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1. ABSTRACT

Amino acid nutrition studies often involve 
repeated measures data. An example is that the 
concentrations of plasma citrulline in steers are 
repeatedly measured from the same animals. The 
standard repeated measures ANOVA method does not 
detect significant time changes in the concentrations of 
plasma citrulline within 6 hours after steers consumed 
rumen-protected citrulline, while a graphical analysis 
indicates that there exists a time effect. Here we 
describe three mixed model analyses that capture 
the time effect in a statistically significant way, while 
accounting for the correlations of measurements over 
time from the same steers. First, we allow flexible 
variance-covariance structures on our model. Second, 
we use baseline measurements as a covariate in our 
model. Third, we use percent-change from baseline 
as a data normalization method. In our data analysis, 
all these three approaches can lead to meaningful 
statistical results that oral administration of rumen-
protected citrulline enhances the concentrations of 
plasma citrulline over time in ruminants. This supports 
the notion that rumen-protected citrulline can bypass 
the rumen to effectively enter the blood circulation.

2. INTRODUCTION

Repeated measures data often arise from 
nutrition research with animals (1-4). For example, 
in a study to evaluate the degradation of amino acids 
from the rumen of adult steers (5), the concentrations 
of citrulline in plasma are repeatedly measured from 
each animal at six different time points (Figure 1). 
The scientific hypothesis of this study is that oral 
administration of citrulline may enhance its plasma 
concentrations over time in adult steers. This seems 
quite obvious when studying the average trajectory 
of the concentrations of plasma citrulline at each time 
point (Figure 3); it increases at earlier times (between 
time t = 0 and time t = 1) and eventually decreases 
after time t = 4. Therefore, the main question is to 
assess whether time is an important factor in the mean 
changes of plasma citrulline concentrations using valid 
statistical methods. 

One way to analyze this type of experimental 
data is to use a linear mixed effects model (6). With 
fixed time periods of measurement, this is also a 
repeated measures problem. This methodology can 
account for variability among and within the steers as 
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well as the correlation of the measurements within the 
steers. In this framework, there are multiple options for 
analysis, and we explore three such options, along with 
sub-options dealing with the within-steer correlations. 

Two crucial considerations drive the analysis 
of the data. One issue is that at the study baseline, 
there are very noticeable, large differences in the 
concentrations of plasma citrulline among the steers 
(Figure 1). If not accounted for, this unexplained 
variation greatly decreases the statistical power 
for detecting time effects. The other issue is how to 
capture the correlation of the repeated measured data 
within individual steers. Another potential issue is the 
possibility that the variance of the measurements may 
depend on time, often called heteroscedasticity.

The main objective of our paper is to 
introduce three sensible strategies based on a linear 
mixed effects model to generate valid statistical 
results. Our strategies capture the huge biological 
variations among all study subjects and account for the 
correlations between measurements within individual 
subjects. The first strategy uses a linear mixed effects 
model with a properly selected variance-covariance 
structure. This will help to account for the relationship 
between measurements, particularly from the same 
animals. The second strategy introduces baseline 
measurements as a covariate (7) in the model. This 
strategy enables us to decrease variability in random 
errors and, therefore, increases the probability of 
detecting the significant time effect on the mean 
responses in the post-baseline analysis. The last 
strategy uses percent-change from baseline as the 
response, where all measurements from the same 
experimental unit are divided by their baseline value 
for each unit (e.g., steer). Using percent-change from 
baseline is a sensible and objective way to remove 
variability among the steers, and increase statistical 
power of our analysis, while still having an easily 
understood structure. Finally, we will show that these 

three statistical approaches, when properly applied, 
detect significant changes in mean concentrations of 
plasma citrulline over time. 

3. THEORETICAL CONSIDERATIONS FOR 
REPEATED MEASURES DATA 

In general, mixed effects models (6) 
incorporate two effects: a fixed effect and a random 
effect. The fixed effect is the main parameter of 
interest, which affects changes in response variables 
across animals. In our steer data (5), the main interest 
is the change in mean concentrations of plasma 
citrulline for all steers at each time point t = 0.0, 0.5, 
1.0, 2.0, 4.0, and 6.0.  Thus, the fixed effects should 
be the time effect with six levels that affects those 
citrulline concentrations. For example, the intercept of 
the fixed effects will be the mean effect of the citrulline 
concentrations at time t =0. These time effects do not 
vary across the experimental units (e.g., steers). 

The random effect is a parameter, which 
varies among experimental units. This random 
parameter helps to account for subject-specific 
effects on response variables. In our steer data (5), 
we consider a random intercept as a random effect 
because the random intercept is associated with the 
particular steers, which are randomly selected from 
whole population of the interest (6). This implies that 
the concentrations of plasma citrulline over time will be 
different among the steers because of subject-specific 
effects. Particularly, the baseline measurements 
in our steer data differ considerably among six 
steers, meaning that the variability of the baseline 
measurements is very large. This huge variability 
makes distinguishing statistically significant time 
trends more difficult. 

In this paper, we consider a linear mixed effects 
model, where both the time effect and the random 
intercept are linearly associated with the response 
variables. Specifically, the mean concentrations of 
citrulline (response variable) are associated with the 
time effects having six levels (explanatory variables) 
at each time point t = 0.0, 0.5, 1.0, 2.0, 4.0, and 6.0 in 
what is called a cell-means form. The random intercept 
in our model helps to quantify the subject-specific 
effects on the mean concentrations of plasma citrulline 
among steers. 

4. VIOLATION OF STANDARD ASSUMP-
TIONS FOR RANDOM VARIABLES 

Our linear mixed effects model has two 
sources of random variables. One is the random 
baseline values (random intercept) for each steer, 
which captures the biological variation among steers 
at baseline and then subsequent time points. The 
other is the within-steer error among time points for 

Figure 1. The individual trajectories of the concentrations of citrulline 
in the plasma of all steers (n=6) over study time for the raw data. There 
is the high variability in citrulline concentrations among steers at the 
baseline as well as at the post-baseline time points.
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all steers, which comes from random fluctuations of 
measurements within a steer. 

