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1. ABSTRACT 

Malaria is an infectious disease caused by 

parasitic protozoans of the Plasmodium family. These 

parasites are transmitted by mosquitos which are 

common in certain parts of the world. Based on their 

specific climates, these regions have been classified as 

low and high risk regions using a backpropagation 

neural network (BPNN). However, this approach yielded 

low performance and stability necessitating 

development of a more robust model. We hypothesized 

that by spiking neuron models in simulating the 

characteristics of a neuron, which when embedded with 

a BPNN, could improve the performance for the 

assessment of malaria prone regions. To this end, we 

created an inter-spike interval (ISI)-based BPNN (ISI-

BPNN) architecture that uses a single-pass spiking 

learning strategy and has a parallel structure that is 

useful for non-linear regression tasks. Existing malaria 

dataset comprised of 1296 records, that met these 

attributes, were used. ISI-BPNN showed superior 

performance, and a high accuracy. The benchmarking 

results showed reliability and stability and an 

improvement of 11.9% against a multilayer perceptron 

and 9.19% against integrate-and-fire neuron models. 

The ISI-BPNN model is well suited for deciphering the 

risk of acquiring malaria as well as other diseases in 

prone regions of the world. 

2. INTRODUCTION 

Malaria is a life threatening mosquito-borne 

infectious disease that exists in almost all nations. 

Almost half of the world’s population is at risk of 

malaria (1). The epidemiological patterns of malaria 

have been changing globally. The World Health 

Organization (WHO)’s world malaria report of 2018 

stated that there were 219 million malaria cases 

worldwide and a total of 435,000 estimated deaths in 

2017 (2). Southern Africa has the highest share of 

global malaria, with 194 million malaria cases and 

407,000 deaths. High rates were also seen in the 

Asia Pacific region: Myanmar had 962,000 malaria 

cases with 2880 deaths, India 105,000 malaria cases 

and 690 deaths, and Indonesia 105,000 malaria 

cases and 1230 deaths as shown in Table 1. Ashwani 

et al. (3) reported on the malaria statistics in India, 

finding 4,481 confirmed deaths (medically certified) 

and an estimated 49,796 deaths (unconfirmed death 

reports). The authors gave statistics for Orissa (a 

state in the west of India) with almost 96,000 malaria 

cases and 1,793 deaths; for Madhya Pradesh 

(central India), these Figures were 50,000 malaria 

cases with 890 deaths, and in Karnataka (southern 

India) 82,000 malaria cases with 407 deaths. The 

authors further stated that adult and child cases gave 

rise to 2,681 malaria deaths; 90% were in rural areas, 

and 86% were due to a lack of medical facilities. 

Walther et al. (4) presented a survey of quantitative 

epidemiology methods and addressed global 

challenges to the worldwide elimination of malaria. 

Darkoh et al. (5) developed a water-based prediction 

model for the prediction of malaria prevalence in 

Ameni, in the west of Ghana. 
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Malaria is caused by a family of parasitic 

protozoans of the Plasmodium family. The 

Plasmodium parasite has several different species, 

but only five are responsible for malaria infection: 

Falciparum, Vivax, Malariae, Ovale, and Knowlesi. In 

India, the first two of these species cause malaria in 

humans. The dominant infecting species is Vivax; 

however, there was a reduction in its prevalence in 

1985, which brought the ratio of Falciparum to Vivax 

to 0.41. In 1995, the ratio increased to 0.60 and this 

had changed to 1.01 by 2010 (6). The WHO launched 

a project of prevention and control of malaria disease 

in India, and the current work was carried out under 

their aegis (1). Certain geographical regions are 

more affected than others by the number of patients 

and by climatic conditions, which are dependent on 

attributes such as temperature, humidity and rainfall, 

it is therefore necessary to classify these regions into 

low or high-risk areas for malaria. By classifying 

malaria-prone zones, we can obtain information 

about high-risk areas, which can then be reported to 

the municipal authorities and other local bodies. 

