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1. ABSTRACT 

Argonaute (AGO) proteins play key roles in 

animal physiology by binding to small RNAs and 

regulating the expression of their targets. In 

mammals, they do so through two distinct pathways: 

the miRNA pathway represses genes through a 

multiprotein complex that promotes both decay and 

translational repression; the siRNA pathway 

represses transcripts through direct Ago2-mediated 

cleavage. Here, we review our current knowledge of 

mechanistic details and physiological requirements 

of both these pathways and briefly discuss their 

implications to human disease. 

2. A LONG EVOLUTIONARY ROAD FOR 

ARGONAUTE PROTEINS 

In 1998, Karen Bohmert and colleagues 

identified a mutation that pleiotropically affected plant 

architecture (1). The mutants—with short and pointy 

cotyledons and narrow rosette leaves—resembled a 

small squid, and so were named argonaute. 

Argonaute 1 (AGO1), the target of the mutations, 

turned out to be one of ten related genes present in 

the Arabidopsis thaliana genome (2), and the 

founding member of a large protein family that 

extends throughout all domains of life. 

Argonaute proteins are present in the 

majority of sequenced eukaryotic genomes (3)—

Saccharomyces cerevisiae being one notable 

exception (4)—but are only sparsely scattered across 

prokaryotes (3). Eukaryotic and prokaryotic Ago 

proteins (eAgo and pAgo) share very low sequence 

identity, and yet their structure and functional 

features can be remarkably similar. Crystal structures 

of bacteria (5-7), archea (8), yeast (9), and human 

Argonautes (10; 11) show all these proteins have a 

bi-lobed architecture, with one lobe containing the N-

terminal and the PAZ (PIWI-AGO-ZWILLE) domains 

and the other the MID and PIWI (P element-induced 

wimpy testis) domains (Figure 1a,b). The central cleft 

formed between the two lobes serves in all cases to 

accommodate a short nucleic acid guide and its 

complementary target, with the 3’ hydroxyl group and 

5’ phosphate of the guide binding to the PAZ and 

PIWI domains respectively. The PIWI domain is 
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structurally similar to ribonuclease H and, in catalytic 

competent Argonautes, contains an RNase H-like 

active tetrad (9) that catalyzes the cleavage of nucleic 

acids with extensive complementarity to the guide. 

Despite the well-conserved structure of the 

four core domains, their relative positions differ 

between eukaryotes and prokaryotes, which together 

with additional structural differences (10)—such as 

extended loops and secondary structures in the 

eukaryotic proteins—explain how the same basic 

structure has acquired distinct properties and 

functions throughout evolution (reviewed in (12)). 

Some pAgos for example have higher affinity for DNA 

than RNA (5; 13) and both DNA and RNA guided 

prokaryotic Argonautes seem to be involved in simple 

host-defense systems (3; 14-16) in which catalytically 

active Agos are able to recognize and cleave foreign 

 
 

Figure 1. Structure of mammalian Argonaute proteins. (a) Schematic representation of human Ago2, showing the position of functional 

domains along the peptide sequence. (b) Crystal structure of human Ago2 (10). Protein domains are colored as in (a). In addition, the position 

of residues important for catalytic activity are highlighted as in panel (c). (c) Schematic representation of all four human Argonaute proteins 

highlighting the location of amino-acid sequences known to play a role in cleavage competence. The general position of functional domains is 

shown on top. The specific amino-acid sequences for each of the proteins is are shown below. 
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DNA as stand-alone proteins (3; 15). In eukaryotes 

on the other hand, Argonautes recognize exclusively 

RNA molecules as guides. Eukaryotic Agos do not 

act in isolation, but instead are imbedded in complex 

regulatory networks. Within these networks, eAgos 

interact with a variety of other cellular proteins likely 

through eukaryotic-specific insertion elements that 

provide an interaction surface for binding partners 

(9). Despite relying on the same effector protein, the 

pathways centered on eukaryotic Agos are far from 

being homogenous. Instead, they can involve 

processes as diverse as transcriptional silencing via 

heterochromatin formation (17) or DNA methylation 

(18), post-transcriptional RNA degradation via 

cleavage (19) or deadenylation (20), as well as 

translational inhibition (21). The diversity of the 

pathways is also the result of a variety of sequence 

adaptations that alter the protein’s properties and its 

binding to accessory proteins (12). 

Eukaryotic Argonautes can be divided 

into two major and presumably paralogous, clades. 

The AGO clade comprises proteins homologous to 

Arabidopsis thaliana AGO1 and are involved in 

post-transcriptional RNA silencing processes that 

are relatively ubiquitous in most organisms (22; 

23). The PIWI clade comprises proteins related to 

the Drosophila melanogaster Piwi that play crucial 

roles in silencing transposable elements in the 

germline (24). Members of the AGO and PIWI 

clades are represented in the majority of the 

eukaryotic supergroups (25; 26), suggesting that 

they originated from a duplication that predated the 

last common eukaryotic ancestor (12). Given that 

Dicer-like proteins and RNA-dependent RNA 

polymerases (RdRP)—which with eAgos 

constitute the core eukaryotic RNA interference 

(RNAi) machinery—show a similarly widespread 

taxonomic distribution, it seems likely this ancestor 

already had a fully functional RNA interference 

machinery (25). The role of this ancestral 

machinery is unknown but given that it has been 

lost multiple times during evolution it is likely that 

it was not essential to life (25). The prevalent 

hypothesis is that, like in prokaryotes, early 

eukaryotic RNAi was a host-genome defense 

mechanism against invading nucleic acids, 

possibly from both viruses (via a cytoplasmic AGO 

protein) and transposons (via a nuclear PIWI 

protein) (25). Supporting this notion, these host 

defense functions remain well represented in 

current day eukaryotes (27-31) and are still a 

primary function of PIWI proteins (32) 

Even if eukaryotic AGO proteins did start 

out as part of a defense system against foreign 

nucleic acids, they have since been co-opted for the 

regulation of endogenous RNAs. In fact, transcript 

regulation downstream of AGO has become 

essential as evidenced by the severity of phenotypes 

seen when these proteins (Table 1) or components 

of their pathway (33) are disrupted. Yet, despite their 

undisputed importance in regulating animal 

physiology, the details of how these proteins help 

shape the transcriptome of an organism are not yet 

fully understood. Here, we discuss the current 

understanding of gene regulation downstream of 

AGO proteins with a particular focus on their roles 

and regulations in the context of mammalian 

organisms. 

3. NOT ALL AGOS ARE CREATED EQUAL 

Following the divergence of AGO and PIWI 

proteins, the AGO clade underwent a significant 

expansion, particularly in plants and metazoans (34). 