To begin with, we can assume a random 
intercept model as the simplest mixed effects model. 
Under the random intercept model, both the random 
intercept and the within-steer error for all steers are 
assumed to be independent, normally distributed 
with mean zero and constant variance. However, the 
independence assumption for the within-steer error 
does not seem appropriate for our repeated measures 
steer data. The main reason is that any two response 
variables (e.g., the concentrations of plasma citrulline) 
taken on the same steer must be correlated with each 
other. Moreover, it is possible that the within-steer 
variability changes over time.

This simple random intercept model must be 
modified by addressing a correct variance-covariance 
structure for our repeated measures steer data (Figure 
1), which have a complex pattern of variability and 
correlation across time. To end this, we will explore 
more complex within-steer covariance structures in the 
following section. 

5. STATISTICAL ANALYSIS METHODS FOR 
THE STEER DATA 

We consider the three objective statistical 
approaches that can help explain all sources of 
variability and correlations in our steer data. They can 
also improve the possibility of detecting the significant 
time effect in our study. To find the most powerful 
model to fit our steer data, we will describe a data-
based strategy for exploring different possible variance 
and correlation possibilities.

5.1. Various variance-covariance structures

Mixed effects models allow flexible variance-
covariance structures to capture variability and 
correlation between response variables among time 
points for all animals. We consider the following five 
variance-covariance structures under our linear mixed 
model:

(1) Standard covariance structure  
The standard covariance structure assumes 

that all responses have the same variance over time, 
and that the correlation in the repeated measures 
within a steer is also constant. This is the same as 
having random intercepts in the model. 

(2) Unstructured covariance structure 
The unstructured covariance structure 

allows unequal variances and unequal correlations 
between the outcome variables measured at different 
time points. This structure is useful when there are a 
large number of observations in the data set, but it is 

problematic and numerically unstable in problems such 
as ours when the number of animals is very small. 

(3) Autoregressive with order 1
The autoregressive with order 1 (AR(1)) 

assumes equal variances and correlations that only 
depend on distance between two time points where 
response variables are measured. For the correlation 
parameter -1 ≤ ρ ≤ 1 for any two response variables, 
if the distance between two time points is m units, the 
correlation between those two responses is ρm.  For 
example, two response variables from the same steer 
that are closer in time are more correlated than those 
variables that are farther apart (8). The AR(1) structure 
assumes equally spaced time points.

(4) Exponential covariance structure 
The exponential covariance structure (6) 

generalizes the AR(1) structure to unequally spaced 
time points. All other assumptions are the same as 
ones for the AR(1) structure.

(5) Unequal variability over time 
The aforementioned variance-covariance 

structures in (1), (3) and (4) can be extended to have 
unequal variances (on main diagonal) across time 
points. The variance function takes different values 
depending on the particular steer at all different times 
of measurements.

To choose a correct variance-covariance 
structure, it is important for us to understand the 
experimental design, treatment structures, and 
the meaning of the covariance structures. Current 
literature (6, 9-10) summarizes various variance-
covariance structures. The goodness-of-fit criteria also 
can help us to choose a mixed effects model with a 
correct variance-covariance structure. For example, 
the Akaike information criterion (AIC) is an estimation 
algorithm that does not depend on user-choice. Among 
a set of models, the AIC chooses a model that loses 
the least information. The model with the lowest AIC 
is preferred. 

5.2. Using the baseline as a covariate 

The first way of handling baseline 
measurements is to use the baseline as a covariate 
in our linear mixed effects model. We fit this model 
with the baseline covariate to our steer data 
containing only measurements at time t = 0.5, 1.0, 
2.0, 4.0, and 6.0 (i.e., post-baseline measurements). 
This strategy will exclude the large variability of 
the baseline measurements from the steer data. 
It can help to reduce both among and within-
steers variations in the post-baseline analysis and, 
therefore, increase the probability of detecting the 
significant mean changes in response variables over 
post-baseline times. 
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5.3. Percent-change from baseline

The second method for handling baselines 
is the percent-change from baseline. The percent-
change from baseline normalizes the repeated 
response variables yit for steer i at time t, by computing 

,

where yio is the baseline response measured at time t 
=0 for all steers i.
  

The normalized baselines zio are all zeros at 
time t = 0 and, then, naturally excluded in the analysis. 
The post-baseline normalized responses zit are used in 
the analysis at time t = 0.5, 1.0, 2.0, 4.0, and 6.0. Using 
the percent-change from baseline method allows us 
to remove the massive baseline variation and, thus, 

can lessen post-baseline variation among animals. 
The important condition for using this method is that, 
because of taking ratios, the baselines yio must not be 
too close to zero. For example, if the baseline is very 
small such as yio = 0.001 for one animal, the percent-
change from baseline makes post-baseline normalized 
data zit very variable, which decreases statistical power 
of our analysis to capture the time effect. Thus, the 
normalizing data process not only reduces the existing 
high variability among animals at each time point, but 
also stabilizes the variability of within-animals error. 
It enables our statistical method to detect significant 
changes of mean response variables over time more 
easily, thus it is scientifically more justified rather than 
using the raw data. The graphical reasoning is given in 
Figures 2 and 3, which shows the individual trajectories 
and the mean trajectory of the normalized values for 
the concentrations of plasma citrulline from six steers. 

5.4. Test for the repeated measures steer data

After we applied our linear mixed effects 
model to the steer data (5), we conducted the analysis 
of variance test. For the repeated measures ANOVA 
test, we let mu.j be the population mean concentration 
of plasma citrulline at the j th level of the time factor, 
where j = 0.5, 1, 2, 4, and 6. We tested whether the 
mean concentrations of plasma citrulline mu.j are the 
same at different levels of the time factor, so that 
the null hypothesis is mu.0.5 = mu.1 = … = mu.6 for all 
animals.