These organizations can use this information to 

prevent this disease by initiating early fogging and 

other control measures to stop the breeding of 

malaria species. Our objective is therefore to classify 

regions of high or low proneness to malaria, based 

on climatic conditions and their changes. This study 

is focused on the identification of malaria-prone 

zones and on the triggers for the occurrence of 

malaria in a specific geographic location in Goa, 

India. 

2.1 Lifecycle of Malaria 

Malaria is usually transmitted by a female 

mosquito (7)(8). Malaria is also communicable 

through the bite of the mosquito. When, an infected 

Anopheles mosquito bites, it introduces parasite to 

our blood. Also, when a mosquito bites an infected 

person, biting mosquito becomes infected and it 

transmits the parasite. The parasite, present in 

Anopheles saliva, enters the blood through the bite. 

Through the bloodstream, parasite reaches to the 

liver. Parasite matures and reproduces in the liver 

within 48 to 72 hours (9)(10). The matured parasite 

then travels through the bloodstream, and starts 

infecting the blood cells, usually RBC. Once parasite 

enters into RBC, it starts multiplying within two to 

three days, causing the burst of a cell, and as a result, 

this infection is transmitted to other cells in the blood. 

At synchronous time intervals, infected blood cells 

burst and it introduces more population of parasites 

in the blood. The bursting cycle of infected blood cells 

Table 1. Worldwide incidence and mortality of malaria 

Global burden (2016-2017) 

SN Region Cases Deaths 

1 African 194 million 407000 

2 South-East Asia 14.6 million 27000 

3 Eastern Mediterranean 4.3 million 8200 

Asia (2016-2017) 

1 Myanmar 962610 2880 

2 India 8760000 690 

3 Indonesia 105890 1230 

4 Thailand 35810 120 

5 Bangladesh 34400 550 

India (2016-2017) 

1 Orissa 962610 1793 

2 Madhya Pradesh 508800 890 

3 Karnataka 822560 407 

4 Maharashtra 339200 326 

5 Gujarat 37028 212 

 



Spiking BPNN for malaria incidence prediction 

302 © 1996-2020 
 

is 48-72 hours. Each time when cells are bursting, a 

person feels a bout of fever, sweating and chills. 

Malaria parasite infection cycle is shown in Figure 1. 

The parasites persuade separation of the infected 

hepatocyte takes place, enabling it to relocate to the 

liver sinusoid where sprouting of parasite-filled 

vesicles called merosomes (Figure 1: Label 1). The 

new merozoites rapidly divide within erythrocytes, 

sometimes synchronously in cycles with fever and 

chills (Figure 1: Label 2). Responding to an 

unconfirmed cue, few parasites separate into male 

and female gametocytes (Figure 1: Label 3), which 

are the forms that live inactively in the circulatory 

system for a week. When gametocyte enters the 

mosquito by means of blood, they quickly transit to 

become initiated male and female gametes (Figure 1: 

Label 4). The motile and fleeting diploid parasite 

frame, the ookinete, moves out of the blood (Figure 

1: Label 5), over the peritrophic lattice to the mid-gut 

partition where an oocyst is shaped (Figure 1: Label 

6). After a meiotic decrease in the chromosome, 

numbers of sporozoites are framed inside the oocyst 

(Figure 1: Label 7). Finally, the oocyst splits and 

sporozoites relocate to the salivary organ to 

anticipate exchange with vertebrate host. Malaria 

infection can grow to hypoglycemia, cerebral malaria 

or anemia as result the blood carrying capillaries are 

blocked due to the thickness of blood. This happens, 

when the parasite is drug resistant or there is a lack 

of availability in proper medicines. The cerebral 

malaria is a key factor of lifetime learning disabilities 

(11), it can cause coma and further may lead to 

death. 

There have been few studies in the field of 

regional classification of malaria-proneness. 