While S. pombe contains a single AGO protein that 

mediates both transcriptional and posttranscriptional 

silencing (35), the Arabidopsis thaliana genome 

encodes ten different AGOs (2); Caenorhabditis 

elegans five (36), Drosophila two (37), and mice and 

humans four (Ago1-4) (26). This expansion of the 

AGO clade may be associated with further 

specialization of the proteins. In Drosophila for 

example, Ago2’s function is required for 

posttranscriptional gene silencing by siRNAs, while 

Ago1 is required for gene silencing via the miRNA 

pathway (38). Arabidopsis thaliana’s AGO1 is also 

associated to gene silencing by miRNAs (39), 

whereas AGO4 is involved in DNA and histone 

methylation (40). Evidence of functional 

specialization is also observed in mammals where 

Ago2 is the only member known to have retained 

catalytic activity and consequently the ability to 

cleave RNAs that have full complementarity to the 

bound small RNA guide (41; 42). Curiously, this 

functional specialization is also reflected in the 

genomic distribution of the proteins: in both mouse 
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and human, the genes for Ago1, Ago3, and Ago4 are 

clustered in tandem at a single chromosomal location 

(chromosome 1 in humans, chromosome 4 in mice), 

while Ago2 is expressed from an independent locus 

(chromosome 8 in humans and chromosome 15 in 

mice). Presumably this is the result of the duplication 

of an ancestral AGO and subsequent expansion and 

catalytic inactivation of one of the copies. 

Structural and biochemical studies have 

defined some of the sequence features that have 

rendered three of the four mammalian AGOs 

catalytically inactive (43-47). First, endonucleolytic 

cleavage requires the presence of a complete 

catalytic tetrad composed of the DEDH motif (where 

D, E and H refer to aspartic acid, glutamic acid and 

histidine, respectively) (9). This motif is intact in both 

Ago2 and Ago3 but has diverged into the inactive 

DEDR and DEGR motifs in Ago1 and Ago4 

respectively (Figure 1c). In addition to loss of the 

catalytic tetrad, both Ago1 and Ago4 have a short 

sequence in the PIWI domain that prevents cleavage 

even when the catalytic tetrad has been restored (43; 

45; 47). This sequence—which overlaps with the 

eukaryotic-specific insertion element known as cS7 

(44)—has been narrowed down to the mutation of a 

phenylalanine to a leucine at position 674 of Ago1 

(45) which likely leads to improper orientation of the 

Table 1. Argonaute knockout phenotypes in mice  

Targeted 

Genes 

Modification Tissue/cell 

type 

Phenotype Reference 

Ago1 Details not published  Whole animal Viable. No detailed characterization reported. 239 

Ago2 Gene trap insertion downstream exon1 

resulting in truncated protein that is 7 amino 

acids long 

Whole animal Homozygous animals die before embryonic day 

(E) 7.5.  

269 

Ago2 Gene trap insertion into intron 12 which 

removes most of the PIWI domain. 

Whole animal Embryonic arrest before E9.5 is accompanied by 

ectopic Brachyury expression and mesoderm 

expansion.  

270 

Ago2 Insertional disruption strategy creating Ago2 

hypomorphic allele. The insertion comprised 

of a duplication of exons 3-6 and a 10kb 

vector sequence. 

Whole animal Embryonic arrest around E9.5. Abnormal placental 

development. Tetraploid aggregation allows 

embryogenesis to proceed further but does not 

yield viable embryos. 

42,188  

Ago2 Conditional knockout via crossing Ago2-

floxed mice with Zp3-Cre strain 

Oocytes Female infertility. Oocytes are able to mature but 

have abnormal spindles and chromosomal 

arrangement 

192 

Ago2 Catalytic inactivation via D598A point 

mutation in PIWI domain generates Ago2ADH 

animals. 

Whole animal Homozygous animals die perinatally. No defects 

aside from anemia reported. 

188,191 

Ago2 Ago2 floxed (Ago2fx) and Ago2ADH strains 

crossed to generate Ago2fx/ADH animals. 

Recombination of the floxed allele driven by 

vav1-Cre. 

Hematopoietic 

System 

mice are viable, survive into adulthood, and breed 

normally but have anemia 

191 

Ago2 Ago2-floxed and Ago2ADH strains crossed to 

generate Ago2fx/ADH animals. Recombination 

of the floxed allele driven by Zp3-Cre. 

Oocytes meiotic maturation is impaired, with severe defects 

in spindle formation and chromosome alignment 

that lead to meiotic catastrophe 

193 

Ago3 Details not published Whole animal Viable. No detailed characterization reported. 239 

Ago4 Floxed Ago4 in which exons 3-17 are excised 

upon Cre induction 

Whole animal Males have reduced testis size and lower sperm 

counts. Failure to silence many sex-linked 

transcripts, resulting in apoptosis. spermatogonia 

enter prophase I prematurely 

238 

Ago1; 

Ago3 

Details not published Details not 

published 

Homozygous animals born at sub-Mendelian 

ratios. Heterozygous animals and surviving 

homozygous show increased susceptibility to 

Influenza A viral infection 

239 
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substrate relative to the catalytic center (44; 45). The 

same amino acid is mutated into a methionine in 

Ago4 (Figure 1c). Underscoring the importance of 

this residue, generating a F676L mutation in Ago2 

(which corresponds to position 674 in Ago1) almost 

completely abolishes its cleavage ability (45). 

Prolines at position 670 and 675 in Ago1’s cS7 

element may also contribute to cleavage inhibition by 

making the element protrude into the nucleic-acid-

binding channel (44; 45). Likewise, an insertion 

element near the catalytic residue E629 of Ago4 

further contributes to cleavage inactivity likely by 

misplacing catalytic residues relative to the RNA 

substrate (47) (Figure 1c). 

Unlike Ago1 and Ago4, Ago3 contains a 

PIWI-domain that is fully competent for cleavage (43-

45). Yet, this protein remains catalytically inactive in 

vitro suggesting that additional structural elements 

outside the PIWI domain are critical for 

endonucleolytic activity. At least two such elements 

seem to reside at the N-terminus of the Ago2 protein 

(43; 45-47) (Figure 1c). The first element (NT1) has 

been lost in all three catalytic dead proteins and lies 

within amino acids 44 and 48 of Ago2 (46; 47). 

Mutational swap experiments between Ago2 and 

Ago3 suggest that the methionine at position 47 is the 

critical residue in this region required for cleavage 

(46). A second element (NT2) has been lost only in 

Ago3 and Ago4 (43; 45-47) and has been narrowed 

down to the minimal region between residues 137 

and 150 on Ago2 (47) (Figure 1c). That the N-

terminus of the protein influences target cleavage is 

not entirely unexpected given that the N-PAZ lobe 

has also been shown to affect slicing activity in 

Drosophila melanogaster (48) and that the N-terminal 

domain of Ago2 has been implicated in both RNA 

duplex unwinding and passenger-strand cleavage 

(49). What is surprising is that Ago3 has conserved a 

catalytically competent PIWI domain despite its 

apparent inability to cleave targets in vitro. One 

tantalizing possibility is that cleavage by Ago3 is 

regulated in vivo by a yet unidentified binding partner 

whose interaction with Ago3 elicits conformational 

changes that correctly align the target RNA with the 

catalytic tetrad (43; 46). Alternatively, it is possible 

that the cleavage activity of Ago3 has so far been 

overlooked because its substrate requirements 

happen to be distinct from those of Ago2, and thus 

not often met by in vitro cleavage assays (50). 