6. ANALYSIS OF THE REPEATED MEASURES 
STEER DATA 

Using the R code (Section 8 of this paper), 
we applied our repeated measures ANOVA test to 
the steer data (5). Randomly chosen six steers were 
fed a diet, which was supplemented with 0.5 percent 
citrulline. We obtained blood from the jugular vein 
of each steer prior to feeding the treatment diet (t = 
0). We also took blood samples repeatedly at time t 
= 0.5, 1.0, 2.0, 4.0, and 6.0 hours from each steer 
on day 15 (Figure 1) after all steers consumed the 
supplement.

Our objective in these analyses is to assess 
whether the mean concentrations of citrulline in the 
plasma of all steers are different at each level of the 
time factor t = 0.0, 0.5, 1.0, 2.0, 4.0, and 6.0. This can 
be done by assessing the fixed time effect at each level 
of the time factor and the random intercept (random 
effect), which captures existing biological variation on 
the mean concentrations of plasma citrulline among 
steers at each time point. When we use percent-
change from baseline as a normalization procedure, 
we use the independent t-test to see if the rate of 
change in the concentrations of plasma citrulline is 
increasing at each time point.

Figure 2. The individual trajectories of the concentrations of citrulline 
in the plasma of all steers (n=6) over study time for the normalized data 
using the percent-change from baseline method. After normalizing 
measurements, the baseline measurements become 0 for all steers 
and, thus, the high variability in the citrulline concentrations were 
reduced among steers at each time point.

Figure 3. The average trajectories of the mean concentrations of 
citrulline for the raw data and for the normalized data, whose patterns 
are similar. The average concentrations of citrulline tend to increase 
very rapidly up to time t =1 hour, slightly increase between times t = 1 
hour and t = 4 hours and eventually decrease after time t = 4 hours. 
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We carried out three approaches in our 
analyses. First, we fit our linear mixed effects model 
with the exponential covariance structure by allowing 
unequal variances at all time points across all steers. 
For the post-baseline analysis, we handle the baselines 
by: 1) using the baseline as a covariate method, and 2) 
normalizing data by the percent-change from baseline 
method. Here, we also consider the same correlation 
structure used in the first method. Among other possible 
covariance structures, the AIC chose the linear mixed 
effects model with exponential covariance structure 
having unequal variances at all different time points 
across steers (our final linear mixed effects model for 
the analysis study). We compared the analyses results 
from our linear mixed effects models based on the three 
approaches to the result from the random intercept 
model, which assumes equal variance and constant 
correlations among all steers at all time points. 

6.1. Statistical results

Our linear mixed effects model using the 
three strategies outlined above can capture the 

biological variations in the concentrations of plasma 
citrulline among all steers and the repeated measures 
ANOVA test shows that the mean concentrations 
of plasma citrulline change over time. The overall 
time factor is statistically significant with p-values of 
<0.001 from the three approaches (Table 1). However, 
the traditional repeated measured ANOVA model 
based on the random intercept model failed to detect 
significant changes in the concentrations of plasma 
citrulline over time, with p-value 0.064 (Table 1). This 
is because the random intercept model cannot capture 
the important features of our steer data, which have 
varying correlations between response variables from 
the same steers over time and have different variances 
at all times across all steers.

With the normalized data using the percent-
change from baseline method, we found that mean 
concentrations of plasma citrulline increase during 
the initial time points after the oral administration of 
citrulline. Our analysis result shows that the effects of 
the fixed time factor at levels t = 1, 2 and 4 are positive 
with the corresponding small p-values, respectively, in 
Table 2.

6.2. Interpretation of results from statistical anal-
yses

Our results, which are properly analyzed 
by the three objective statistical approaches, have 
very important nutritional importance. Amino acids 
are extensively degraded in the ruminant rumen 
and that they may not have nutritional values 
unless encapsulated through time-consuming and 
expensive technologies (11). This is true for arginine 
and glutamine, because oral administration of these 
two amino acids do not increase their concentrations 
in the plasma of adult ruminants (5). However, 
rumen-protected citrulline can escape the rumen of 
adult steers to enter the blood circulation, thereby 
increasing citrulline concentrations in their plasma. 
This indicates that ruminal microbes do not degrade 

Table 1. Comparison of the repeated measures ANOVA results for time factor using four different analyses1

Table 2. Fixed time effects for the average of 
concentrations of citrulline at each time point1

Time Percent-change from baseline/ Average of 
concentrations of citrulline (p-value)

0.5 6.389 (0.184)

1 15.245 (0.037)

2 13.733 (0.005)

4 19.691 (0.001)

6 9.720 (0.257)

1The data indicate the fixed time effects on the concentrations of 
citrulline in the plasma of all steers (n=6) with the corresponding 
probability values (p-values) at each time point t = 0.5, 1, 2, 4, 6. This 
analysis proceeded under the percent-change from baseline method. 
Based on the p-values, we showed that the mean concentration of 
citrulline is statistically significantly increasing at time t = 1, 2, 4.

Procedure Repeated Measures ANOVA

Covariance P-value

Standard Method Random Intercept 0.064

Var-Cov Structure Hetero Exponential <0.001

Baseline Covariate Hetero Exponential <0.001

Percent-Change from Baseline Hetero Exponential <0.001

1 The data indicate the probability values from our analyses of the concentrations of citrulline in the plasma of steers (n=6) using the repeated measures 
ANOVA across the factor Time. There are four analyses: (a) the standard method that simply has a random intercept, forcing the equal variances and 
equal correlation across time; (b) the modification of (a) that allows different variance-covariance structures; (c) making the baseline concentration as 
a covariate, and (d) normalizing the data using percent-change from baseline as the response. For (b)-(d), we allow our linear mixed effects models to 
have different variance-covariance structures, and the goodness-of-fit criterion (AIC) chose each model with the exponential covariance structure having 
heteroscedastic (different) variances at the different time points. Method (a) shows no statistically significant effect largely because the variances change 
with time as do the correlations in our data. 
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the encapsulated citrulline. Our finding has important 
implications for human health. For example, it is known 
that arginine, the physiological product of citrulline via 
argininosuccinate synthase and lyase in virtually all cell 
types (12), can inhibit the early stage of tumorigenesis 
in the colon (13) that harbors a large amount of 
microbes. Because the conversion of citrulline into 
arginine consumes ammonia (a toxic molecule at high 
concentrations (14, 15)) and because arginine can 
be actively degraded by intestinal microbes (16), the 
use of oral citrulline rather than arginine may increase 
the bioavailability of arginine to colonocytes, thereby 
reducing risk for colon cancer.