Recently, Santosh et al. (12) presented an artificial 

neural network (ANN) that uses a sigmoid function as 

 
 

Figure 1. Malaria parasite life cycle. 
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an activation function in a prediction model for 

malaria using data engineering, for the southern 

regions of India, and addressed the problems of 

scalability and time complexity for traditional machine 

learning algorithms. For classification, a feedforward 

multilayer perceptron (MLP) is a widely used neuron 

model that uses backpropagation (BP) as a learning 

method with weight updating (13). Feedforward nets 

are efficient in terms of classification, but are time-

consuming. 

The first artificial neuron was proposed by 

McCulloch et al. (14), and was known as a linear 

threshold unit (LTU) or threshold logic unit (TLU). 

This model was a mathematical interpretation of a 

neuron. Sharp et al. (15) proposed an electrical 

model of an artificial neuron and explained the 

oscillation properties exhibited by this neuron. 

Izhikevich (16) introduced the concept of resonate 

and firing in neural activities, which exhibited 

biological properties. In recent years, spiking neuron 

models (third-generation ANNs) are used in 

classification and prediction problems and these 

have shown improvements over conventional neuron 

models. Abbott (17) introduced the concept of 

threshold values for spike generation, and stated that 

an integrate-and-fire neuron (IFN) exhibits almost all 

of the characteristics of pharmacological input 

neurons or natural neurons. Abbott et al. (18) 

developed a generalized non-linear IFN for electrical 

circuits. Stein et al. (19) developed a new model by 

introducing a leaky term into the IFN and it was added 

to the membrane potential, the model was termed a 

leaky IFN (LIFN), and this model was developed as a 

special case of the generalized IFM model. Nicolas 

et al. (20) proposed another special case called the 

quadratic IFN (QIFN), which was derived from the 

generalized IFN model. Fourcaud et al. (21) 

presented an exponential IFN (EIFN) neuron model 

which uses an input current in the form of an 

exponential or spiking current. A further description 

of spiking neural networks is presented in the 

Discussion section. 

The interspike interval (ISI) is a key factor 

affecting the passing of information from one neuron 

to another. Yadav et al. (13) observed that ANNs are 

efficient in performing pattern classification when the 

biological properties of the neuron are included. The 

authors used an MLP with an ISI derived from IFN, 

and this yielded better accuracy and lower time 

complexity. We thus hypothesize that the ISI 

obtained from the proposed neuron model with a 

BPNN will yield a regional classifier for our objective 

solution. This neuron mimics the characteristics of 

natural neurons, and when embedded with BPNN, 

can provide a more robust solution. This study 

presents an ISI-based BPNN (ISI-BPNN) function in 

which the proposed architecture is a single-pass 

spiking learning strategy which is useful for nonlinear 

regression tasks. 

Based on this approach, we implemented 

an architecture that leads to the following 

contributions: (i) the design of a new spiking function 

for a nonlinear IFN model (NLIFN) and its ISI; (ii) this 

ISI is then used as an aggregation function in a BNN, 

and is referred to as an ISI-BPNN. In addition, weight 

updating equations are derived and comparative 

studies are performed via experiment; (iii) real-world 

malaria data are used in a comparative performance 

evaluation of the proposed ISI-BPNN. 

The rest of the paper is organized as follows: Section 

3 presents a mathematical model of the spiking 

function along with the ISI-BPNN architecture. 

Machine learning architecture is discussed in Section 

4, and the experimental protocol involving a real-

world malaria dataset is discussed in Section 5. The 

results of experiments using the proposed method 

are presented in Section 6. A performance evaluation 

of ISI-BPNN is conducted in Section 7, and Section 8 

contains a scientific validation and statistical 

analysis. In Section 9, we summarize the paper and 

present a discussion of the proposed design, 

including benchmarking, special notes on the 

sigmoid function and neural networks and their 

strengths and weaknesses, and future work. Finally, 

the study is concluded in Section 10. 