Regardless of the structural features that 

make each protein unique, all mammalian 

Argonautes are able to engage in target repression 

via the microRNA (miRNA) pathway, in which a short-

stretch of sequence complementarity between guide 

and target leads to target repression via mRNA decay 

and/or translation inhibition. Ago2 can also associate 

with endogenous small-interfering RNAs (endo-

siRNAs) whose extensive complementarity to a 

target induces cleavage via the protein’s catalytic 

domain. Though largely different in their cellular 

origin and mode of action, both pathways seem to be 

essential to life through processes that are often 

intertwined in mammals. 

4. BIOGENESIS OF SMALL RNA GUIDES IN 

MAMMALS 

MiRNAs and endo-siRNAs are the main 

small RNA partners of AGO proteins in mammals. 

They both share a final biogenesis step in which 

Dicer cleaves double-stranded precursors into small 

RNA duplexes just prior to them being loaded into 

Argonaute to act as guides. And yet, despite this 

common step, the upstream processes that generate 

the two Dicer substrates are largely different. 

MicroRNAs are by far the best 

characterized guides for AGO proteins in metazoans. 

They are transcribed by polymerase II as long 

“primary miRNA transcripts” (pri-miRNAs) that like 

messenger RNAs are both capped and 

polyadenylated. Pri-miRNAs contain a characteristic 

hairpin secondary structure that—generally 

speaking—is cleaved in the nucleus by the 

microprocessor complex, containing a single Drosha 

protein and two molecules of its cofactor Dgcr8. 

Cleavage by the microprocessor at the base of the 

hairpin releases a precursor (pre-miRNA) of about 

60-70 nucleotides in length (51). Given that pri-

miRNAs can have very diverse sequences it has not 

always been clear how they are specifically 

recognized by the microprocessor or how it 

determines the precise location of the cut. It turns out 

that pri-miRNAs share common structural features 

that dictate how processing occurs (52). For one, the 

stem of the hairpin is an imperfectly complementary 
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double-stranded structure of approximately 33 base 

pairs in length flanked by two stretches of single-

stranded RNA (ssRNA) at the base, and a ssRNA 

loop at the apex. Drosha recognizes the basal 

junction between the ssRNA segments and the 

double-stranded RNA (dsRNA) stem and, as long as 

the pri-mRNA is properly folded, can on its own 

faithfully cleave the RNA eleven base-pairs away 

from the junction. Yet, it’s only in the presence of 

Dgcr8 that this activity becomes efficient. Dgcr8 

binds as a dimer to the apical junction where the 

double-stranded stem meets the ssRNA loop (52). In 

addition, it interacts with Drosha via the C-terminal 

tail, stabilizing the association of the endonuclease 

with the RNA. Small primary sequence motifs at both 

the basal and apical ends may also strengthen the 

binding of both proteins to the pri-mRNA and confer 

asymmetry to the association (52). Once the hairpin 

is released, it is shuttled into the cytoplasm by 

Exportin-5 and RAN-GTP (53) where it is further 

processed by Dicer to generate the 20-24 nucleotide-

long (nt) miRNA duplex (54) that gets loaded into an 

Argonaute protein. Like Drosha, Dicer binds to its 

substrate in a sequence-independent manner and 

acts as a “molecular ruler” cutting the double 

stranded molecule at a defined distance from its 

terminus. Both enzymes cleave the RNA via RNase 

III domains and thus their sequential activity 

generates a molecule with the typical 2-nt 3’ 

overhang at both ends. 

Like miRNAs, endo-siRNAs are small 

endogenous RNAs—approximately 20-26 

nucleotides in length—generated through Dicer 

cleavage. But unlike miRNAs their biogenesis is 

independent of the microprocessor complex in the 

nucleus (55). In fact, instead of being derived from 

precursors with the typical short hairpin stem loop, 

endo-siRNAs are processed from long dsRNAs 

whose origin and biogenesis can vary widely 

between species. Indeed, for a long-time endo-

siRNAs were only detected in organisms that 

possess RNA-dependent RNA polymerases 

(RdRPs) Caenorhabditis elegans (56; 57) and fission 

yeast (58). In these organisms, RdRPs play a critical 

role in the biogenesis of the small RNAs and in the 

amplification of the RNA interference response. 

RdRPs transcribe single stranded RNA (ssRNA) 

using the target RNA as a template. This generates 

an abundant pool of endo-siRNAs. Because flies and 

vertebrates do not encode RdRPs, it was generally 

assumed that they lacked this class of RNAs. This 

paradigm shifted when a series of studies reported 

the identification of siRNAs mapping to endogenous 

loci in both flies and mice (59-62) showing that they 

could also be produced in the absence of RdRPs. But 

even between flies and mammals, the details of the 

pathway seem to be distinct. In Drosophila, although 

both miRNAs and siRNAs are processed by Dicer 

and loaded into AGO, they do so through parallel 

arms of the RNAi machinery. Flies have two distinct 

Dicer isoforms and two genes encoding for AGO. 

While Dicer-1 processes precursor miRNAs that are 

loaded into Ago1, Dicer-2 processes long double-

stranded RNAs into siRNAs duplexes that get loaded 

into Ago2 (63). This segregation of the pathways 

makes the study of their details and functions more 

tractable in flies (38). As a consequence, endo-

siRNA biogenesis and functions are better 

understood in flies than mammals. We know that in 

flies double stranded RNAs precursors of siRNAs 

can be produced by at least two distinct mechanisms. 

They can originate from bidirectional transcription 

from a single locus which gives rise to RNAs known 

as cis natural antisense transcripts (cisNATs) (59; 61; 

64; 65), or from structured loci that are transcribed as 

long hairpin RNAs (hpRNAs) (60). The functions of 

these precursors are not entirely understood, but 

they have been predominantly implicated in genome 

protection against foreign nucleic acids. Indeed, 

mutant flies in which the endo-siRNA pathway is 

specifically impaired cannot efficiently defend against 

transposable elements (66). Compromising the 

siRNA pathway in flies seems to be compatible with 

animal viability, but it affects spermatogenesis both in 

D. melanogaster (leading to animals that are 

subfertile) (67) and D. simulans (which become fully 

sterile) (68). In both cases, the phenotypes have 

been linked to transposon up-regulation. 

As in flies, cisNATs (62; 69) and hpRNAs 

(62; 69) have also been suggested to serve as 

endogenous sources of siRNA precursors in 

mammals. In addition, precursors can be generated 

through the interaction between complementary 

transcripts derived from distinct loci such as gene-

pseudogene pairs (transNATs) (62; 69). Mammalian 

endo-siRNAs have also been predominantly mapped 
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to repetitive sequences, most of which are 

transposons. Yet, to what extent these siRNAs 

contribute to transcript silencing is not clear. For one, 

long double stranded RNA molecules—such as 

those that serve as siRNA precursors—are known to 

be strong triggers of the interferon response (INF) in 

vertebrates (70). As a consequence, in the majority 

of cells, they are not expected to accumulate to high-

enough levels to significantly impact the 

transcriptome (71; 72). In addition, in most tissues, 

transposons are silenced via promoter methylation. 

Thus, it seems that even if endo-siRNAs did arise as 

a way to restrict foreign nucleic acids, this function 

has since become ancillary to other mechanisms. In 

line with this, endo-siRNA detection in mammals has 

been restricted to situations in which there is low 

interferon response or DNA methylation is reduced 

(73-78). 