7. CONCLUSION

Our analysis procedures using three 
statistical strategies sensitively captured the 
changes in the concentrations of plasma citrulline 
over time after steers received oral administration of 
citrulline. We considered a cell-means form of linear 
mixed effects model and correctly accounted for the 
correlations between measurements. In all methods, 
constructing a correct variance-covariance structure is 
important since it can correctly explain the important 
characteristics of the given data and affects to the 
analyses results. Adjusting for the variability of the 
baseline measurements is important in this steer 
data as there is high variability among animals at 
initial time point. Handling baseline measurements 
techniques using the baseline as a covariate and the 
percent-change from baseline methods will reduce 
those high variability among animals at the initial 
time and thereafter. Thus, the random errors in steer 
data become stable and it can improve statistical 
power of analysis to detect the significant overall time 
effect on the mean changes of the plasma citrulline 
concentrations. Particularly, we can use the percent-
change from baseline method as a data normalization 
technique as long as the baseline measurements are 
very far away from zero. The presented statistical 
procedures are not limited to the analysis of data 
for plasma amino acids. These procedures can help 
nutritionists to think independently when they hope to 
analyze their experimental data and answer their own 
scientific questions.

8. THE R CODE FOR DATA ANALYSIS

The following R code has been employed to 
analyze our repeated measures steer data using three 
statistical approaches: the various variance-covariance 
structure, the use of baseline as a covariate, and 
normalization of data as percent-change from baseline 
methods. To run this function, we have installed the 
“nlme” package in the R program. Data must be in the 
long format with animal id, group, time, and outcomes 
(e.g., amino acids) as columns in an excel file. The data 
file must be saved as a .csv file. This R code generates 

the data in Tables 1 and 2, as well as Figures 1, 2, 
and 3. 

## Input parameters: 
## num.aa: the number of amino acid                                                                                            
## n: the number of animals                                                                                                           
## time.points: the number of time points that are considered 
in the analysis                             
## interv.length: interval length for the y axis in the graph                                                      
## num.method: how many number of methods you will use 
in the analysis                                

anova.test<-function(num.aa=1, n=6, time.
points=6, interv.length=7, num.method=4,  file=”cit_data.
csv”){

      ## read the steer data 
      steer<- read.csv(file=file)

      �## true name of outcomes to return plots with true amino 
names

      true.AA<-names(steer)(4)
     
      ## assign column names
      colnames(steer)<-c(“Steer”, “Group”, “Time”, “AA”)
      
     ## dummy variables for steers and time
     �## steers are six distinct steers; time factor has 6 levels 

(t=0, 0.5, 1, 2, 4, 6), where 0 is the reference level
      tag<-factor(steer$Steer)
      time<-factor(steer$Time)
      
      �## preparation of steer data in the data.frame format for 

the analysis 
      �## tag is the categorical variable with 6 distinct steers; time 

is the categorical variables with 6 levels
      steer<-cbind(steer, tag, time)
      steer<-do.call(“data.frame”, steer)
      ## obtain specific name for amino acids to be analysis
      amino.names<-names(steer)((3+1))
      
##############################################
# Method 1: Modeling variance-covariance structure   ##
##############################################
###{{
      ## Initialization for the array of output                            
      �lme.model.selec<-array(0,dim=c(3, 3, num.aa), 

dimnames=list( c(“Model0”,
                                   �“Model1”, “Model2”), c(“Model”, “df”, 

“AIC”), “Method1” ))     
      �lme.results<-array(0,dim=c(2, 1, num.aa), dimnames=list( 

c(“intercept”, “Time”), 
                           c(“P-value”), amino.names ))
      �lme.cov.results<-array(0,dim=c(2, 1, num.aa), 

dimnames=list( c(“intercept”, “Time”),
                                  c(“P-value”), amino.names ))
      
     ## analysis for method 1
for (i in 1:num.aa){        
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        �## mixed model (cell-means form) with standard var-cov 
structure 

        model0<-lme(AA~time, data=steer, random=~1|tag) 
        lme.anova0<-anova(model0)
        
        ## summary for anova results -with constant
        lme.anova.summary0<-lme.anova0( , “p-value”)
        lme.results( , , i)<-round(lme.anova.summary0, 3)

	 ## various variance-covariance structure: 
	 ## 1) Standard structure 
	 ## 2) �Exponential (generalized AR(1)): correlation 

decreases depending on distance between two
	 ##      �observations from the same steer. Two observations 

are closer in time have higher correlation than
	 ##      those are further.                                                                                                                                                                                                                     
	 ## 3) �Exponential with unequal variances: 
	 ##     �varIdent: variance function structure allows different 

variances for each level of a factor 

          ## exponential model
          model1<-lme(AA~time, random=~1|tag, 
                          correlation=corExp(form = ~1|tag, nugget=TRUE), 
data=steer)
        
          ## exponential model with unequal variances
          �model2<-lme(AA~time, random=~1|tag, weights=varId-

ent(form=~1|tag),
                      �correlation=corExp(form = ~1|tag, nugget=TRUE), 

data=steer)
       
          �## Model selection: Standard cov vs. Exponential vs. 