3. DERIVATION OF THE PROPOSED 

MODEL 

A spiking neuron model closely mimics and 

simulates the computational characteristics of a 

natural neuron. The IFN was the first model of a 

biological neuron, and was designed using a simple 

R-C circuit (11). In an IFN, action potentials are 

represented as an event, often termed a spike, and 
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neurons communicate with each other based on 

spike time intervals. 

3.1. Proposed system 

The design of the proposed system is 

inspired by the generalized IFN model. We create a 

spiking function, and the aggregated output is used 

as input to the sigmoid function in the BP algorithm. 

We therefore call our approach ISI-BPNN. The global 

model is shown in Figure 2. The object process 

diagram illustrates the procedure of the model 

development, and contains three processes: the 

design of the spiking function, the design of the ISI 

and the integration of ISI with BPNN, as shown by 

three different ellipses. The spiking model (phase I) 

is designed using the generalized IFN model, 

retaining features such as robustness, constraints 

and a single-pass model (derived in the next section). 

Phase II uses constraints and an integration model to 

generate the aggregate function. Phase III uses this 

weighted aggregated sum to generate the ISI-BPNN, 

 
 

Figure 2. Object process model showing the aggregate sum used in the design of ISI-BPNN 
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using the steepest descent paradigm. Following this, 

the input to the sigmoid function is constructed, and 

finally, the new classifier is obtained from the sigmoid 

function. 

3.2. Nonlinear integrate-and-fire neuron 

model 

An IFN is an efficient model that is 

capable of computing the characteristics of a 

biological neuron over time. In an IFN, the 

membrane potential is directly proportional to an 

externally injected current. When this current is 

injected, the voltage potential rises, and after a 

certain time settles down to a threshold value. 

Once the membrane potential reaches a desired 

threshold, it generates a spike and then resets 

the voltage immediately after this spike. Usually, 

a biological neuron has memory, an equivalence 

term called a leak term is added to an IFN, and 

this is known as an LIFN. This is the most 

representative model of an actual biological 

neuron. The memory term is included in an action 

potential that represents the diffusion of ions 

inside the membrane cell. Biologically, diffusion 

occurs when the membrane cell is in 

disequilibrium. The generalized nonlinear IFN 

(21) is represented as: 

 (1) 

where is the membrane constant,  is 

the membrane potential at time ,  is the leaky 

inductance of the membrane,  represents the 

external input current, and  and  

represent the generalized functions of the 

membrane potential. We can obtain the QIFN by 

substituting a specific function of second order   

( ) for the membrane potential ( ) and can 

obtain the EIFN model by substituting an exponent 

term ( ) as a specific function for 

the membrane potential in the general equation for 

a nonlinear IFN, as shown in Eq. (1). 

3.3. Proposed spiking model 

A new spiking model for a nonlinear IFN is 

proposed in this work. The proposed spiking function 

has the form,  where  and 

 are positive numerals and have the relation:

; ,  represents the 

membrane potential, and represent the 

membrane potential function at time t and the cubic 

power function of  respectively and  is the 

inductance of the membrane. If we substitute the 

values of  and  

into Eq. (1), i.e.

 and the 

values of a and b are substituted, we obtain an 

updated equation as given in Eq. (2): 

 (2) 

where, , , , ,  and  are the 

membrane potential, leak potential, external current 

input, time, membrane time constant, and 

incremental time, respectively (the derivation of Eq. 

(2) is given in the Supplementary Material). Once the 

potential  reaches a threshold voltage , the 

membrane potential dynamics are interspersed, and 

then the potential is then reset after the spike 

following re-initialization at a resting potential of

. The term  is obtained by comparing the RHS 

of Eq. (1) and Eq. (2). The response from the firing 

rate of the proposed neuron model is analytically 

calculated as the first derivative of , i.e. 
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It is observed that the derivative  

satisfies the properties of nonlinear neuron model, i.e. 

 (4) 

Furthermore, this nonlinear model also 

meets the requirements of the condition of the spike 

sloping factor ( ), i.e. 