An additional roadblock for the production 

of endo-siRNAs in mammals is the fact that their 

Dicer protein is much more efficient at processing 

pre-miRNAs than the long dsRNAs that serve as 

precursors for siRNAs (79). This is likely caused by 

the N-terminal helicase domain which disturbs the 

RNase III catalytic core and inhibits the cleavage of 

perfect dsRNAs (80). In fact, murine oocytes—where 

mammalian endo-siRNAs have been best 

characterized—express an N-terminally truncated 

isoform of Dicer transcribed by an alternative 

promoter derived from a transposon insertion. This 

shorter isoform can process dsRNAs into siRNAs 

more efficiently than somatic dicer (81) but is rodent 

specific (82) and so its functions cannot serve as a 

model to understand the siRNA pathway in other 

mammals. 

5. SMALL-RNA LOADING AND SORTING 

INTO AGO PROTEINS 

Whether they originate from pri-miRNAs or 

dsRNAs, products of Dicer cleavage are ultimately 

loaded into AGO proteins (83-87) with the assistance 

of the ATP-dependent activity of Hsc70/Hsp90 (88-

91). These chaperons are thought to mediate a 

conformational change in AGO, making the nucleic 

acid-binding channel wide enough to accommodate 

the bulky and rigid duplexes. Once AGO returns to its 

closed conformation however, the channel is no 

longer able to lodge such large molecules. This 

presumably helps in the expulsion of one of the 

strands without further need for ATP consumption 

(92). When that happens, the strand whose 5’ end is 

tightly anchored in the PIWI domain remains 

associated with the protein to act as a guide, while 

the other is discarded (93). Because of this, the 

orientation by which the duplex is incorporated into 

an AGO protein determines which strand will serve 

as a guide. Studies in a variety of model organisms 

show this is a non-random process (94; 95). At least 

two sources of asymmetry in the duplex contribute to 

a loading bias: the identity of the 5’ nucleotide in each 

strand, and the relative thermodynamic stability of the 

5’ ends. As a general rule, the strand with the most 

unstable 5’ terminus will be preferentially selected for 

loading into an AGO protein (94). 

In Drosophila melanogaster, where the 

mechanism of AGO loading has been best 

characterized, Dicer itself is involved in the process. 

Following cleavage of the dsRNA molecules, Dicer-2 

associates with R2D2 (96) to form a RISC Loading 

Complex (RLC) (97) that is essential for the 

incorporation of siRNAs into Argonaute (98). Within 

the RLC, R2D2 binds the strand that has the most 

thermodynamically stable 5’ end (99), and thus is 

responsible for orienting the RNA molecule within the 

complex. R2D2 also requires the presence of a 

phosphate group at the 5’ end for binding, thus 

ensuring that only true siRNAs are able to enter the 

RNAi pathway (99). Both R2D2 and Dicer-2 

participate in the unwinding of the siRNA duplex (99; 

100), at which point the heterodimer is exchanged by 

Ago2. When that happens, the strand that was bound 

by R2D2 is discarded while the one that was bound 

by Dicer gets incorporated into Ago2 (101). Because 

the RLC plays a role in the asymmetry sensing of the 

duplex, it is also responsible for the selection of the 

strand that ultimately acts as a mature siRNA. In the 

absence of Dicer-2 or R2D2, silencing of transcripts 

via the siRNA pathway proceeds inefficiently, even 

when cells are provided with external pre-processed 

siRNA duplexes (96; 100; 102). 

In contrast to Drosophila’s Ago2, vertebrate 

AGO proteins do not require Dicer for small RNA 

loading. In fact, Dicer is dispensable for asymmetry 
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sensing in mice (103), and Dicer-null mouse 

embryonic stem cells are fully competent in gene 

silencing by exogenous siRNAs (104; 105). Human 

Ago2 can also be loaded with siRNAs in vitro in the 

absence of additional factors (106), and even 

zebrafish embryos lacking Dicer can fully repress 

targets when injected with miRNA duplexes (107). In 

this regard, vertebrate AGOs are more related to 

Drosophila’s Ago1, whose loading is also unaffected 

by the absence of Dicer proteins (86). Thus, although 

it is the best-characterized, the process of Ago2 

loading in flies seems to be a rather unique case that 

cannot be fully generalized to other species. It is 

worth noting that in mammals, two Dicer partners 

have been identified: TRBP and PACT (108-113). 

The TRBP/PACT homologue in flies is known as 

Loquacious (Loqs or R3D1), and it binds specifically 

to Ago1 (114-116). Though neither of these proteins 

are essential for AGO loading, DICER-TRBP, and 

Loqs-Dicer complexes have also asymmetric 

association with RNA duplexes (117; 118), 

suggesting that they may help reinforce other 

asymmetry sensing mechanisms. 

But what might the nature of those 

mechanisms be? It seems that, at least in part, they 

depend on the structure of the AGO itself, and 

particularly its interaction with the 5’ end of the guide. 

The importance of the 5’ end for the function of 

miRNAs is more than well established. MicroRNAs 

recognize their targets via complementarity to the 

seed sequence, a stretch of 6 nucleotides 

(nucleotides 2-7) at the 5’ end of the miRNA (22). 

Mature miRNAs may originate from either arm of the 

pre-miRNA hairpin and consequently can have their 

seed defined by both Drosha/Dgcr8 or by Dicer 

cleavage. Because these processes have varying 

degrees of precision (119; 120), an additional 

checkpoint at the time of AGO loading further 

increases targeting accuracy. In practice, this is 

achieved through preferential loading of miRNAs that 

have an A or a U as their terminal 5’ nucleotide. 

Crystal structures of Ago2’s MID domain in complex 

with all four nucleoside monophosphates show that 

this selection depends on a structural loop that leads 

to nucleotide-specific interactions in the MID domain 

that specifically exclude G or C (121). The 

“specificity-loop” is present in all four human 

Argonautes as well as Drosophila’s Ago1, but it is 

absent from Drosophila’s Ago2 (121), which instead 

has bias towards a 5’ terminal C (59; 122; 123). 

An additional conundrum in mammals is 

how sorting of small RNAs among the four Argonaute 

proteins is achieved, if at all. Though exceptions have 

been described (124), miRNA-mediated gene 

regulation does not typically require cleavage and 

can therefore be carried out by all four proteins. In 

contrast, endo-siRNAs are thought to regulate RNAs 

through catalysis, meaning that productive targeting 

requires them to be loaded specifically into Ago2. 

Yet, in jarring contrast to what happens in Drosophila 

(125; 126), there is little evidence that such 

discrimination occurs in mammals, and both miRNAs 

(127) and exogenous siRNAs (128) are randomly 

distributed among individual proteins. This could 

reflect Ago2’s predominant expression across many 

tissues, which could render a sorting mechanism 

unnecessary. Alternatively, endo-siRNAs may have 

features not recapitulated by artificial siRNAs that 

lead to preferential loading into Ago2. In fact, miR-

451 whose last processing step is mediated not by 

Dicer but by Argonaute, associates exclusively with 

Ago2, suggesting that such discrimination is possible 

(129). 

