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1. ABSTRACT 

Developmental processes are cascades 

of biological changes linked with information 

transfer, growth, and differentiation during the life 

cycle of an organism. Lipid metabolism plays a 

vital role in the life cycle of organisms. Drosophila 

models grant numerous advantages in 

investigating the underlying mechanisms of each 

process as well as their connections. In each 

section of this review, we will discuss multiple 

studies revealing the function of lipid-related 

genes in different stages of early development: 

spermatogenesis, oogenesis, embryogenesis 

along with late development in life cycle of 

Drosophila. 

2. INTRODUCTION 

‘Lipid’ is a general term used for 

substances that are non-polar and insoluble in 

water. It comprises a wide range of compounds 

with differing chemical structures. Lipid function 

varies from storing energy to acting as structural 

components of cell membranes, to participating in 

various biological processes. Lipid metabolism is a 

balance between lipid synthesis and degradation 

that determines the fat mass (2). The synthesis of 

lipids in tissues has been considered to be 

essential for component and energy metabolism 

during cell transformation. Therefore, lipid 

metabolism is crucial in the development of 

organisms. Drosophila melanogaster, the fruit fly, 

is one of the most commonly used model 

organisms in biomedical science (3). Most of the 

metabolism-related genes and gene families are 

conserved between Drosophila and humans (4). 

Additionally, many analogous organ systems 

involved in nutrient uptake, storage and 

metabolism are common in humans and fruit flies. 

Moreover, in Drosophila, lipids are stored in the 

form of triacylglycerol (TAG) in lipid droplets, which 

are similar to adipocyte cells in mammals. Lipid 

droplets are omnipresent and dynamically 

regulated organelles, which are found in various 

cell types throughout the complex life cycle of the 

flies (5). These features make Drosophila a 

versatile model for studying the mechanisms of 

developmental and processes of lipid metabolism. 

Previous studies have revealed the function of 

several lipid-related genes involved in the 

development, however the overall connection 

remains to be unveiled. In this article, we 

selectively review several studies in regard of the 

link between lipid metabolism and development to 

generate consistent understanding, as well as 
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encourage further investigations. 

3. USING DROSOPHILA SYSTEM TO 

STUDY LIPID METABOLISM 

Lipid metabolism in Drosophila is divided 

into two main distinct processes, one is the formation 

of lipid in the form of TAG called lipogenesis and the 

other is lipolysis or mobilization of TAG from lipid 

droplet. The lipogenesis, TAG synthesis follows 

Kennedy pathway consisting of four enzymatic 

reactions. Three of four reactions are catalyzed by 

acyltransferases using fatty acid Coenzyme A (FA-

CoA) (6). The initial TAG synthesis step is the 

acylation of glycerol-3-phosphate (G-3-P) to 

lysophosphatidic acid (LPA) catalyzed by glycerol-3-

phosphate acyltransferase (GPAT) (7). Next, the 

acylation of LPA to produce phosphatidic acid (PA) 

catalyzed by 1-acylglycerol-3-phosphate O-

acyltransferase (AGPAT) (8). In the third step, the 

dephosphorylation of PA to diacylglycerol (DAG) at 

the endoplasmic reticulum (ER) membrane is 

catalyzed by Mg2+-dependent PA phosphatase, Lipin 

(9). Lipin is a multi-functional protein that acts as 

enzyme in TAG synthesis. It is also present in 

nucleus as a transcriptional co-activator in a complex 

with peroxisome proliferator-activated receptor 

gamma coactivator-1alpha (PGC-1alpha) and 

peroxisome proliferator-activated receptor alpha 

(PPARalpha), which are master regulators of genes 

related to mitochondrial biogenesis and fatty acid 

oxidation (10, 11). The final step from DAG to TAG is 

catalyzed by diacylglycerol O-acyltransferase 

(DGAT), encoded by CG1941, CG1942, or CG1943, 

which remains relatively unexplored (5, 12). 