Exponential with unequal variances          
          ## choose a model with smallest AIC                                                                                                 
          ano.test1<-anova(model0, model1,  model2)
          �lme.model.selec<-cbind(ano.test1(, “Model”),ano.test1 

(, “df”), ano.test1( , “AIC”))
          colnames(lme.model.selec)<-c(“Model”, “df”, “AIC”)
           �rownames(lme.model.selec)<-c(“standard”, “Exp”, “Exp.

hetero”)
          
          ## Choose the lowest AIC
          lme.anova1<-anova(model2)
        
          ## summary for anova results
          lme.anova.summary1<-lme.anova1( , “p-value”)
          lme.cov.results( , , i)<-round(lme.anova.summary1, 3)
      }
 ###}}  

###################################
# Method 2: Using baseline as a covariate   ##
###################################
          ## unique steer with tag number
          uniq.steer<-unique(steer$tag)
###{{
          ## Initialization for data structure
          trim.steer.base.cov<-vector(“list”, n)
                

          ##Create subdata by changing baseline as a covariate
          for (id in 1:length(uniq.steer)){

      
        # Initialization to have baseline as covariate
        subdata<-steer(steer$Steer==uniq.steer(id), )
        �base.amino<-matrix(100, nrow=(time.points-1), 

ncol=num.aa)

        �## get data structure for response variables at 
time t=0.5, 1, 2, 4, 6  and baseline covariates                                                                          

       for (j in 1:num.aa){          
             �base.amino( , j)<-rep(subdata( , amino.

names(j))(subdata$time==0), (time.points-1)) 
        }
        
        trim.subdata<-subdata(-1, )
        �colnames(base.amino)<-paste(“base.”, amino.

names, sep=””)

        ## subdata without baselines
        �trim.subdata.base.amino<-cbind(trim.subdata, 

base.amino)      
        �trim.steer.base.cov((id))<-trim.subdata.base.

amino
        

      }
            
          �## change data structure to data.frame from list type 
          �trim.steer<-do.call(“rbind.data.frame”, trim.steer.base.

cov)
            
          ## Initialization for analysis 
          �lme.base.model.selec<-array(0,dim=c(3, 3, num.aa), 

dimnames=list( c(“Model0”, “Model1”, 
                              “Model2”), c(“Model”, “df”, “AIC”), “Method2” ))
      lme.base.cov.results<-array(0,dim=c(3, 1, num.aa), 
dimnames=list( c(“intercept”, “baseline”, 
                         “time”), c(“p-value”), amino.names))
     
          �## Fit model with baseline covariate with specific var-

covariance structure  
          for (i in 1:num.aa){

   
        #with standard structure
        �m o d e l 3 < - l m e ( A A ~ 1 + b a s e . A A + t i m e , 

random=~1|tag, data=trim.steer)
      
        #with exponential structure
        �m o d e l 4 < - l m e ( A A ~ 1 + b a s e . A A + t i m e , 

random=~1|tag, 
                      �correlation=corExp(form = ~1|tag, 

nugget=TRUE), data=trim.steer)
        
        �#with exponential structure with unequal 

variances        
        �m o d e l 5 < - l m e ( A A ~ 1 + b a s e . A A + t i m e , 

random=~1|tag, weights=varIdent(form=~1|tag),
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                      �correlation=corExp(form = ~1|tag, 
nugget=TRUE), data=trim.steer)

      
        �## Model selection: Standard cov vs. 

Exponential vs. Exponential with unequal 
variances

       ## choose a model with smallest AIC                                                                                                 

       ano.test2<-anova(model3, model4,  model5)
       �lme.base.model.selec<-cbind(ano.test2( , 

“Model”),ano.test2( , “df”), ano.test2( , “AIC”))
   
       ## give column and row names
       �colnames(lme.base.model.selec)<-c(“Model”, 

“df”, “AIC”)
       �r o w n a m e s ( l m e . b a s e . m o d e l . s e l e c ) < -

c(“standard”, “Exp”, “Exp.hetero”)
        
        ## Choose the lowest AIC
        lme.anova2<-anova(model5)
        
        ## Anova results
         �l m e . a n o v a . s u m m a r y 2 < - l m e . a n o v a 2 

( , “p-value”)
        �lme.base.cov.results( , , i)<-round(lme.anova.

summary2, 3)
                      }  
###}}
     
####################################
# Method 3: Normalizing data as percent-change from 
baseline       ##
####################################
##{{
      ## Initialization for Normalized data   
      no.base.steer.list<-vector(“list”, n)
      uniq.steer.list<-vector(“list”, n)
      
      ## analysis for method 3
      for (id in 1:length(uniq.steer)){

        
        ## obtain subdata for each steer
        subdata<-steer(steer$Steer==uniq.steer(id), )
        
        �## Initialize matrix for normalized amino acids 

data at each time point
        �normamino<-matrix(100, nrow=time.points, 

ncol=num.aa, dimnames=list(c(“time0”,
                      �“time0.5”, “time1” , “time2” ,  “time4” , 

“time6”), amino.names))

        for (j in 1:num.aa){

          �## %-change from baselines: divide all 
response variables by baselines

          �baseamino<-subdata( , “AA”)(subdata$time==0)
          �normamino(, j)<-{{(subdata( ,”AA”)/

baseamino)}*100}-100
          �subdata(, c(paste(“norm.”, amino.names, 

sep=””)))<-normamino(, j)

        }
        
       �## normalized baselines are all 0; subdata has 
            only data at time 0.5, 1, 2, 4, 6 
            uniq.steer.list((id))<-subdata
       
       �## normalized baselines are excluded in the 

analysis
       no.base.subdata<-subdata(-1, )
       no.base.steer.list((id))<-no.base.subdata

      }
      
      �## normalized data set by using percentage-change from 

baseline     
      �nobase.trans.steer<-do.call(“rbind.data.frame”, no.base.

steer.list)
     
      ## exclude the original scaled response varibles 
      trans.steer<-nobase.trans.steer(,-((3+1):(3+num.aa)))
      
      �## obtain specific name for normalized amino acids to 

be analysis
      norm.amino.names<-names(trans.steer)(6)
      
      ## initialization for analysis results
      �lme.percent.model.selec<-array(0,dim=c(3, 3, num.aa), 

dimnames=list( c(“Model0”, 
                      �“Model1”, “Model2”), c(“Model”, “df”, “AIC”), 

“Method3” ))
      
      �lme.percent.results<-array(0,dim=c(1, 1, num.aa), 

dimnames=list( c(“Time”),
                      c(“P-value”), norm.amino.names))
      