6. RISC ASSEMBLY AND GENE 

REGULATION BY MIRNAS 

Once AGO proteins are loaded and the 

passenger strand discarded (94), they are directed to 

target transcripts via complementarity to the guide. 

For miRNAs, specificity is predominantly defined by 

the seed-sequence (130), and this motif is short 

enough that a single miRNA can direct AGO to 

hundreds of messages. Seed-matches can occur 

across the entirety of the transcript, and indeed RNA 

fragments that crosslink to Argonaute can map to all 

features of an mRNA (131; 132). Despite this, the 

majority of targeting is mediated by sites in the 3’ 

untranslated region (3’UTR) (22), where there is no 

risk of displacement of AGO by a traveling ribosome. 

Following miRNA:mRNA pairing, assembly of the 

RNA-induced Silencing Complex (RISC) leads to 

target repression via a combination of mRNA 

destabilization and translation inhibition (133; 134). 

At the center of this complex, is a family of proteins 

known as GW182 that act as platforms between AGO 
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proteins and downstream effector proteins. 

GW182 proteins are an innovation of 

metazoans (135). This protein family is characterized 

by the presence of multiple tryptophan-glycine motifs 

(GW), which serve as an interaction surface for its 

binding partners (136). Drosophila melanogaster has 

a single member of this family (GW182), but vertebrate 

genomes encode three paralogues: TNRC6A/GW182, 

TNRC6B, and TNRC6C (137). Although plants do not 

seem to have a GW182 ortholog per se, translational 

repression downstream of miRNA targeting (138-142) 

may also depend on a GW-repeat protein called SUO 

(142). GW182 proteins contain two functional 

domains: the AGO-binding domain (ABD), and a C-

terminal domain (comprised of PAM2 and RRM motifs) 

that mediates the binding to components of the 

silencing machinery (143). Within the ABD, three 

single motifs—with tandem GW/WG repeats spaced 

by 9-20 residues—have been shown to interact with 

human Argonautes (144-147). While GW182 proteins 

can recruit up to three copies of AGO through these 

motifs, each Argonaute can only bind to a single 

GW182 molecule (148). It does so through two 

tryptophan-binding pockets in the PIWI domain that fit 

consecutive residues as long as they are at least 10 

residues apart (10). These binding pockets are 

conserved among AGOs that participate in the miRNA 

pathway (Ago1-Ago4 in mammals, Ago1 in flies), but 

not in Drosophila’s Ago2 (84). Accordingly, a GW182-

derived short peptide containing one of the GW motifs 

can efficiently precipitate all mammalian AGOs, 

Drosophila’s Ago1, and even some plant AGOs, but 

not Drosophila’s Ago2 (149). Binding affinity of AGO 

towards GW182 increases greatly when the protein is 

loaded with a small RNA (148). Given that target 

recognition of a loaded Argonaute occurs almost 

instantaneously (150), assembly of RISC likely 

happens once AGO is already sitting on its target. Due 

of its flexible nature, GW182 can bind to multiple 

target-bound Argonautes (148), which may help 

stabilize interactions, leading RISC to associate longer 

with individual mRNAs (151) and thus be more 

effective in repressing their expression. Thus, the 

multivalent binding of GW182 to AGO may underlie the 

earlier observations of cooperative regulation by 

adjacent miRNA binding sites (152-156). 

GW182 also serves as a docking site for 

proteins that ultimately repress the expression of 

miRNA targets. The molecular details behind this 

repression have been intensively studied and yet 

they remain a source of debate (156). One problem 

is that the factors involved in silencing are able to 

associate through promiscuous binding (23) in a 

variety of combinations that have largely 

redundant functions. These redundant assemblies 

of RISC offer many alternatives through which to 

silence gene expression, and thus may serve as a 

way to confer robustness to the process. One of 

the best understood—and arguably the most 

ubiquitous—consequence of miRNA targeting for 

example is mRNA deadenylation, which ultimately 

leads to transcript decay. At least two deadenylase 

complexes have been implicated in this process: 

the PAN2-PAN3 and CCR4-NOT (157-159). Both 

bind to GW182 via the tryptophan residues (160-

162), but their relative contribution to decay is not 

entirely clear. In fact, it is possible to remove the 

PAN complex or outcompete its catalytic 

component without impacting RISC silencing 

efficiency (163; 164), which suggests 

compensation between the complexes (23). 

GW182 also interacts with the cytoplasmic poly(A)-

binding protein (PABPC) (165), which in turn binds 

to PAN3 (159; 166). How PABC contributes to 

silencing is unclear, but it may help stabilize the 

interaction of RISC with polyadenylated RNAs 

(167). its depletion does not however, inhibit 

silencing in a number of contexts (168; 169) 

suggesting that this interaction may constitute yet 

another example of functional redundancy. 

Regardless of which complexes are involved in the 

deadenylation, once a poly(A) tail has been 

sufficiently shortened, mRNAs are decapped 

thereby committing them to full 5’ to 3’ degradation 

by XRN1 (20; 170). The CCR4-NOT complex 

seems to be an important scaffolding component 

in this process as well, by serving as a binding 

platform for decapping factors (161; 162). In 

addition to deadenylation, decapping, and decay, 

miRNA-mediated silencing can also repress genes 

by inhibiting translation. In fact, time course 

experiments using ribosomal profiling suggest that 

this is the first measurable consequence miRNAs 

have on the expression of their targets (171; 172). 

Nevertheless, across cell lines and miRNA 
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species, by the time full repression has been 

established the majority of the silencing is 

achieved through decay, with a minor component 

being attributed to translation repression (171; 

172). The molecular details behind translational 

inhibition are much less understood than those 

behind degradation, but accumulating evidence 

suggest that miRNAs interfere with the function of 

the eIF4F complex (23). The CCR4-NOT complex 

seems to play a role by serving as a docking 

platform for proteins such as DDX6 (161) and 

eIF4A2 (173), both of which repress translation 

through poorly understood mechanisms. PABPC 

has also been implicated in translation repression, 

again through unclear mechanisms. 

Given that the majority of the details 

described above have been elucidated in cell 

culture, a key question is to what extent do they 

reflect in vivo processes and dynamics. We know 

that at least in early zebrafish development—in 

stark contrast to what is seen in tissue culture—

repression of miRNA targets occurs almost 

exclusively through translation inhibition (21; 174). 

This has been assumed to be a peculiarity of early 

embryogenesis. But, given the scarcity of in vivo 

data, it may turn out that this mode of silencing 

plays bigger roles in animals than is currently 

appreciated. In fact, gel filtration experiments 

suggest the existence of largely distinct forms of 

RISC in vivo and in vitro with AGO eluting in high-

molecular weight fractions in cell lines, and in low 

molecular weight fractions in the majority of adult 

mouse tissues (175). Shifting from high to low 

molecular weight RISC is regulated at least in part by 

the PI3K–AKT–mTOR signaling pathway, whose 

activity increases the translation and abundance of 

GW182 proteins (175-177). AKT also phosphorylates 

Ago2 at S387, facilitating its interaction with GW182 

(178). Together, these observations suggest that in 

high-proliferative cells, mitogenic signals may lead to 

the assembly of high-molecular weight complexes 

through two parallel strategies that promote the 

association of AGO to GW182. It is worth noting, that 

absence of this interaction does not necessarily 

mean loss of miRNA-mediated repression. In insect 

cells for example, pure translation repression occurs 

even in the absence of GW182 (179). Nevertheless, 

in mouse adult tissues, low molecular weight RISC 

seems to correspond to Argonaute bound only to a 

small RNA (175; 176). What role it plays there in the 

absence of interactions with effector proteins remains 

to be seen. 