Lipid droplets are made up of neutral lipid 

core encapsulated with a lipid monolayer with 

proteins, the best known of which is a family of 

protein named, PAT domain proteins. The PAT 

domain proteins include adipose differentiation-

related protein (ADRP) and TIP47, and collectively 

named Perilipin (PLIN) (13). In Drosophila, there are 

two types of PLIN, called lipid storage droplet (LSD)-

1 and 2. The interaction between LSD-1/2 and 

lipases in lipid droplet varies in associated with 

different stages of lipolysis according to the body`s 

requirement of lipid. In basal lipolysis, LSD-1 

prevents the access of lipases to lipids droplets, and 

suppresses activation of Brummer lipase (Bmm), a 

homolog of human adipocyte triglyceride lipase. This 

is done by composing a complex with comparative 

gene identification-58 (CGI-58) which is an activator 

of Bmm. In stimulated lipolysis, LSD-1 is 

phosphorylated by protein kinase A (PKA) in 

response to hormonal signals, and phosphorylated 

LSD-1 facilitates maximal lipolysis by recruiting 

hormone-sensitive lipase (HSL) and allowing Bmm to 

access the lipid droplet (14, 15), while LSD-2 protect 

lipid droplet from Bmm and HSL-mediated lipolysis 

We are able to establish versatile research 

models for understanding lipid metabolism. An in vivo 

high throughput obesity study screening more than 

500 candidates identified numerous genes which 

may cause obesity, most of which are related to lipid 

metabolism. However, several exceptions were 

shown, including interferon-responsive genes 

ARID2; the interleukin binding factor ILF2; some 

ubiquitin enzymes UBE2N, UBR2, HERC4, and 

FBWX5; and lastly, eight members of Hedgehog 

signaling pathway which in turn were revealed to be 

regulators of brown/white adipose cell fate in mice 

(16). Quantification of TAG content in individuals is a 

conventional method to identify obesity in Drosophila. 

Triacylglycerol can be measured using various 

techniques such as, thin layer chromatography (17), 

mass spectrometry (18), colorimetric sulfo-phospho-

vanillin (19), or indirectly estimation with enzymatic 

assay post-lipolysis (20). Obesity can also be 

characterized at the cellular level via quantification of 

size and number of lipid droplets in the body (21). 

Similar to mammals, feeding a high-sugar diet to 

Drosophila model produces hyperglycemia, insulin 

resistance, and obesity, which imitate type 2 

diabetes. Several transcriptional alterations were 

found, suggesting that Drosophila fed with high-sugar 

diet could be a potential model for screening genes 

and pathways contributing to insulin resistance (22). 

Likewise, high-fat diet can also produce obesity 

phenotype and promotes insulin resistance in 

Drosophila (23), as well as enhances the synthesis of 

cardiomyocyte-derived apoB-lipoproteins (24). In our 

recent study, we generated a Drosophila model for 

screening anti-obesity substances (25). We 

introduced the fusion gene of bmm promoter and 

enhanced green fluorescent protein (EGFP) gene 

with nuclear localization sequence in Drosophila. The 
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GFP intensity in nucleus of salivary gland showed 

good negative correlation with obesity, suggesting 

that the transgenic fly is useful for screening anti-

obesity candidates. By oral administration of various 

substances to 3rd-instar larvae, we found that histone 

deacetylases (HDAC) 8 and 9 inhibitors as well as 

several natural substances, including mulberry leaf, 

cabbage, and red paprika have potential anti-obesity. 

In contrary, flies fed with dried tomato showed a 

slightly decrease in GFP signal, suggesting an 

increase in lipid storage (25). 

4. LIPID METABOLISM FUNCTION IN 

SPERMATOGENESIS 

Spermatogenesis in Drosophila is a 

process to produce mature spermatozoa from germ-

line stem cells (GSCs). The GSCs will be divided by 

mitosis to form spermatocytes, then undergo meiosis 

and cytokinesis to form spermatids, followed by steps 

of elongation, individualization and coiling to emerge 

as mature sperms (26). Since Drosophila testes is an 

organ rich of lipids, multiple membranes remodeling 

processes occur there, including cytokinesis and 

differentiation of sperm. The first evidence of a 

relation between fatty acid and spermatogenesis 

dated back to the characterization of scully (scu), a 

homolog of mammalian mitochondrial type II L-3-

hydroxyacyl-CoA dehydrogenase, which is involved 

in beta-oxidation of short chain fatty acids (27). Scu 

mutants showed phenotypes with significant 

reductions in size of testes and degeneration of 

spermatocytes which was caused by abnormal 

accumulations of lipids (27). On the other hand, very 

long chain fatty acids (VLCFAs) with over 20 carbon 

chain-length are components of cellular lipid and also 

precursors of lipid regulators (28). Cyst cell-specific 

RNAi of noa (also known as Baldspot which encodes 

for ELOVL6, a member of elongases for synthesizing 

VLCFA) resulted in defects in the individualization 

process during spermatogenesis. Also, the noa gene 

activity seems to require the communication between 

cyst cells and germ cells, indicating that cyst cell-

specific NOA plays an important role in germ cells 

development (29). In germ cells, a study showed the 

necessity of VLCFAs for successful cleavage-furrow 

ingression during cell division in spermatocytes, 

since a loss-of-function mutant in Drosophila bond 

gene, which encodes another member of ELOVL 

enzyme family, causes male-sterile phenotype (30). 