  (5) 

The proposed function has a lower order 

than the other spiking functions including , 

 and  proposed earlier. Biologically plausible 

spikes are generated by this proposed function. The 

LHS of Eq. (1) can be denoted by , a 

nonlinear potential of the membrane, and this is given 

as: 

 (6) 

where,  ; 

 is a constant; * is the 

multiplier; R is the resistance of the membrane; and 

  

is the external input current (and thus the 

product of the latter two parameters represents the 

voltage). The spikes obtained using a two-

dimensional function  from Eq. (2), at

 are shown in Figure 3(b). Izhikevich (23) 

stated that function  should satisfy non-

degeneracy and transversality conditions. Eq. (5) 

shows that a partial derivative of  with 

respect to  is not equal to zero. Hence,  
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 satisfies the property of non-degeneracy, 

since the second derivative is not equal to zero. 
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in the proposed model is given by Eq. (7) as follows: 
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generating function is that it contains lower-order 

terms than other existing quadratic and exponential 

neuron models. The spike-generating function also 

reduces the computational complexity. 

3.5. Construction of a new aggregation 

function 

The new aggregation function for ISI-BPNN 

is derived from Eq. (2), as explained in this section. A 

parametric representation of Eq. (7) can be given as: 

 (9) 
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Figure 3. Spike dynamics (a) IFN, (b) ISI-BPNN 
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The computation of the new ISI-based BNN 

is shown in Figure 4. The network diagram consists 

of two layers. Input  has  attributes, and the first 

layer has neurons for each distinct feature and the 

second layer is the output layer. 

Assuming that the input to the  neuron 

is  and that the corresponding weights are

, and that input 

neurons  are connected to the  

neuron in the second layer, then the weighted 

aggregate  at  neuron is defined as: 

 (10) 

where  is the number of input neurons. 

3.6. Proposed ISI-BPNN and training 

algorithm 

This subsection explains the development 

of ISI-BPNN and the training algorithm used. After the 

construction of the proposed network is explained, 

the training algorithm is given based on the steepest-

descent formulae. 

3.6.1. Construction of the proposed isi-

based backpropagation (ISI-BP) 

In the creation of the proposed network, 

 is treated as the input for the activation 

function and is considered to be analogous to the 

input to the neuron and the ISI. Hence, it can be 

assumed to be a function of the externally injected 

current . Weights are associated with the 

corresponding inputs for the temporal summation 

when other synapse inputs are present. The other 

part of the IFN is represented in terms of a 

threshold function. Here, to represent the activity 

of this block, a sigmoid function is used in which 

the aggregated function  is used instead 

of . Thus, the sigmoid function is written as in 

Eq. (11): 

 (11) 

where, y is an s-shaped sigmoid function 

that lies between zero and one, meaning that when 
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Figure 4. Computation of the aggregated weight function 
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the input tends to infinity, this function achieves its 

highest value of one, and when the input tends to 

negative infinity, it achieves its lowest value of zero. 

4. MACHINE LEARNING ARCHITECTURE 

The machine learning architecture for the 

proposed scheme is given in Figure 5, which 

illustrates the entire process from the very beginning, 

including data collection, to the evaluation and 

validation of the model. In the first step, the collected 

data were preprocessed and a dataset prepared for 

classification. The K2 and K10 protocols were then 

applied to the dataset to prepare the training and 

testing data. The training data were used in classifier 

training, which generates the training coefficients. 

These coefficients were then used to transform the 

test dataset to compute the predicted classes of 

malaria-prone regions, that is, high or low risk. This 

process was repeated for the K2 and K10 protocols 

and the MLP, SVM, IFN, GCNN classifiers. Cross-

validation was used to compute the accuracy of the 

machine learning architecture. The results of the 

prediction were validated to ensure the robustness of 

the system. 