7. ARGONAUTE CATALYTIC ACTIVITY IN 

MAMMALS 

Although silencing of transcripts by 

miRNAs requires the assembly of a RISC complex, 

cleavage of transcripts via Ago2’s catalytic domain 

(Figure 1) does not seem to need any accessory 

proteins. In fact, the only two elements required to 

induce cleavage in vitro are the recombinant Ago2 

itself and a single-stranded guide RNA that is 

generally referred to as small-interfering RNA 

(siRNA) (180). In contrast to miRNAs, siRNAs bind to 

their targets with full complementary and cleave them 

in a Mg2+ dependent manner (180; 181) at the 

position opposite to nucleotides 10 and 11 of the 

guide (182). An siRNA loaded into Ago2 but not 

paired with a substrate has its 5’ end bound to the 

MID domain (183) and its 3’ end anchored to the PAZ 

domain (6). Once pairing to the target occurs, the 3’ 

end is released from the PAZ domain leading to a 

catalytic competent complex (7; 184). In Drosophila, 

where Ago2 has specialized in transcript repression 

via the siRNA pathway, the extensive complementary 

between guide and target slows the rate at which this 

complex is formed and dissociated. In practice, these 

slow dynamics mean that essentially every fully-

paired target is more likely to get cut than released 

(150). In contrast, murine Ago2—which acts both in 

the miRNA and the siRNA pathways—is able to 

dissociate rapidly and with similar rates for fully-

paired and seed-matched targets, meaning that fully-

complementary transcripts often get released before 

cleavage can occur (150). 

Despite the accumulating evidence 

pointing to a rudimentary and inefficient siRNA 

pathway in mammals, knockout models for Dicer 

show more severe phenotypes than those with a 

deletion of Dgcr8 (Figure 2). This suggests that 

regulation of transcripts by siRNAs may still be 

physiologically important. Mouse embryonic stem 

(ES) cells null for Dicer for example, proliferate 

slower than their wild-type counterparts and are 
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unable to differentiate (104). In vivo, these 

phenotypes translate to a reduced pool of 

pluripotent cells in the blastocyst’s inner cell mass 

and embryonic lethality before the body plan is 

established at gastrulation (185). In addition, 

mouse oocytes without Dicer arrest at meiosis I, 

with defects in spindle organization and 

chromosome alignment (186) (Figure 2). Dgcr8-

 
 

Figure 2. Summary of developmental phenotypes observed in mice carrying targeted deletions of components of the miRNA and siRNA 

pathways. The small RNA pathways that are affected in each genotype are shown on top. Briefly, in the absence of Dgcr8 oocytes mature 

normally, but loss of Dicer, Ago2 or Ago2’s catalytic activity leads to arrest at meiosis I accompanied by spindle and chromosome segregation 

defects. At the blastocyst stage, pluripotent cells (pink) are specifically depleted from Dicer-/- embryos. Dgcr8-/- and Ago2-/- have a relatively 

normal pre-implantation development, but like Dicer-/- embryos do not survive past gastrulation. Finally, animals expressing the catalytic dead 

Ago2ADH survive up to birth but succumb soon after. #, in Ago2-/- animals the miRNA pathway is impaired but not fully disrupted because the 

redundancy with other Argonaute proteins; ‡, the presence of pluripotent stem cells in the blastocyst of Ago2-/- mice has not been characterized 

but is assumed here to be intact based on the phenotypes of ES cells (268); *, three knockout models for Ago2 have been described showing 

embryonic lethality at different stages. Here we are representing only the most severe phenotype leading to embryonic lethality around 

gastrulation (see Table 1 for more details). 
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deficient ES cells also proliferate slower, yet they 

are able to upregulate lineage markers when 

induced to differentiate, even if they cannot fully 

silence pluripotency genes (187). In addition, 

although embryos that lack Dgcr8 also die around 

gastrulation (187), their blastocysts can be used to 

establish in vitro ES cell cultures (187) unlike those 

from Dicer-/- (185). Finally, Dgcr8 is fully 

dispensable to oocyte maturation (75) in mice. 

If this discrepancy of phenotypes caught 

people’s curiosity, the perinatal lethality of catalytic-

dead Ago2 animals got everyone’s attention (188). 

Mice carrying a point mutation that converts Ago2’s 

catalytic tetrad from DEDH to AEDH (commonly 

referred as Ago2ADH animals) are born at Mendelian 

ratios but die soon after birth (188) (Figure 2, Table 

1). Since this modification renders the protein 

catalytic inactive but does not affect its ability to bind 

to small RNAs (42), the perinatal lethality seems due 

solely to loss of transcript cleavage by Ago2. The 

most obvious phenotype these animals have at birth 

is a strong anemia caused by a block in the 

proerythroblast to basophilic erythroblast transition 

(42). It turns out that Ago2 is required for the 

maturation of two different miRNAs that play a role in 

this process. miR-451 is an erythroid-specific miRNA 

whose activity is important for erythrocyte maturation 

(189), but that cannot be processed by Dicer due to 

an unusual stem-loop structure. In mice and 

zebrafish this function is instead performed by Ago2, 

which binds to the pre-miR-451 and cleaves it at the 

thirtieth base generating the miRNA duplex (188; 

190). In mice, a second erythroid microRNA, miR-

486, can be efficiently processed by Dicer but 

requires cleavage of its passenger strand by AGO2 

to generate a mature miRNA (191). Double knockout 

animals of miR-451/miR-486 display a strong anemia 

(191) that phenocopies the conditional loss of Ago2’s 

catalytic activity in the hematopoietic system (191) 

(Table 1). However, these animals are viable 

indicating that in mice, Ago2 mediated cleavage 

plays other roles beyond erythropoietic miRNA 

biogenesis. 

Apart from erythrocytosis and fetus viability, 

Ago2’s catalytic activity is also required for oocyte 

maturation as had been previously hypothesized 

(Figure 2, Table 1). Indeed, as in the case of Dicer, 

deletion of Ago2 from the female germline leads to 

animal infertility (192) and this phenotype is 

recapitulated in Ago2ADH animals (193). Also here, 

the infertility is caused by severe spindle formation 

and chromosome alignment defects leading to 

oocyte arrest at meiosis I (193). Dicer ablation in the 

oocyte leads to upregulation of a number of RNAs 

including mRNAs and retrotransposons (186), but 

these have no sequence matches for the most 

abundant miRNAs present the cell. Instead, they 

seem to be silenced by endo-siRNAs which are 

highly expressed in the oocyte (194). Given that 

mouse oocytes express a murine-specific isoform of 

Dicer that is particularly efficient at processing endo-

siRNAs (81), it is unclear to what extent these 

phenotypes highlight a conserved a function for Ago2 

in oocyte development. Nevertheless, transposon 

de-repression and chromosome segregation defects 

have been reported in a number of other systems that 

do not express this specialized Dicer isoform 

including mouse embryonic stem cells (104), mouse 

preimplantation embryos (195), mouse retina (196), 

and even human cells (197; 198). Mitotic 

chromosomal defects have been attributed to a need 

to control the levels of α-satellite RNA through Ago2 

mediated cleavage so that proteins such as 

centromere protein C1 (CENPC1) can properly 

localize to centromeric regions (197). Although de-

repression of these RNAs has been described in 

mouse and human cell lines following Dicer or Ago2 

depletion (104; 197), it has not been described in 

oocytes. 

