order 
to allow transient expression of their anti-CD123 CAR 
as opposed to the stability obtained by viral delivery 
(69). Unfortunately, this strategy was unsuccessful, 
since none of the 7 patients enrolled in the clinical trial 
showed a response, likely due to the lack of CAR T cells 
persistence (70). As a matter of fact, a prolonged CAR 
T cells expansion is essential to obtain a sustained 
remission (15), and finding the right balance between 
the benefits of CAR persistence and the risks of long-
term myelosuppresion is one of the major challenge 
in AML-directed CAR T cells development. Alternative 
ways of CAR T cells termination, including the use 
of antibodies against both artificially expressed and 
constitutively present surface antigens (71), inducible 
suicide genes (72) and on-off switch strategies (73) are 
being explored and could permit to promptly induce 
CAR T cells exhaustion when needed. 

The University of Pennsylvania group 
recently presented another innovative way to 
prevent the risk of prolonged myelotoxicity and graft 
rejection due the lack of specificity of CARs in AML. 
The investigators generated CD33-deficient human 
HSPCs and demonstrated prolonged engraftment and 
normal differentiation in mouse and macaque models. 
CD33-deficient cells were unaffected by anti-CD33 
CAR T cells, thus allowing for effective anti-leukemic 
activity without myelotoxicity (74). 

With the aim of identifying new specific 
antigens, Perna et al. performed an exploratory study 
by combining proteomics and transcriptomics analysis 
from malignant and normal tissues. Albeit no antigen 
with characteristics as favorable as CD19 was found, 
some promising targets, namely ADGRE2, CCR1, 
CD70, and LILRB2, were identified (75). Besides, 
a recent proof-of-concept publication showed that 
also intracellular peptides can be targeted and 
that the efficacy of CAR T cells can be boosted by 
vaccination. The authors developed a CAR specific 
to a WT1/human leukocyte antigen (HLA)-A complex, 
and vaccination with dendritic cells loaded with the 
corresponding antigen led to CAR T cells expansion 
and activation, thus enhancing anti-leukemic activity in 
a xenograft model (76). 

An alternative approach to prevent antigen 
escape-mediated relapses and off-target side effects 
is the development of CAR T cells targeting two 
different antigens on the leukemic cells (77). These 
constructs appear of particular interest in AML, 
due to the impressive clonal heterogeneity and the 
lack of highly specific antigens, and in this context 
leukemia stem cells markers are particularly attractive 
as potential co-targets (78). Some groups are also 
testing small molecules with the aim of improving 
CAR T cells efficacy. Jetani and colleagues recently 
reported that the FLT3 inhibitor crenolanib had a 

synergist activity with FLT3-directed CAR T cells in 
a FLT3-ITD AML model, at least in part by increasing 
FLT3 surface expression (79), and similar results were 
also presented for midostaurin (80). Besides, it was 
recently reported that PI3K inhibition can enhance 
CD33-directed CAR T cells durability, thus improving 
antitumor activity (81). 

Despite many in vitro and in vivo preclinical 
studies and the significant number of clinical trials 
currently enrolling worldwide, only a few data of AML 
patients treated with CAR T cells have been so far 
reported. The first published clinical trial employed 
a second generation CAR targeting the Lewis Y 
antigen, an oligosaccharide overexpressed by some 
epithelial and hematological malignancies: signs of 
clinical activity and good tolerability were shown in 
the 4 treated patients, but responses were short-lived 
and CAR T cells persistence was limited (82). CD33 
is an obvious target in AML, due to its very frequent 
expression on leukemic blasts, and several efforts 
are ongoing to increase anti-leukemia efficacy of 
CD33-directed constructs, including the optimization 
of co-stimulatory molecules (83). So far, Chinese 
investigators reported only on one heavily pretreated 
patient who experienced a short-lasting partial 
response and moderate toxicity after CD33-CAR T 
cell treatment (84). Despite the disappointing results 
obtained with the adoptive transfer of T cells transiently 
modified by mRNA electroporation to express a 
CD123 specific CAR (70), preliminary clinical data on 
lentiviral transduced anti-CD123 CARs are promising. 
One case report from China showed some clinical 
activity (85), and more recently, the City of Hope group 
reported encouraging results on 6 AML patients, 3 of 
whom experienced a clinical meaningful response 
and, interestingly, no significant myelosuppression 
after anti-CD123 CAR T cell infusion. One patient with 
refractory blastic plasmocytoid dendritic cell neoplasm 
responded as well, obtaining a CR. CRS was observed, 
but it was manageable and always of grade 1 or 2 (86). 
Preclinical results of this construct were also reported 
in high risk MDS (87). 