4.1. Conventional classifiers 

The developed model was tested against 

conventional classifiers such as MLP, IFN, SVM, and 

GCNN. The theoretical concepts underlying these 

classifiers are discussed in this section. 

4.1.1. Multilayer perceptron 

The MLP is a feedforward artificial neural 

network (36) with a minimum of three layers: the first 

is an input layer, the second a hidden layer and last 

an output layer. The activation function is used at 

 
 

Figure 5. Machine learning architecture 
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each layer in the MLP except the input layer. Figure 

6(a) shows the traditional model of a feedforward 

network. 

4.1.2. Support Vector machine 

Support vector machines (SVMs) (37) are 

supervised classifiers that are used in classification 

and regression tasks. An SVM has a separating 

hyperplane by which it classifies the data. It is the 

most suitable model for labeled data classification, 

and uses a representation of points in a hyperplane 

that are categorized in terms of a positive or negative 

class. It uses a certain margin, based on which the 

labels are categorized as shown in Figure 6(b). 

4.1.3. Generalized-constraint neural 

network 

A generalized-constraint neural network 

(GCNN) (38) consists of three units: an input, a 

processing unit, and an output unit. The processing 

unit contains two subunits: a neural network sub-

model and a partially known relationship model. 

During execution, there is a coupling between the 

units that allows the system to classify the input data 

when partially known relationships are applied to the 

input. The model is shown in Figure 6(c), which 

explains the conceptual working of GCNN. 

5. DATA COLLECTION AND 

EXPERIMENTAL PROTOCOL 

This section presents the details of the data 

collection and the experiments performed. The 

proposed ISI-BPNN model is applied to a real-time 

dataset of malaria disease. Throughout the work, in 

terms of achieving the goal, experimental paradigms 

are used. We develop the ISI from the proposed 

function, develop an aggregation function, and finally 

develop the ISI-BP model and obtain its learning rule 

based on the aggregated function. We compute 

cross-validation protocols to examine the quality with 

regard to the generalized datasets for each 

approach. The first experiment is performed to test 

the effect on accuracy by making changes in the size 

of training data, using two methods of K-fold 

validation (K2 and K10). In the second experiment, 

we increase the size of the dataset and then apply K-

fold techniques. The model is also tested for 

accuracy. 

5.1. Data collection 

The malaria data used in this study were 

collected from a government infectious disease (ID) 

hospital in Ponda, Goa, via a Department of Science 

and Technology (DST), Science and Engineering 

Research Board (SERB) project at the National 

Institute of Technology Goa, India. 

5.1.1. Demographics, recording protocol 

and ground truth 

The data was collected over a three-year 

period from January 2015 to December 2017. Four 

attributes were measured: temperature, humidity, 

 
 

Figure 6. Conventional classifiers (a) MLP, (b) SVM and (c) GCNN 
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rainfall and the number of patients taken from 43 

villages. The cohort consisted of 2,210 females and 

2,564 males. Each record consisted of three 

attributes: temperature, humidity and rainfall. In all, 

4,744 records were collected over this period, and the 

distribution was as follows: for the first month, three 

attributes (temperature, humidity and rainfall) were 

recorded for 43 villages, giving 43x3=129 records. In 

the first six months, 43x3x6=774 records were taken; 

over the first year, the total records were: 

43x3x12=1548; and over the entire three-year period, 

the total number of records was: 43x3x12x3=4,744. 

Patients were recorded as testing positive or 

negative for malaria based on blood sample 

examinations. All the recordings were done in the 

register by hospital nurses. Positive malaria cases 

were recorded as a value of 1 (with malaria) and 

blank columns were treated as a value of 0 (no 

malaria). These binary data formed the ground truth 

information for the study. The collected malaria data 

contained records on patient visits, residential 

location and gender information. 