Finally, Ago2 catalysis has also been 

implicated in the repression of protein coding 

genes. In the mouse oocyte, mRNAs upregulated 

upon loss of Dicer are enriched for the presence of 

transposon-derived repeat sequences (186), 

which are thought to serve as targets sites for the 

endo-siRNAs expressed in the cell. In addition, 

mRNA cleavage has been reported for a handful of 

highly complementary miRNA targets (124; 199-

201). The most notorious example is Hoxb8, a 

conserved cleavage target of miR-196 in 

vertebrates (124; 202). This miRNA is encoded at 

three paralogue locations within Hox clusters A, B 

and C (124), and its extensive complementarity to 

Hoxb8’s 3’UTR leads to detectable cleavage of the 

transcript in mouse embryos (124). Furthermore, 

overexpressing miR-196 in zebrafish or inhibiting 

its function with morpholinos results in skeletal and 
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homeotic aberrations (202). This suggests that 

cleavage of transcripts by miRNAs may play 

important functions in vertebrates. Nevertheless, 

only a few cases of miRNA-mediated cleavage 

have been described and, for the majority of these, 

the potential implications for animal physiology are 

not known. 

8. ARGONAUTES IN THE NUCLEUS 

In mammals, regulation of transcripts by 

Argonaute proteins has been generally understood to 

be a cytoplasmic process. Specifically, Argonautes 

and the transcripts they regulate are known to 

accumulate in Processing bodies (P-bodies) (203), 

ribonucleoprotein cytoplasmic granules comprised 

mainly of proteins involved in RNA decay and 

translationally repressed transcripts (204). 

Localization of AGO to P-bodies is readily detectable 

by immunofluorescence and, for both protein and its 

target, occurs in a miRNA-dependent manner (203). 

Over the past years however, a growing number of 

reports suggest that Argonaute proteins can also be 

found in the nucleus of mouse and human cell lines 

(205-208) (reviewed in (208)). The issue of 

Argonaute nuclear localization in mammals remains 

somewhat controversial, in part because the 

antibodies used in these studies are often not 

thoroughly validated and because the purity of the 

nuclear subcellular fraction is not always monitored 

for endoplasmic reticulum contamination. 

Nevertheless, a significant number of studies have 

performed both immunofluorescence and cell 

fractionation experiments using well controlled 

reagents and protocols giving credibility to the 

observation that, as in other organisms (17; 209-

211), mammalian Argonaute proteins may also have 

functions in the nucleus. 

Given the phenotypes of Ago2-/- oocytes 

(Figure 2), perhaps one of the most conserved roles 

of nuclear AGO is ensuring proper centromere 

function and correct chromosome segregation during 

cell division. Indeed, chromosomal defects 

reminiscent of those seen in murine oocytes and 

human cells are observed in AGO mutants of 

numerous other species (209; 212-214) and are 

associated with the presence of this protein in the 

nucleus. The C. elegans’ catalytic Argonaute CSR-1 

for example localizes to P-bodies in developing 

oocytes. In mature oocytes however, it becomes 

enriched in the nucleus where it associates with 

chromosomes (209). In its absence, animals become 

infertile (215) and display numerous meiotic and 

mitotic defects (209; 215; 216) including failure to 

align chromosomes at metaphase and chromosomal 

bridging phenotypes at anaphase. In addition, 

retrotransposon control by Ago2 may also require its 

nuclear localization, as is the case for the Piwi clade 

(217). It is worth noting however, that while nuclear 

AGO has been described in mouse ES cells (218)—

where centromeric repeats and transposons are de-

repressed upon Dicer depletion (104)—it has not yet 

been described in oocytes where meiotic defects and 

transposon de-repression in Ago2 mutants have 

been best described (Figure 2). Other proposed but 

less characterized functions for mammalian AGO 

that may require nuclear localization include 

regulation of splicing (219; 220), as well as gene 

regulation through transcriptional silencing (221-223) 

or activation (224; 225). Finally, other components of 

RISC, such GW182/TNRC6 and members of the 

CCR4-NOT complex, have also been found in the 

nucleus (205; 218; 226; 227) where they seem to 

interact with AGO proteins (205). This suggests that 

the miRNA pathway itself may be fully functional in 

this compartment, and in fact, direct targeting of 

nuclear-retained transcripts by miRNAs has already 

been reported (218; 228-230). 

The mechanism that brings Argonaute into 

the nucleus is not known. It may however depend on 

its interaction with the GW182/TNRC6 family of 

proteins. Inhibiting nuclear export with Leptomycin B 

in human cells leads to accumulation of TNRC6A and 

TNRC6B in the nucleus indicating that these proteins 

typically shuttle between cytoplasmic and nuclear 

compartments (147). It turns out that members of this 

family have functional nuclear import (NIS) and 

export (NES) signals immediately downstream of the 

GW repeat region (231). Mutating the NES on 

TNRC6 results in its enrichment in the nucleus, and 

more importantly also leads to accumulation of Ago2 

in this compartment (231). Additional import routes 

may include Importin 8 (Imp8), which binds to AGO 

in P-bodies and may help shuttle it to the nucleus 

(232). Of note, a common prerequisite for AGO and 

Piwi nuclear localization across species is their 
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loading with a small RNA in the cytoplasm (233; 234; 

235; 236), and this may be true for mammalian AGOs 

as well. Finally, the range of nuclear distributions 

reported in human and mouse cell lines suggests that 

the requirement for AGO in this compartment is 

context dependent as in the case for CSR-1 in C. 

elegans. Which contexts require mammalian nuclear 

localization in vivo, or how the abundance of 

Argonaute proteins between compartments is 

regulated awaits further studies. 

9. FUNCTIONAL SPECIFICATION BEYOND 

CATALYSIS 

Even if mammalian genomes encode for 

four distinct AGO genes, the majority of studies 

querying their functions have focused on Ago2. This 

is in large part due to the fact that—aside from Ago2’s 

ability to cleave transcripts—all four proteins seem to 

have mostly redundant roles in the miRNA pathway. 

Evidence for redundancy include random loading of 

miRNAs into AGO proteins (127), and the ability of 

these proteins to repress similar sets of mRNA 

transcripts (237). Not only that, reintroduction of any 

individual proteins into AGO-deficient mouse 

embryonic stem cells, is sufficient to rescue defects 

in miRNA-mediated silencing (237) suggesting they 

are functionally equivalent in this pathway. 