Bond also plays a central role in the production of 

Drosophila sex pheromone CH503, thus controlling 

the male fertility and rivalry of fertility (31). Therefore, 

elongation of VLCFAs on both cyst cell and germ cell 

are crucial for successful spermatogenesis. 

Moreover, in mammals, beta-oxidation of VLCFAs is 

performed in peroxisomes and peroxin (pex), an 

exclusive protein family in peroxisomes, participates 

in maintaining Drosophila male fertility. Mutants in 

pex2, pex10, pex13 show elevated levels of 

VLCFAs in spermatocytes, which lead to defected 

cytokinesis and misshapen elongated spermatid 

(32). Besides, lysophospholipid acyltransferase 

(LPLAT) also contributes in proper 

spermatogenesis as three Drosophila homologs of 

membrane-bound O-acyltransferase domain 

containing 1 (MBOAT1), Oys, Nes, and Frj were 

found to have combined effect on male fertility. 

Males with Oys-nes double mutant and oys-nes-frj 

triple mutant produce defective spermatid 

individualization phenotype, which can be explained 

by an elevated level of the saturated fatty acid 

content of several phospholipids (33). 

Phosphatidylinositol (PI) metabolism 

pathway has been well characterized in Drosophila, 

which is a cycle between PI, PI-4-phosphate (PI4P), 

PI-4, 5-bisphosphate (PIP2), and PI 3, 4, 5-

triphosphate (PIP3) under the regulation of multiple 

kinases and phosphatases. By regulating the level of 

these components, the PI pathway-related genes 

show their function in controlling sperm development. 

Reduced level of PIP2 by low-level expression of 

SigD or null mutation of Sktl (PI 5-kinase, PI5K) 

results in formation of abnormal bipolar spermatid 

cysts (34). Contrastingly, overexpression of SigD in 

testes leads to decrease in number of elongated 

spermatids, interfering with the ability of docking the 

basal body to the nuclear envelope, as well as 

disrupting normal development of flagellar axoneme 

(35). Notably, co-expression of Sktl, which promotes 

PIP2 production, suppress the phenotype of SigD 

overexpression (35). Besides PIP2-related gene, 

other genes like four wheel drive (fwd) (encodes for 

kinase PI4Kbeta) or giotto (also called vibrator) also 

cause cytokinesis defects in spermatids meiosis due 

to furrow instability (36–38). Further study showed 

that rab11, a small GTPase, is the link that mediated 
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by both, Fwd and Giotto in the same cytokinetic 

pathway, responsible for proper cytokinesis (39). 

Two cholesterol trafficking proteins, 

Niemann-Pick type C (NPC) and Oxysterol binding 

protein (OSBP), have been well studied for their link 

to Drosophila spermatogenesis. The npc1 (one of 

two genes encoding NPC) null mutants are male 

sterile due to the dysfunction in spermatids 

individualization (40). This study also found the 

phenotypes are independent of ecdysone, which 

suggests the requirement of cholesterol transport into 

testes by NPC to perform individualization (40). In 

vivo loss-of-function mutants of osbp exhibits 

spermatids individualization defective phenotype, 

cooperated by FAN (a member of testes-specific 

vesicle-associated membrane protein-associated 

protein, VAP protein). Furthermore, the sterility 

phenotype of osbp mutant can be rescued by feeding 

cholesterol, confirming the relation between 

cholesterol and spermatogenesis (41). Taken 

together, fatty acid, PI and cholesterol plays essential 

roles in multiple biological processes of Drosophila 

spermatogenesis. The fact that the level of these 

lipids needs to be adequately regulated in 

spermatocytes for right functions strengthen the 

contribution of lipid metabolism-related genes for 

spermatogenesis. 

5. LIPID METABOLISM FUNCTION IN 

OOGENESIS AND EMBRYOGENESIS 

Early studies had revealed the crucial roles 

of lipid droplet in Drosophila embryo development by 

investigating its impact and kinetics of embryo vesicle 

transport (42) or analyzing its associated proteins 

(43). One of the first lipid metabolism-related genes 

which had been characterized in embryo 

development was midway (mdy) gene. The mdy 

encodes for Drosophila homolog of diglyceride O-

acyltransferase (DGAT), which converts DAG into 

TAG. Mutants of mdy showed the diminished 

accumulation of neutral lipid, and subsequently 

induced apoptosis of egg chamber during mid-

oogenesis (44). Wun and wun-2 act as lipid 

phosphate phosphatases and are necessary for 

germline development in Drosophila embryo. 