      �## fit mixed effects model to percentage-based from 

baselines
      for (i in 1:num.aa){

        
        ##with standard structure
        �model6<-lme(norm.AA~-1+time, data=trans.

steer, random= ~1|tag )
                      ##with exponential structure
                      �model7<-lme(norm.AA~-1+time, 

data=trans.steer, random= ~1|tag,
                             �correlation=corExp(form = ~1|tag, 

nugget=TRUE))
                      �##with exponential structure with 

unequal variances    
                      �model8<-lme(norm.AA~-1+time, 

data=trans.steer, random= ~1|tag, 
             �w e i g h t s = v a r I d e n t ( f o r m = ~ 1 | t a g ) , 

correlation=corExp(form = ~1|tag, 
nugget=TRUE))

        
        �## Model selection: Standard cov vs. Exponential 

vs. Exponential with unequal variances          
        ## choose a model with smallest AIC                                                                                                 
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        ano.test3<-anova(model6, model7,  model8)
        �lme.percent.model.selec<-cbind(ano.test3(, 

“Model”),ano.test3(, “df”),  ano.test3(, “AIC”))
      
        ## column and row names
        �colnames( lme.percent.model .selec)<-

c(“Model”, “df”, “AIC”)
        �rownames(lme.percent.model.selec)<-

c(“standard”, “Exp”, “Exp.hetero”)
        
        ## Choose the lowest AIC
        lme.anova3<-anova(model8)
        
        ## analysis results
        lme.anova.summary3<- lme.anova3(,”p-value”)
        �lme.percent.results( , , i)<-round(lme.anova.

summary3, 3)        
                      }
  
###}}

###{{ Combine all analysis results using linear mixed effects 
model for Table 1 

      
      �combine.results<-array(0,dim=c(num.method, 1, 1), 

dimnames=list( c(“lme.stand”, “lme.cov”, 
                               �“lme.base.covr”, “lme.precent”), c(“p-

value”),”Time”))
  
      ## obtain results only for the time factor 
      ## 1) with standard covariance structure                                                                    
      �combine.results(“lme.stand”, ,”Time”)<-lme.results(2, , “AA”)
      �## 2) with heterogeneous variances and Exponential 

covariance structure                 
      �combine.results(“lme.cov”, ,”Time”)<-lme.cov.results(2, 

, “AA”)
      ## 3) with baselines covariates                                                                                   
      �combine.results(“lme.base.covr”, , “Time”)<-lme.base.cov.

results(3, , “AA”)
      �## 4) with normalized data based on percent-change from 

the baseline                           
      �combine.results(“lme.precent”, ,”Time”)<-lme.percent.

results(1, , “norm.AA”)
  
      zero.pval<-which(combine.results( ,”p-value”, “Time”)==0)
  
      �combine.results( ,”p-value”, “Time”)(c(zero.pval))<-format.

pval(combine.results( , “p-value”,   
                                         “Time”)(c(zero.pval)), eps=.001, ditis=2)
  
      ## return results without quotation mark on p-value
      print(combine.results, quote=FALSE)
###}}
  
###{{ do independent t-test if the rate of concentrations of 
citrulline at each time point is increasing  
  
      �## Initialization to have data summary: average and 

standard errors for each steer  

      �percent.avr.at.times<-array(0,dim=c(2, 5, num.aa), 
dimnames=list( c( “avr”, “sterr”),

                               �c( “time0.5”, “time1”, “time2”,”time4”, 
“time6”), norm.amino.names ))

      ## Initialization to have normalized data for each steer
      �percent.steer.at.times<-array(0,dim=c(6, 5, num.aa), 

dimnames=list( c( “steer1”, “steer2”, “steer3”, “steer4”, 
“steer5”, “steer6”), c( “time0.5”, “time1”, “time2”,”time4”, 
“time6”), norm.amino.names))

  
      �## produce summary statistics including averages and 

standard errors for each steer       
      for (i in 1:num.aa){
                               aa<-i+5

        ## summary statistics at time 0.5  
        �halfh.ind<-which(trans.steer$time==0.5); steer.

at.halfh<-trans.steer( , aa)(halfh.ind)
        �avr.at.halfh<-mean( steer.at.halfh); str.

at.halfh<-sd(steer.at.halfh)/sqrt(n)
    
        ## summary statistics at time 1
        �oneh.ind<-which(trans.steer$time==1); steer.

at.oneh<-trans.steer( , aa)(oneh.ind)
        �avr.at.oneh<-mean(steer.at.oneh); str.

at.oneh<-sd(steer.at.oneh)/sqrt(n)
    
        ## summary statistics at time 2
        �twoh.ind<-which(trans.steer$time==2); steer.

at.twoh<-trans.steer( , aa)(twoh.ind)
        �avr.at.twoh<-mean(steer.at.twoh); str.at.twoh<-

sd(steer.at.twoh)/sqrt(n)
    
        ## summary statistics at time 4
        �fourh.ind<-which(trans.steer$time==4); steer.

at.fourh<-trans.steer( , aa)(fourh.ind)
        �avr.at.fourth<-mean(steer.at.fourh);  str.

at.fourth<-sd(steer.at.fourh)/sqrt(n)
    
        ## summary statistics at time 6
        �sixh.ind<-which(trans.steer$time==6); steer.

at.sixh<-trans.steer( , aa)(sixh.ind)
        �avr.at.sixth<-mean(steer.at.sixh);  str.at.sixth<-

sd(steer.at.sixh)/sqrt(n)
      
        �### average of outcomes at each time points 

###
        �avr<-cbind(avr.at.halfh, avr.at.oneh, avr.

at.twoh,  avr.at.fourth, avr.at.sixth)
    
        �### standard errors of outcomes at each time 

points ###
        �se<-cbind(str.at.halfh,  str.at.oneh, str.at.twoh,  

str.at.fourth, str.at.sixth)
        
        stat.summary<-round(rbind(avr, se), 4)
    
        percent.avr.at.times( , , i)<-stat.summary
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        �percent.steer.at.times( , , i)<-cbind(steer.
at.halfh,  steer.at.oneh, steer.at.twoh,