Universal allogeneic CAR T cells are of 
particular interest in AML, giving the increased 
manufacturing problems often faced with autologous 
CARs in this disease (88). Unfortunately, a phase I 
study of UCAR123 (i.e. allogenic anti-CD123 CART 
T cells) was temporarily halted due to unacceptable 
toxicity in the first two patients treated, including one 
fatal case, and data on further development of this 
construct are awaited (68). NKG2D-expressing CAR 
T cells (89) were tested in a phase I trial including 
6 patients with MDS or AML, but poor CAR T cell 
persistence, no CRS and very limited clinical activity 
were shown (56). However, a relapsed AML patient 
enrolled in a trial testing multiple infusions of NKG2D-
bearing CAR T cells obtained marrow leukemia 
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free status at day 28 post infusion and was later 
successfully allografted (90). Recently, preliminary 
results of a compound CAR simultaneously targeting 
two different AML antigens, CLL1 and CD33, have 
been reported. After demonstrating significant activity 
of the construct in vitro and in a mouse model, and 
after proving the efficacy of alemtuzumab as safety 
switch, Liu and colleagues presented the results of the 
first patient treated, who achieved a minimal residual 
disease (MRD)-negative CR and could be successfully 
bridged to alloHSCT (91). Other AML targets have 
been studied in preclinical models with encouraging 
results, including folate receptor ß (92), CD7 (93), 
CD44v6 (54), CD38 (94), CLL1 (95), FLT3 (96), and 
LILRB4 (97), but CAR T cells directed toward these 
antigens have not entered clinical development or are 
tested in early trials whose results are not available 
yet. 

4.5. CAR T cells for solid tumors

The development of CAR T cells in solid 
tumors has yielded limited results, since unique 
challenges come in addition to those faced in 
hematological malignancies (98) (Table 2). Likewise, 
in AML, important safety concerns derive from the 
lack of highly specific target antigens, and severe 
and sometimes fatal toxicities due to on-target off-
tumor effects on normal tissues occurred in some 
trials (99-102). Besides, the tumor microenvironment 
represents a unique obstacle, which significantly 
limits CAR T cells efficacy in solid cancers, due to the 
presence of environmental barriers (e.g. extracellular 
matrix), chronic inflammation and the presence of 
immunosuppressive molecules and immune cells. 
Furthermore, high tumor heterogeneity can facilitate 
antigen escape and in vivo CAR T cells expansion 
is significantly less pronounced than in patients with 
hematologic malignancies (103, 104). In order to 
prevent potentially lethal toxicities, safety switch 
strategies are being tested (98) and the University 
of Pennsylvania group demonstrated the feasibility, 
although with limited efficacy, of administering mRNA 
electroporated mesothelin-specific CAR T cells in 
pancreatic adenocarcinoma patients (105). Other 
groups are exploring the possibility of local delivery, to 
enhance tumor killing and to reduce toxicity. Indeed, it 
has been shown that regional administration of anti-
AFP or anti-CEA CAR T cells was equally effective or 
even superior to a systemic administration in xenograft 
models of peritoneal carcinomatosis (106, 107), and 
the delivery of CAR T cells through percutaneous 
hepatic artery infusions has shown to be safe and 
clinically active in patients with CEA-expressing 
liver metastases (108). A different approach to favor 
the localization into the tumor site consists in the 
administration of CAR T cells overexpressing tumor-
specific chemokine receptors enhancing their capacity 
of reaching the tumor tissues (109).