Wun/wun-2 mutations affect the polarity of primordial 

germ cells (PGCs) as well as prevent them from 

migrating laterally to the middle of the embryo. The 

PGCs that fails to relocate would undergo Wun/Wun-

2-dependent manner cell death pathway (45). 

Furthermore, it is suggested that Wun and Wun-2 

may participate in the same process with Oys and 

Nes functions of which were mentioned in 

spermatogenesis. In female oys and nes double 

mutant, migration of embryo germ cells is disrupted. 

These two genes seem to work together since the 

phenotype is not observed in single mutant of oys, 

nes or frj. Surprisingly, triple mutants of these genes 

produce no stronger phenotypes indicating that Frj 

may not need for this process (33). The effect of Nes 

expression, however, can be significantly increased 

by zygotic expression of Wun-2 (33). 

The components of the PI pathway also 

contribute in keeping embryogenesis intact. The PI 

4-kinase alpha (PI4KIIIa) is required for 

enrichment of PI4P and PIP2, which is essential for 

actin formation, membrane trafficking, and cell 

polarity. Null mutant of PI4KIIIa, exhibits the 

effects on egg chamber formation that differ from 

those of null mutants of fwd (encodes PI4Kβ) and 

PI4KII (also encodes synthesis enzymes of PI4P 

and PIP2) (37). Further investigation suggested 

that the phenotype of PI4KIIIa mutants are more 

likely to affect Golgi rather than the plasma 

membrane (46). In contrary, PI4KIIIa gives a 

similar effect with Sktl (PIP5K), another PIP2-

regulating enzyme, in the process of maintaining 

egg chamber polarity (46, 47). On a side note, 

another member of PI kinases family, PI3K has 

been shown to be involved in regulating cell 

migration, which is crucial for embryonic 

development, in many different cell types via 

directly binding their kinase products to proteins 

(48, 49). Akt, a downstream kinase of PI3K, is 

similarly, required for normal embryo 

development, as reduced levels of Akt leads to 

incomplete centrosome migration, corrupted 

mitotic spindles, and loss of nuclei trafficking into 

the embryos (50). 

Clearance of histones is necessary in most 

cells of Drosophila since free histones are toxic, yet 

in Drosophila embryo, high level of extranuclear 

histones are accumulated, suggesting its necessity in 

early development. In this stage, histones are 
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bounded to lipid droplets for its safe storage and 

delivery, thus, indicating another role of lipid in 

embryogenesis (43). Jabba is a lipid droplet protein 

that required for docking of histones to the adipocyte-

like organelles. In jabba mutants’ embryos, histones 

levels of H2A, H2B, and H2Av reduces significantly, 

despite the mutants develops normally due to the 

immediate biosynthesis of new histones to 

compensate for the lacking (51). However, further 

investigation pointed that jabba mutants’ embryos 

under conditions of increased temperature induced to 

hasten the development (from 21°C to 25°C) cannot 

recruit new histones fast enough to deal with this 

challenge. This leads to nuclear falling and reduced 

hatching of eggs (52). Recently, Jabba was 

characterized as a substrate of casein kinase 2 (CK2) 

and essential component for an earlier 

developmental process, oogenesis, as shRNA 

targeting jabba in female exhibits reduced egg 

production (53). In addition to roles of lipids in 

oogenesis, two lipid-related genes, fatty acid 

synthases named, Bad egg and a homolog of PGC-

1 called, Spargel which regulates the formation of 

eggshells in Drosophila ovary were identified in a 

screening study of patterning-defect lines. Mutants of 

bad egg exhibited thin shell phenotype while mutants 

of spargel caused long pair of dorsal appendages, 

which act as a respiratory organelle of Drosophila 

egg (54). It is worth to mention that lipid-related 

genes can affect early development in yet another 

manner; two enzymes, Minotaur and Zucchini, which 

conventionally act in the biosynthesis pathway of 

phosphatidic acid (PA), also revealed to have critical 

roles in piRNA biosynthesis (55, 56). piRNA, in turn, 

guides Piwi proteins to form a molecular code that 

separates transposons from endogenous genes and 

prevents germ cell genomes against the activity of 

those genetic elements (56). All those evidences 

collectively exhibit that lipid metabolism – related 

genes regulate oogenesis and embryogenesis in 

various manners. 