5.1.2. Meteorological data 

The dataset consisted of the metrological 

attributes of temperature, rainfall and humidity as 

input, and the number of patients from a specific 

location as the target values. Attribute values were as 

follows: Average temperature (month high (°C)/low 

(°C)): Jan 32/20, Feb 32/21, Mar 33/23, Apr 33/25, 

May 34/26, Jun 31/25, Jul 29/24, Aug 29/24, Sep 

30/24, Oct 32/24, Nov 33/22, Dec 33/21. Relative 

humidity (month humidity (%)): Jan 63%, Feb 64%, 

Mar 65%, Apr 67%, May 69%, Jun 84%, Jul 87%, 

Aug 88%, Sep 85%, Oct 78%, Nov 68%, Dec 62%. 

Average rainfall (month rainfall (mm)): Jan 0, Feb 0, 

Mar 2.54, Apr 17.78, May 104.14, Jun 678.18, Jul 

985.52, Aug 589.28, Sep 231.14, Oct 132.08, Nov 

35.56, Dec 12.7. 

5.1.3. Geographical location of villages 

The geographic locations of villages in the 

Ponda area are shown on the map of Goa (the study 

area is shown in the Supplementary Material). The 

dataset consisted of records of patients from 43 

villages around Ponda, as follows: 1. Adcolna, 2. 

Adpai, 3. Bandora, 4. Betora, 5. Boma, 6. Borim, 7. 

Candepar, 8. Candola, 9. Codar, 10. 11. Conxem, 12. 

Cuncoliem, 13. Cundaim, 14. Curti, 15. Dhavali, 16. 

Durbhat, 17. Farmagudi, 18. Gangem, 19. Jay Cee 

Nagar, 20. Kaziwada, 21. Keri, 22. Khadpabandh, 23. 

Marcaim, 24. Nageshi, 25. Nirancal, 26. Orgao, 27. 

Ponchavadi, 28. Priol, 29. Quela, 30. Querim, 31. 

Sadar, 32. Sahapur, 33. Santa Cruz, 34. Shanti 

Nagar, 35. Siroda, 36. Telaulim, 37. Tisk, 38. Tivrem, 

39. Undir, 40. Usgao, 41. Vagurbem, 42. Velinga, 43. 

Volvoi. 

5.1.4. Ethics approval 

The collected malaria data were given 

ethical approval from the Infectious Disease Hospital, 

Ponda, Goa, India. The patient records were 

maintained manually in the registers and these 

records were then converted into computerized 

datasheets by the hospital before being transferred 

for this study. During the study, double checking for 

errors was carried out after the data had been 

transferred from the hospital to Institute. During 

computerization, the patient records were 

anonymized. 

5.2. Experiment 1: Computation of accuracy 

of ISI-BPNN using K2 and K10 cross-

validation 

The motive for performing this experiment 

was to examine the effects of changes in accuracy by 

making changes in the training set using the K2 and 

K10 protocols. Each fold is a subset of our dataset; 

K2 means that the data were divided in to two parts 

in a 1:1 ratio, i.e. half (50%) for training and half 

(50%) for testing, whereas K10 means that the data 

were divided into 10 parts in a 9:1 ratio, meaning that 

90% of data were used for training and 10% for 

testing. These experiments were repeated 10 times 

on a random basis, and the average accuracy was 

recorded. 

5.3. Experiment 2: Effect of Training Set 

Using ISI-BPNN for Datasets 

The motive for this experiment was to 

identify changes in performance by making changes 

to the dataset sample size. The sample size played a 

vital role in both performance and computation time 

during every iteration. We used four sizes of 

datasets: monthly, half-yearly, yearly and combined 

three-year data, and these were termed CN1, CN2, 
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CN3 and CN4 which contains 129, 774 , 1548 and 

4744 records respectively. It was therefore 

necessary to run K-fold protocols for these four types 

of datasets. 

5.4. Experiment 3: Inter-Classifier 

Comparison 

The aim of this experiment was to perform 

a comparative analysis of ISI-BPNN and calculate 

the mean accuracies for other classifiers including 

SVM, IFN, GSNN and MLP. 