In order to overcome antigen escape risk and 
inter-patient variability, CARs co-targeting two or even 
three antigens are being developed in several solid 
malignancies, including breast, pancreatic and brain 
tumors (110-113). Conversely, other investigators are 
testing dual constructs requiring both targets to be 
expressed on tumor cells in order to exert their cytotoxic 
activity (114) and inhibitory CARs able to redirect T 
cells activity from healthy tissues (115), with the aim of 
increasing CAR specificity and of preventing off-tumor 
side effects. Furthermore, many efforts are being made 
to optimize co-stimulatory molecules and to improve 
the structure of CARs (116), and new constructs able 
to locally deliver immune-modulating cytokines (117-
120), bearing modified cytokine receptors (121) or 
targeting tumor matrix components (122, 123) are 
being developed to overcome environmental barriers. 
Some groups are also exploring the possibility of 
combing CAR T cells with oncolytic viruses (124) or 
with checkpoint inhibitors (125-127). Indeed, targeting 
the PD-1/PD-L1 axis is of particular interest for 
CAR-T cells development in solid tumors (128), and 
investigators are testing constructs which are able to 
deliver anti-PD-1 molecules (129, 130) and strategies 
of cell-intrinsic PD-1 inhibition and inactivation (126, 
131, 132), with the aim of improving the efficacy of 
CAR T cells also reducing the systemic side effects of 
checkpoint inhibitors. 

Despite these challenges, basic and clinical 
research on CAR T cells in solid malignancies is 
constantly expanding, with more and more clinical trials 
opening worldwide (133) and many new data being 
presented. In sarcoma, anti-HER2 CAR T cells showed 
a reassuring safety profile (134) and led to CR in one 
case (135), while anti-GD2 constructs demonstrated 
significant clinical activity in 5 out of 11 patients with 
active neuroblastoma, including 3 CR (136). Signs of 
activity were also shown in recent studies involving 
epithelial tumors (137-140). The concept of the central 
nervous system (CNS) as an immune privileged site 
has been overturned in recent years, since T cells 
can penetrate the blood-brain barrier and infiltrate 
the brain in a diffuse manner (141); as a matter of 
fact, one of the most promising field of CAR T cells 
development in solid malignancies are CNS tumors. In 
glioblastoma patients, the University of Pennsylvania 
group showed that EGFRvIII-directed CAR T cells 
effectively trafficked to regions of active tumor after 
systemic infusion (142), and Ahmed and colleagues 
reported clinically significant activity of HER2-specific 
CAR T cells in 8 out of 17 cases, including one PR and 
7 persistent SD (143). Besides, local delivery showed 
encouraging results in this setting: in xenograft models, 
investigators demonstrated robust antitumor efficacy of 
anti-HER2 CAR T cells against medulloblastoma (144) 
and brain metastases of breast cancer (145) and anti-
GD2 constructs were effective against midline gliomas 
(146). In addition, Brown and colleagues reported 
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that IL-13Rα2–directed CAR T cells delivered via an 
implanted reservoir/catheter system exert a significant 
clinical activity in glioblastoma patients (147), including 
one CR (148).

5. CAR-T CELLS RELATED TOXICITIES

The two most relevant toxicities resulting 
from CAR T cell adoptive therapy are CRS and 
neurotoxicity. Both are potentially life-threatening 
conditions and their prompt recognition and aggressive 
management are essential. Recent observations in 
pre-clinical models are revealing some aspects of their 
obscure pathophysiology and new potential pathways 
that could be targetable.

5.1. Cytokine release syndrome

CRS is an acute inflammatory process that 
commonly occurs within the first days after CAR-T 
cell infusion. Closely related to the macrophage 
activation syndrome, it is characterized by non-specific 
constitutional symptoms with transient elevations of 
serum cytokines and other biomarkers. The delayed 
onset of clinical symptoms suggests an on-target, 
antigen-driven T-cell activation process. Mild CRS is 
a self-limiting clinical syndrome of low-grade fever, 
arthralgias and myalgias and is usually managed with 
minimal intervention. However, in a small number 
of patients it can progress to a dramatic syndrome 
of multi-organ dysfunction, requiring aggressive 
intervention and intensive life-support. Severe CRS 
is characterized by the development of a capillary 
leak syndrome with third spacing and hypotension, 
insufficient renal blood flow and pulmonary edema 
leading to hypoxia. Neurological symptoms may also 
occur during CRS though they generally do not follow 
the same time course as systemic CRS symptoms. 