6. THE LINK BETWEEN LIPID-RELATED 

GENE AND DEVELOPMENT 

Lipid droplets function through all 

development stages of Drosophila. They are not only 

detected in adipose tissue but also present in other 

tissues such as imaginal discs, which give rise to 

adult body structures like eyes, legs, wing after 

metamorphosis, salivary glands, gut, the Malpighian 

tubules, etc. (5). In the fat body of Drosophila, 

ectopically expressed GFP-tagged lipid storage 

droplet 1 or 2 (LSD-1 or LSD-2) reside in the lipid 

droplets (57). Interestingly, our studies showed that 

the expression of LSD-1 and LSD-2 is not only 

essential for lipid metabolism but also plays a crucial 

function in development. The dysfunction of Lsd-1, a 

Drosophila homolog of perilipin 1 (PLIN1), on the 

wing disc by genetic knockdown leads to disruption 

of normal wing development. Further investigation 

suggested that the loss of LSD-1 function release 

distress signals in mitochondria, which decrease ATP 

production while increasing ROS generation and 

eventually result in cell death (58). On the other hand, 

while LSD-2 does not show any noticeable effects in 

eye, hemocytes, nervous system, or thorax; we found 

that genetic knockdown of lsd-2 also interrupts 

Drosophila wing formation via inducing cell death. 

However, unlike LSD-1, we did not find an increase 

in ROS generation in LSD-2 knockdown flies, but 

instead, the expression of a highly anticipated 

transcription factors participating in development, 

dFoxO and its target in caspase-dependent apoptotic 

pathway Reaper (Rpr) are significantly up-regulated. 

Moreover, loss-of-function dFoxO in LSD-2 

knockdown flies can rescue the curly wing phenotype 

and suppress the cell death signal, while 

overexpression of dFoxO worsens the outcomes 

(59). Additionally, several studies in other models 

showed the role of PLIN1in inflammatory responses 

in lean adipose tissue through lipid dysregulation 

(60), and that PLIN2 associates with the progression 

of the age-related disease, such as fatty liver, type 2 

diabetes, sarcopenia, and cancer (61). 

Furthermore, there are plenty of evidences 

suggesting the expression of lipid-related proteins in 

non-adipocyte tissues may link to development. The 

enzyme of lipogenesis processes, Drosophila 1-acyl-

sn-glycerol-3-phosphate acyltransferase 1/2 

(dAGPAT1/2, CG3812) expresses exclusively in the 

nervous system, testes, and ovaries (62). One of the 

phosphatidate phosphatases, dLipin, is considered 

as a strong link in development. The decreased 

expression of this gene not only affect the healthy 

development of fat body, but also involves in that 

down-regulation of the insulin-receptor-controlled 
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PI3K-Akt pathway and increased hemolymph sugar 

levels (63). Schmitt et al. indicated that insulin 

signaling pathways and a well-known development 

pathway, target of rapamycin complex 1 (TORC-1), 

independently regulates the nuclear translocation 

function of dLipin (63). In mammals, blocking of 

TORC1 dephosphorylates Lipin 1, leads to its 

translocation from cytoplasm into the nucleus, where 

it affects nuclear protein levels, but not mRNA levels, 

of the transcription factor sterol regulatory element-

binding protein 1 (SREBP1). The SREBP1 controls 

the production of cholesterol, fatty acid, TAG and 

phospholipid (64). DGAT1 encoded by mdy 

expresses during all stages of Drosophila 

development in widely specific tissues such as fat 

body, ovaries, embryonic, salivary gland, etc. (44). 

Last but not least, the expression of crucial lipase, 

Bmm was observed in the multiple post-embryonic 

organs or tissues including midgut, hindgut, heart, fat 

body, and salivary gland (62). These findings, taken 

together, motivate us to investigate the function of 

lipid metabolism-related genes on the development 

of specific tissues in Drosophila. 

7. PERSPECTIVES 

Drosophila has always been considered as 

a powerful model not only for study in development, 

but also in lipid metabolism, because of their high 

resemblance to human genome. It thus provides us 

with homogenous mechanisms in related disorders. In 

this review, our goal was to gather the connection 

between those two aspects: lipid metabolism and 

development. Various lipid-related genes act together 

to regulate specific lipid levels which is required to 

perform crucial biological processes in the membrane 

during spermatogenesis, or forming eggshells during 

oogenesis, as well as guiding cell migration during 

embryogenesis. Beyond that, in recent studies, lipid-

related genes prove themselves as participants in 

multiple developmental processes suggesting their 

deeper involvement regardless of energy supply. 

Collectively, these findings not only provide a better 

understanding of the link between lipid metabolism 

and development, but also reassure the efficiency of 

Drosophila model in tackling this matter (Figure 1). In 

the future, more comprehensive studies on the role of 

lipid regulation in development and related phenotypes 

using Drosophila models will be necessary to identify 

the principle of various associated disorders. 
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