                               steer.at.fourh,steer.at.sixh)
}
  

      ##Initialization for independent t-test results 
      �summary.ttest<-array(0,dim=c(5, 4, num.aa), 

dimnames=list( c( “time0.5”, “time1”, “time2”, 
      �“time4”, “time6”), c( “outcome.avr”, “T-value”, “num.

para”,”p.value”), true.AA))
  
################################################
#################
## independent t-test if slope of each level of time factor is 
increasing or not    ##
## Test if                                                                                                               ##
##                   H_0: mu_{t}=0 at each time point t               ##                      
##                            H_1: mu_{t}>0                                                                     ##                      
################################################
#################
for (i in 1:num.aa){

      for (t in 1:(time.points-1)){

        �test.time.eff<-t.test(percent.steer.at.times(,t,i), 
mu=0, var.equal=FALSE,   

                               �alternative=”two.sided”, conf.
level=0.95)

      
        �summary.ttest(t, , i)<-as.numeric(cbind(test.

time.eff$estimate, test.time.eff$statistic,
                               �test.time.eff$parameter, test.time.

eff$p.value))
}

      }

      summary.ttest<-round(summary.ttest, 3)
###}}
  
###{{ Produce Figure 1. Individual trajectories by original 
scaled data  
  
      for (aa in 1:num.aa){

          
        substeer<-steer
          
        ## sort tag numbers for distinct steers 
        steer.tag<-unique(substeer$Steer)
          
        ## choose unique steer 
        �one.uniq.steer<-which(substeer$Steer==steer.

tag(1))
        one.uniq.steer.data<-substeer(one.uniq.steer,)
          
        ## obtain amino acids name :  “CIT”    
        min.amino<-min(substeer( , “AA”)) 
        max.amino<-max(substeer( , “AA”))
        �ylim<-round(c(min.amino-5, max.amino+25), 

0)
          

        ## colors   
        �cols<-c(“black”, “blue”, “red”, “seagreen”, 

“purple”, “orange”)           

        ## plot names for saving 
        file0<-paste(“”,  true.AA, sep=””)
        origin.graph<-paste0(file0, “_raw_data”, “.pdf”)
        pdf(file=origin.graph, width=8, heigh=6)
      
        ## obtain names of amino acids         
        yvalues<-one.uniq.steer.data( , “AA”)
        �ylab.name<-paste(“concentrations of “, true.

AA,sep=””)          
          
        ## do plot
          
        plot(one.uniq.steer.data$Time, yvalues, 
            �ylim=ylim, type=”o”, ylab=ylab.name, xlab=”time”, 
            col=cols(1), cex.lab=1.5, lwd=2.5, axes=F)
          
        for (id in 2:n){
            
                �uniq.steer<-which(substeer$Steer==steer.

tag(id))
                uniq.steer.data<-substeer(uniq.steer,)
            
                �lines(uniq.steer.data$Time, uniq.steer.

data(,”AA”), type=”o”, lty=id, col=cols(id), 
                       lwd=2.5) 
            
        }
          
        ## x-axis and y-axis frame for Figure 1
        �a x i s ( 1 , a t = c ( o n e . u n i q . s t e e r .

da ta$Time) , labe ls=c(one .un iq .s teer.
data$Time), lwd=2.5)

        interval<-(ylim(2)-ylim(1))/interv.length
         �y l a b s < - r o u n d ( s e q ( y l i m ( 1 ) , y l i m ( 2 ) , 

by=interval),0)
        axis(2,at=c(ylabs),labels=c(ylabs), lwd=2.5)  
          
        ## legend 
        �legend(0,max(ylabs),paste(“Steer “, steer.tag, 

sep=””)(1:3), col=cols(1:3),
                      lty=c(1:3), bty=”n”, cex=1.3, lwd=2)
         
        �legend(2,max(ylabs),paste(“Steer “, steer.tag, 

sep=””)(4:n), col=cols(4:n),
                     lty=c(4:n), bty=”n”, cex=1.3, lwd=2)
                    
        dev.off()
        }
        

###end Figure 1}}
  
###{{ Produce Figure 2. Individiual trajectories by normalized 
data using percentage-changes from baselines      

         
      ## call normalized steer data
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      �full.trans.steer<-do.call(“rbind.data.frame”, uniq.steer.list)
        
      for (aa in 1:num.aa){

        aa<-1;  j<-3+aa    
          
        �## remmove original scaled Citrulline 

concentraions 
        ## with dummy variables for tag and time
        �trans.substeer<- full.trans.steer(,-((3+num.

aa):(5+num.aa)))
          
        ### sort tag numbers for distinct steers ###
        steer.tag<-unique(trans.substeer$Steer)
          
        ### choose unique steer ###
        �one.uniq.steer<-which( trans.substeer$Steer= 

=steer.tag(1))
        �one.uniq.steer.data<- trans.substeer(one.uniq.

steer,)
          
        ### obtain amino acids name ###
        �amino.name<-as.character(names(one.uniq.

steer.data)(4))
          
        min.amino<-min(trans.substeer(,amino.name)) 
        �max.amino<-max(trans.substeer(,amino.

name))
        ylim<-round(c(min.amino-5, max.amino+40), 0)

        �### plot name for Figure file and create Figure 
file using pdf format

        �file1<-paste(“”, true.AA, sep=””); percent.
graph<-paste0(file1,”_percent_change”,”.
pdf”)

        pdf(file=percent.graph, width=8, heigh=6)

        ## obtain names of amino acids   
        �norm.yvalues<-one.uniq.steer.data(,”norm.

AA”)
        �norm.ylab.name<-paste(“concentrations of 

norm.”, true.AA,sep=””)
          
        ## do plot 
        �plot(one.uniq.steer.data$Time, norm.yvalues, 

ylim=ylim, type=”o”, 
        �ylab=norm.ylab.name, xlab=”time”, col=cols(1), 

cex.lab=1.5, lwd=2.5, axes=F)
          
        for (id in 2:n){
           
                               �un iq . s tee r< -wh ich ( t rans .

substeer$Steer==steer.tag(id))
                               �u n i q . s t e e r . d a t a < - t r a n s .