Though the pivotal role played by IL-6 in 
severe CRS is well known (9, 14), new intriguing 
observations correlate severe CRS with the host 
macrophage/monocyte system rather than the CAR-T 
cells induced cytokine milieu (149). This observation 
may reveal a novel scenario where the cross-talk 
between CAR T cells and host myeloid cells is essential 
for the recruitment of macrophages which, in turn, are 
responsible for the release of IL-6. Furthermore, the 
demonstration of the involvement of inducible nitric 
oxide synthase (iNOS) in CRS patho-physiology 
recognizes a role for IL-1, a strong iNOS inducer. In 
a mouse model, the administration of an IL-1 receptor 
antagonist prevented severe CRS while sparing anti-
tumor efficacy (150). 

Severe CRS treatment is based upon direct 
cytokine inhibition, corticosteroids and intensive life 
support. The IL-6 receptor antagonist tocilizumab has 
often been used and has resulted in rapid improvement 

of clinical symptoms without affecting potential anti-
tumor activity (9, 14, 151). The use of tocilizumab 
was approved by the FDA in August 2017. A currently 
ongoing clinical trial (NCT02906371) may contribute to 
establish the role of tocilizumab as prophylaxis of CRS 
in anti-CD19 CAR-T cells recipients. Corticosteroids 
have also been used as first-line treatment for 
severe CRS due to their well-known ability to blunt 
activated T-cells. However, given their potential risk 
of compromising CAR-T cells efficacy in vivo, their 
use is commonly limited to life-threatening CRS 
unresponsive to cytokine inhibition. Intensive care 
treatment may be required in case of refractory severe 
CRS with unstable blood pressure and/or ventilator-
requiring hypoxia. 

5.2. Neurotoxicity

CAR-T cell related neurologic adverse events 
include a wide spectrum of clinical symptoms that 
may develop with or without CRS. They are generally 
of mild-moderate intensity and reversible while only 
a minority of patients require specific treatment. 
Reported incidence ranges from 7% to 63% (15, 23, 
24, 152). 

The initial hypothesis of a brain-located 
CD19 acting as a powerful stimulus for an antigen-
driven CAR-T cell infiltration appeared not consistent. 
The recent development of a pre-clinical model of 
neurotoxicity through the transfer of autologous 
CD20-specific CAR T cells showed the association 
of neurotoxicity with pro-inflammatory cytokines in 
the cerebrospinal fluid (CSF) determined by a CAR 
T cell mediated meningeal inflammation (153). It was 
demonstrated that CAR T cells accumulate in CSF and 
brain parenchyma along with measurable CSF levels 
of multiple molecules such as IL-6, IL-2, granulocyte-
macrophage colony stimulating factor, and vascular 
endothelial growth factor. Disruption of central nervous 
system vascular integrity and disregulation of the 
platelet-von Willebrand factor axis along with high 
serum levels of endothelial activation biomarkers 
appear to play a major role during acute neurologic 
toxicity. The blood-brain barrier of patients with acute 
neurotoxicity does not prevent massive cytokine 
penetration into CSF, that, in turn, induces brain 
vascular pericyte stress and secretion of cytokines 
further increasing blood-brain barrier permeability in a 
cyclic process (154). Common neurologic symptoms 
include delirium, confusion, disorientation, headache, 
decreased level of consciousness, hallucinations and 
tremor, while cranial nerve damage, seizures and 
focal deficits have been infrequently observed. The 
occurrence of fatal cerebral edema has also been 
reported in the Kite Pharma trial and by Gust et al. 
(154, 155). Heavy disease burden, fludarabine-based 
preparative regimens and higher infused CAR-T cell 
doses have been associated with higher incidence of 
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neurologic events. Higher serum levels of IL-6 and of 
monocyte chemo-attractant protein-1 within the first 
36 hours after infusion appear to predict a higher 
risk of developing grade ≥4 neurotoxicity (27). Most 
patients with severe neurotoxic events had previously 
been diagnosed with grade ≥2 CRS but the physio-
pathologic relationship between the two morbid 
processes is currently unknown.