Nonetheless, we would be remissive if we didn’t point 

out specific contexts in which other members of this 

clade have predominant physiological roles, or 

evidence suggesting that the four mammalian AGO 

proteins may not be fully interchangeable. 

The most obvious way through which 

different AGO proteins may acquire specialized 

functions in mammalian physiology is through 

restriction of their expression. Although the 

expression patterns of these proteins are not well 

characterized due to the lack of specific antibodies, it 

is assumed based on RNA sequencing data that 

Ago2 is the most abundant member of the clade. This 

is supported by data from a peptide-based 

purification approach which suggests that Ago1, 

Ago2 and Ago3 are broadly expressed across mouse 

tissues, with Ago2 being generally the most abundant 

protein, followed by Ago1 and Ago3 (149). Ago4 on 

the other hand, is virtually undetectable in all tissues 

except the testes (149), suggesting it may play 

specific functions in that organ. And in fact, male mice 

lacking Ago4 are viable but display a wide-range of 

fertility defects including reduced testis size and 

lower sperm counts (238) (Table 1). These 

phenotypes are all the more surprising given that 

Ago4 is the least abundant Argonaute protein in the 

testis (149). Ago4 expression is the highest at 

prophase I where it localizes to the Sex Body, a 

nuclear structure formed as a result of the meiotic 

sex-chromosome inactivation, and which allows the 

unpaired sex chromatin to bypass the meiotic 

synapsis check points (238). In the absence of Ago4, 

Sex Bodies have an abnormal morphology and fail to 

silence many sex-linked genes, resulting in cellular 

apoptosis (238). In addition, Ago4-/- spermatogonia 

enter the prophase I prematurely (238). Ago3 is also 

highly expressed in meiotic cells in the testis, and its 

abundance increases in the absence of Ago4 

suggesting that the two proteins may have partially 

redundant functions. However, no fertility defects 

have been reported in Ago3 null animals (239) 

(Table 1). 

Even for co-expressed proteins, functional 

specification may be conferred through distinct 

subcellular localizations. As an example, both Ago2 

and Ago1 were found in the nucleus of a human 

cancer cell line (224). Yet, overexpression of HA or 

GFP tagged versions of these proteins suggest that 

they may occupy largely distinct regions within the 

nucleus, with Ago1 being more broadly distributed 

and Ago2 being restricted to the nuclear periphery 

(224). In these cells Ago1, but not Ago2, has been 

reported to interact with RNA polymerase II and bind 

to promoters and enhancers of actively expressed 

genes (224), where it is proposed to contribute to 

transcriptional activation (220; 224). It is not clear 

how generalizable these observations are, what their 

physiological relevance is, or which mechanism 

leads to distinct protein localization within the 

nucleus. 

One possible mechanism through which 

co-expressed AGO proteins acquire distinct cellular 

behaviors is through differential binding to interaction 

partners. We mentioned above that signaling through 

the PI3K-AKT stimulates the association between 
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GW182 proteins and AGO. One way it accomplishes 

this is through phosphorylation of Ago2 at S387, 

which promotes the phosphorylation-dependent 

binding of LIMD1 (178). Binding of LIMD1 to Ago2 is 

essential for its ability to repressed targets, 

presumably because in its absence assembly of the 

RISC complex is impaired (178). Phosphorylation 

dependent interaction with LIMD1 is also seen for 

Ago1 and Ago4 both of which also have a serine at 

the corresponding amino-acid position. Human Ago3 

however, has a phospho-mimetic glutamate at that 

location (E390) which facilitates the interaction with 

LIMD1 and its family members independently of AKT 

signaling (178). Thus, the AKT-AGO-LIMD1 pathway 

seem to determine context dependent AGO 

utilization. Why switching to Ago3-mediated gene 

repression in the absence of AKT signaling would be 

advantageous is not known. 

Perhaps one reason is that, even though all 

four mammalian proteins can associate with the 

same miRNAs (127), some level of RNA binding 

discrimination among all four proteins may exist. One 

example we previously discussed is the specific 

association of pre-mir-451 with Ago2 (129). In 

addition, individual Argonautes show preferential 

binding to different miRNA and siRNA duplex 

structures (237). Finally, recent studies suggest that 

Argonaute proteins can also bind to small RNAs such 

as tRNA fragments (240; 241), and that these 

associations can be somewhat protein specific (242). 

Together, these data suggest that regulation of 

genes by all four mammalian AGO proteins may not 

be entirely redundant. In agreement with this, 

although both Ago1 and Ago2 are equally able to 

rescue the phenotypic defects of AGO-null ES cells 

(237), only Ago2—even if catalytically dead—can 

support their differentiation into extraembryonic 

endoderm cells in the absence of exogenous delivery 

of Gata6 (243). 

10. CONCLUDING REMARKS 

By serving as the central proteins in two 

distinct small RNA pathways, mammalian AGO 

proteins regulate virtually every cellular process. It is 

not surprising then, that their regulation has often 

been implicated in human disease. The genomic 

region encoding for Ago1, Ago3, and Ago4 for 

example is often lost in Wilms' tumors (244; 245), a 

pediatric kidney cancer that’s amongst the most 

frequent childhood malignancies in the US (245; 

246). In line with a role for miRNAs in the etiology of 

this disease, whole-exome sequencing efforts have 

identified recurrent mutations in other components of 

this pathway including DICER, DROSHA, and 

DGCR8 (247-250). Wilms’ tumors are thought to 

arise from abnormal renal development, and indeed 

Ago1 has a particularly high expression in embryonic 

kidney suggesting it may play a key role in the 

differentiation of this organ (251). Germline 

microdeletions affecting the three non-catalytic 

AGOs have also been described in patients 

displaying a range of developmental phenotypes 

(252). These observations are in line with studies 

showing that gene regulation by the miRNA pathway 

is essential for mammalian development. 

In addition to disrupting normal 

developmental processes, AGO deregulation has 

also been associated to the progression of adult 

cancers (253-260). Moreover, signaling pathways 

that are recurrently activated in tumors often lead to 

post-translational modifications that alter the 

behavior of AGO proteins. EGFR signaling for 

example, leads to phosphorylation of Ago2 at Tyr393, 

which impairs its interaction with DICER and the 

loading of specific subset of miRNAs (261). This 

phosphorylation is enhanced under hypoxia 

conditions and leads to increased cell survival and 

invasiveness in vitro. It also correlates with poorer 

prognosis in breast cancer patients (261). AKT 

signaling which increases miRNA activity through 

phosphorylation at S387 (262), is also often 

implicated with tumor development and progression 

(263). 

A key step to understanding how 

deregulation of AGO proteins contributes to these 

and other human diseases is characterizing their 

functions not in cell lines but in the context of an 

organism. Over the past years, we have gathered a 

wealth of data characterizing the myriad of ways that 

RISC complexes can be assembled and how the 

function of AGO proteins can be regulated through 

protein modifications (261-267), cellular localization, 



Mammalian Argonaute proteins 

16 © 1996-2020 
 

or binding partners. The next frontier is fitting all these 

pieces together to see how they contribute to normal 

mammalian development and physiology and how 

their disruption affects human health. 
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