substeer(uniq.steer, )
            
                               �lines(uniq.steer.data$Time, 

uniq.steer.data( , “norm.AA”), 
type=”o”, lty=id, 

                               col=cols(id), lwd=2.5) 

        }          
          
        ## grid for x-axis and y-axis           
        �a x i s ( 1 , a t = c ( o n e . u n i q . s t e e r .

da ta$Time) , labe ls=c(one .un iq .s teer.
data$Time), lwd=2.5)

        interval<-(ylim(2)-ylim(1))/interv.length
        �ylabs<-round(seq(ylim(1),ylim(2), by=interval),0)
        axis(2,at=c(ylabs),labels=c(ylabs), lwd=2.5)  
                    
        ## legend 
        �legend(0,max(ylabs),paste(“Steer “, steer.tag, 

sep=””)(1:3), col=cols(1:3),
                 lty=c(1:3), bty=”n”, cex=1.3, lwd=2)
        �legend(2,max(ylabs),paste(“Steer “, steer.tag, 

sep=””)(4:n), col=cols(4:n),
                 lty=c(4:n), bty=”n”, cex=1.3, lwd=2)
          
                 dev.off()

                }
### end of Figure 2}}
  
###{{ Produce Figure 3
           
      �## Initialization to have data summary: average and 

standard errors for each 
      �origial.scaled.summarystat<-array(0,dim=c(2, 6, num.aa), 

dimnames=list( c( “avr”, “sterr”),
                                    �c(“time0”, “time0.5”, “time1”, 

“time2”,”time4”, “time6”),  paste(“orig.
scaled.”, true.AA, sep=””)))

  
      �##For original scaled data , obtain summary statistics, 

mean and standard errors
      for (i in 1:num.aa){

        
        aa<-i+3;
        
        ## summary stat at time 0
        init.ind<-which(steer$Time==0)
        �avr.at.zeroh<-mean(steer( , aa)(init.ind)); sd.at.

zeroh<-sd(steer( , aa)(init.ind))/sqrt(n)
        
        ## summary stat at time 0.5
        halfh.ind<-which(steer$Time==0.5)
        �avr.at.halfh<-mean(steer( , aa)(halfh.ind)); 

sd.at.halfh<-sd(steer( , aa)(halfh.ind))/sqrt(n)
        
        ## summary stat at time 1
        oneh.ind<-which(steer$Time==1)
        �avr.at.oneh<-mean(steer( , aa)(oneh.ind)); 

sd.at.oneh<-sd(steer( , aa)(oneh.ind))/sqrt(n)
        
        ## summary stat at time 2
        twoh.ind<-which(steer$Time==2)
        �avr.at.twoh<-mean(steer( , aa)(twoh.ind)); 

sd.at.twoh<-sd(steer( , aa)(twoh.ind))/sqrt(n)
        
        ## summary stat at time 4
        fourh.ind<-which(steer$Time==4)
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        �avr.at.fourth<-mean(steer( , aa)(fourh.ind)); 
sd.at.fourth<-sd(steer( , aa)(fourh.ind))/sqrt(n)

        ## summary stat at time 6
        six.ind<-which(steer$Time==6)
        �avr.at.sixth<-mean(steer( , aa)(six.ind)); sd.at.

sixth<-sd(steer( , aa)(six.ind))/sqrt(n)
        
        �## combine summary statistics at each time 

point
        �avr<-cbind(avr.at.zeroh, avr.at.halfh, avr.

at.oneh, avr.at.twoh,  avr.at.fourth, avr.
at.sixth)

        �se<-cbind(sd.at.zeroh, sd.at.halfh, sd.at.oneh, 
sd.at.twoh,  sd.at.fourth, sd.at.sixth)

          
        stat.summary<-round(rbind(avr, se), 2)
         �origial.scaled.summarystat( ,  ,i)<-stat.

summary  
                }   

  
###{{ Figure 3 for the average trend for the concentrations 
of citrulline

                                        
        ## obtain name for Figure file in pdf format
        �file2<-paste(“”,  true.AA, sep=””); avr.graph<-

paste0(file2,”_mean_concentrations”,”.pdf”)
        pdf(file=avr.graph, width=8, heigh=6)

        ##obtain x and y values 
        time.vec<-c(unique(steer$Time))
                               �avr.raw.yvalues<-origial.scaled.

summarystat(,,1)(“avr”, )
        
        �## add 0 at time0 for the percentage-changes 

from baselines
        �avr.norm.yvalues<-c(0, percent.avr.at.times(,,1)

(“avr”, ))
      
        ## range of y values and name of y axis 
        ylim<-c(-5, 160)
        �ylab.name<-paste(“mean concentrations of “, 

true.AA,sep=””)

        ## do plot
        ## raw data
        �plot(time.vec, avr.raw.yvalues,  ylim=ylim, 

type=”o”, ylab=ylab.name, xlab=”time”, 
        �col=cols(1), cex.lab=1.5, lwd=2.5, lty=1, 

axes=F)
        ## normalized data
        �lines(time.vec,  avr.norm.yvalues, type=”o”, 

col=cols(2), cex.lab=1.5, lwd=2.5, lty=2)
        
        ## legend 
        �legend(0,160, c(“Raw Data”, “%-change from 

Baseline”), col=cols(1:2),
                               �lty=c(1, 2), bty=”n”, cex=1.3, 

lwd=2)
        

        ## grid for x and y axis
                               �axis(1,at=c(time.vec),labels=c(time.

vec), lwd=2.5)
        interval<-(ylim(2)-ylim(1))/interv.length
        �y l a b s < - r o u n d ( s e q ( y l i m ( 1 ) , y l i m ( 2 ) , 

by=interval),0)
        axis(2,at=c(ylabs),labels=c(ylabs), lwd=2.5)  
        
        dev.off()
        

### end of Figure 3}}
        

                �## returns list of results: Tables 1, 2  and Figures 1,2 
and 3 in your directory

                return(list(summary.ttest=summary.ttest ))

}## end of analysis 
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