Patients who develop at least grade 2 
neurologic toxicity after CAR T infusion should be 
managed by the neurology consult service. Brain 
magnetic resonance, electroencephalogram and 
examination of CSF could help to rule out other 
causes. Events of mild intensity are almost universally 
self-limited and do not need intervention. Severe 
neurotoxicity is treated with systemic corticosteroids 
with dexamethasone being the first choice given 
its excellent blood-brain barrier penetration, and, 
in absence of prompt response, with tocilizumab 
although clear evidence of its efficacy is lacking. Given 
the inability of tocilizumab to cross the blood-brain 
barrier, it was also suggested that it may increase 
IL-6 levels in CSF and worsen neurotoxicity. Thus, the 
IL-6 antagonist siltuximab may be a valid alternative 
(156). A recent published observation showed that in 
a mouse model of CAR T-induced neurotoxicity, the 
use of IL-1 receptor antagonist anakinra abolished 
neurologic symptoms, whereas tocilizumab failed to 
improve them (150). 

6. ALTERNATIVE SOURCES AND OFF-THE-
SHELF CARRIERS FOR CARS

Despite stunning clinical results, autologous 
CAR T cells present some issues. First, advanced 
stage disease and previous multiple chemotherapies 
may affect T cell collections, both in quantity and 
quality. Second, patients are at risk of disease 
progression from the time of T cell harvest to the 
complete manufacturing process and shipment of the 
final autologous CAR-T products for patient infusion. 
Moreover, single manufacturing generates a product 
dedicated to a single patient resulting in significantly 
high costs. The high costs associated with de-
centralized manufacturing place a burden on health 
care systems and restrict broad patient access to these 
novel therapies. Thus, the promising clinical results of 
engineered T cell therapies will be further amplified 
and broadened if potent and histo-compatible T cells 
become readily available off-the-shelf. Major barriers 
to overcome are the risks of graft-versus-host disease 
(GVHD), caused by the reaction of manipulated donor 
cells against recipient tissues, and cell rejection, due to 
the recipient immune system acting against the infused 
donor cells. Herein, we report the preliminary clinical 
experiences on the use of other than autologous CAR 
T cells in hematological malignancies. 

6.1. Post-allogeneic stem cell transplant CAR T 
cells

Disease relapse post allo-HSCT is at least 
theoretically the easiest setting for allogeneic donor 
CAR T cells. Unmanipulated donor lymphocyte infusion 
(DLI) is commonly used to treat patients with disease 
recurrence after allo-HSCT (157-159) though the risks 
of GVHD and lack of disease response remain an 
issue. The use of engineered donor-derived T cells to 
enhance graft-versus-leukemia effects and to limit the 
risk of GVHD is fascinating. 

Most trials evaluated donor-derived CAR 
T cells against the B-cell antigen CD19 as target 
antigen. T cells were harvested from donors (160-
163) or from engrafted recipients after allo-HSCT. 
In the latter case, all studies reported low rate of 
GVHD as CAR T cells were generated from tolerized 
cells (14, 27, 151, 164, 165). Life-threatening viral 
infections with pathogens such as Epstein-Barr virus, 
cytomegalovirus, and adenoviruses after alloHSCT 
can be treated without toxicity (including GVHD) by 
infusing ex vivo–expanded, donor-derived, virus-
specific cytotoxic T cells (VST) (166-169), which are 
also capable of persisting several years after infusion 
(170). Donor-derived VST genetically modified to 
express a CD19-specific CAR (CD19.CAR-VST) are 
therefore being investigated in patients with B-cell 
malignancies who have either disease relapse or are 
at high risk of disease relapse after alloHSCT, with 
the hypothesis that CAR-VSTs would be activated by 
endogenous viral antigens, increasing their expansion 
and persistence irrespective of the presence of 
CD19-expressing normal or malignant B cells. Eight 
patients received CD19.CAR-VST 3 months to 13 
years after alloHSCT. There were no infusion-related 
toxicities. Objective antitumor activity was evident 
in 2 of 6 patients with relapsed disease during the 
period of CD19.CAR-VST persistence, whereas 
2 patients who received cells while in remission 
remain disease free. Of note, in 2 of 3 patients with 
viral reactivation, donor CD19.CAR-VSTs expanded 
concomitantly with VSTs (160). Twenty patients 
with hematological malignancy that persisted after 
alloHSCT and standard DLI received infusion of T 
cells, obtained from each patient’s alloHSCT donor, 
genetically modified to express a CAR targeting 
CD19. Eight of 20 responded (6 CR and 2 PR). The 
response rate was highest for ALL, with 4/5 patients 
obtaining MRD-negative remission. Responses also 
occurred in CLL and NHL. The longest ongoing CR 
was more than 30 months in a patient with CLL. 
No new-onset acute GVHD after CAR-T infusion 
developed. Toxicities included fever, tachycardia, and 
hypotension. Peak blood CAR-T levels were higher in 
patients who obtained remissions than in those who 
did not (162, 171)
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6.2. Off-the-shelf allogeneic CAR T cells

As stated above, the promising clinical 
results of engineered T cell therapy could be further 
amplified and broadened if potent and histocompatible 
T cells were readily available, instead of being 
collected and manufactured on demand. T cells can 
be easily harvested from healthy donor, but their use is 
compromised by the high allo-reactive potential. TCR 
are naturally prone to react against non-autologous 
tissues, recognizing either allogeneic HLA molecules 
or other polymorphic gene products (minor antigens) 
(172). Recent advances in gene editing technology 
allow the manufacture of CAR-T cells from healthy 
donor leukapheresis where quantity and quality 
of T cells can be pre-selected. However, the use of 
these CAR T cells requires gene editing technology 
to prevent expression of endogenous TCR in order 
to minimize the potential to cause GVHD in non-HLA 
matched recipients. TCR is a heterodimer and both α 
and β chains need to be present for it to be expressed. 
A single gene codes for the α chain (TRAC), whereas 
there are 2 genes coding for the β chain, and TRAC 
loci knocked out using nucleases is the choice strategy 
for removing TCR expression. Initially, procedures in 
two steps were used: the CAR was introduced with 
a viral vector and the TRAC loci disrupted using 
a nuclease. Zinc finger nucleases (ZFN) (173), 
transcription activator-like effector nucleases (TALEN) 
and megaTAL nucleases (174-176), and CRISPR/
Cas9 systems (177) have all been applied to modify T 
cells (178-180). As previously mentioned, Qasim et al. 
reported the clinical use of UCART19s, generated by 
lentiviral transduction of donor cells and simultaneous 
TALEN-mediated gene editing of TRAC and CD52 
gene loci (29). More recently, a one step only procedure 
was introduced: the CAR-encoding DNA was directly 
inserted into the TRAC locus using CRISPR/Cas9 
technology together with an adeno-associated virus 
(AAV) vector repair matrix, simultaneously generating 
a TCR-negative CAR-positive T cell (181). These 
cells were shown to be more potent than conventional 
lentivirally transduced CAR T cells because of a more 
physiological, TCR-like regulation of CAR expression. 
Although TCR-negative off-the-shelf CAR T cells are 
able to reduce the risk of GVHD, they may still be 
subjected to killing by the patient’s own T cells that 
recognize non-self HLA if there is mismatch, causing 
rejection and subsequently leading to short-lasting 
responses. To solve this issue, it has been proposed 
to eliminate the HLA molecules from CAR T cells using 
gene-editing technologies like ZFN (182).

Another way to protect allogeneic CAR T 
cells from rejection included the knockout of the β2-
microglobulin gene combined with TCR knockout. In 
the absence of β2-microglobulin (β chain), class I HLA 
molecules do not form stable heterodimer on the cell 
surface (183). However, while the absence of HLA-I 

on the surface of CAR T cells significantly reduces 
rejection through HLA-mismatched CD8 T cells (class-I 
restricted), it can result in increased destruction by 
recipients’ NK cells, due to “missing self” recognition. 
To prevent activation of recipient’s NK cells through 
this mechanism, different way have been tested, 
such as the enforced expression of non-classical HLA 
molecules (e.g. HLA-E and HLA-G) (182, 184), and 
the overexpression of Siglec-7 and -9 ligands (185). 
Furthermore, the use of HLA homozygous donors to 
generate a bank of universal CAR T products may 
represent an additional strategy to avoid rejection. It 
was calculated that with limited numbers of donors 
homozygous for HLA-A/B/DRB1, it would be possible 
to generate compatible products to cover the majority 
of the population (186).

6.3. Alternative off-the-shelf CAR carriers

Additional immune cells are on studies as 
potential off-the-shelf CAR carriers, although the 
safety, efficacy and persistence in the clinical setting 
require more investigations. NK cells belong to the 
lymphoid branch of the immune system and account 
for up to 6% of circulating lymphocytes. NK cells do 
not express rearranged receptors and can be easily 
transferred across HLA barriers without causing GVHD, 
thus they became attractive as allogeneic effector cells 
(187, 188). At least three different sources of NK cells 
are currently available: NK cell line (189), peripheral 
blood NK cells (189), and  induced pluripotent stem 
cells (iPSC) NK cells (190). In clinical studies of post-
alloHSCT, NK cell infusion demonstrated the safety 
of using such an approach in an off-the-shelf fashion 
(191). CAR expression in NK cells could increase their 
specificity and enhanced their anti-tumor activity. NK 
cells have been utilized to evaluate several different 
antigens as CAR target. In pre-clinical studies, potent 
antitumor activity has been demonstrated using CAR 
NK cells generated from NK cell lines as well as NK 
cells derived from patients (192). 

Gammadelta T cells (γδ T cells) are less 
prone to alloreactivity compare to other T cells. 
Immunotherapy with γδ T cells requires their activation 
and expansion as they represent only a small amount 
of circulating T cells. Aminobisphosphonates are the 
most efficient reagents to grow γδ T cells ex vivo. 
Afterward, the same technique have been transitioned 
to the clinic for investigational treatments of cancer 
and HIV (193, 194). In the alloHSCT setting γδ T 
cells exert anti-tumor activities and contribute to host 
defense against different pathogens, whereas their 
role in GVHD management remains unclear (195, 
196). For this reason, γδ T cells have been evaluated 
in the setting of  T cell-depleted alloHSCT  (195, 196). 
Given their inherent potential for antitumor effects and 
their apparent lack of alloreactivity the combination 
of  γδ T cells with CAR is appealing (197-199), 
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however, although initial clinical trial with CAR γδ T 
cells are ongoing, far more data are needed to assess 
if preclinical findings translate into powerful and 
persistent anti-tumor activity with acceptable toxicity. 

NKT cells constitute a relatively uncommon 
circulating immune cell population (0.1-0.5% of T cells) 
that co-expresses αβTCR and NK cell markers. In mice 
models, was found an inverse correlation of recovery of 
NKT cells and GVHD after alloHSCT while preserving 
a graft-versus-tumor response (200). NKT cells can 
also be expanded in vitro and can be genetically 
modified to express CAR (201, 202). Thanks to limited 
TCR alloreactivity and emerging technology to obtain 
large numbers, NKT cells represent another attractive 
source to generate off-the-shelf CAR+ immune cells.

7. CONCLUSION AND PERSPECTIVES

The ultimate goal of adoptive cell therapies 
is to create a personalized cellular product directed 
against the malignancy with minimal side effects. 
CAR-engineered T cells represent an important 
breakthrough in personalized medicine. Future 
directions to improve efficacy and safety include 
potential combinations with immunomodulatory drugs, 
checkpoint inhibitors, or other CAR T cells engineered 
to contain suicide genes or switches, which are currently 
being evaluated in preclinical and clinical studies. 
In summary, CAR T cells represent a personalized 
immunotherapeutic approach that has developed very 
rapidly in recent years. Great successes have been 
observed in lymphoproliferative disorders. However, 
further optimization of this promising cell therapies is 
still needed to enhance anti-tumor effects and reduce 
associated toxicities. As of November 2018, more than 
100 clinical trials are currently recruiting. Moreover, 
advances in the field of CAR T cell biology over the 
coming years in terms of safety, reliability and efficacy 
against non-hematopoietic cancers will ultimately 
determine the role of adoptive T cell therapy in the fight 
against cancer. 
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