6. RESULTS 

This section presents the experimental 

results, and is divided into three subsections. In the 

first subsection, the results of Experiment 1 are 

presented and a comparative analysis is carried out; 

in the second subsection, the results obtained in 

Experiment 2 are presented; and in the third 

subsection, the results of Experiment 3 are given in 

detail. Symbols used in this paper are listed in 

Table 2. 

6.1. Results of experiment 1 

The system accuracy ( ) can be 

expressed using the following function: 

 (12) 

where,  is the partition protocol i.e. K2 or 

K10.  are the number of trials, the index of 

the trial number, the dataset index and the size of the 

data respectively, as shown in Figure 7, in the figure, 

numbers on the bar are standard deviation. The 

accuracies for the K2 and K10 protocols are 

represented in green and purple, respectively. As can 

be seen from the figure, the proposed ISI-BPNN 

scheme exhibited an average accuracy for K2 and 

K10 of 91.78% and 98.06%, respectively. Figure 8, 

Figure 9 and Figure 10 show the monthly prediction 

results of our proposed algorithm for the years 2014, 

2015 and 2016 respectively. We can observe from 

these Figures that our proposed algorithm gives the 

desired results, as the predictions are much closer to 

the actual cases. Here, we can clearly observe that 

for consecutive years, our model gave very accurate 

predictions and performed well, requiring less 

computational time. 

6.2. Results of experiment 2 

To identify the effects of the size of the 

training data on the ISI-BPNN and other classifiers, 

we carried out an experiment by varying the size of 

the dataset. We conducted experiments on datasets 

of different sizes, i.e. CN1, CN2, CN3 and CN4. The 

accuracies for the K10 protocol obtained from these 

varying data are shown in Figure 11 (a) and the 

corresponding data are given in Table 3 where we 

can conclude that as the size of the dataset 

increased, the model became well-trained, and 

outperformed the other methods by yielding 

accuracies of 98.67% for DC3 and 99.28% for the 

DC4 dataset. 

6.3. Results of experiment 3 

The results for different classifiers are 

shown in Figure 11 (b), and the corresponding data 

are given in Table 3. The SVM, IFN, MLP, GCNN, 

and ISI-BPNN classifiers exhibited average 

accuracies of 85.14%, 89.8%, 87.6%, 87.0% and 

91.78%, respectively, for the K2 protocol. Prediction 

results for the K2 and K10 protocols are listed in 

Table 4 respectively. In Table 5, the average 

improvement in accuracy for the K2 and K10 

protocols is compared with the ISI-BPNN scheme; 

the ISI-BPNN model exhibited an 11.9% increase in 

accuracy over the conventional classifiers. 

7. PERFORMANCE EVALUATION 

Any modeling procedure needs to be 

subjected to testing, verification and validation. 

These procedures are used to determine an accurate 

fit of the model to the phenomenon being modeled. 

Regardless of which modeling procedure is followed, 

the performance of the model shows the first insight 

of representation as expected for a real-time scenario 

in systems. 
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Table 2. Symbols used and their description 

SN Symbols Description of Symbol 

1 

ia
 

Constant associated with aggregated function 

2 

ib
 

Constant associated with aggregated function 

3 

ic
 

Constant associated with aggregated function 

4 

id
 

Constant associated with aggregated function 

5 

if  
Constant associated with aggregated function 

6 

ig
 

Constant associated with aggregated function 

7 

ih
 

Constant associated with aggregated function 

8 

ip
 

Constant associated with aggregated function 

9 

iq
 

Constant associated with aggregated function 

10 
A  

Derived intermediate variables 

11 
B  

Derived intermediate variables 

12 C  

Derived intermediate variables 

13 
D  

Derived intermediate variables 

14 
F  

Derived intermediate variables 

15 G  

Derived intermediate variables 

16 
H  

Derived intermediate variables 

17 
P  

Derived intermediate variables 

18 Q
 

Derived intermediate variables 

19 α  

Derived intermediate variables 

20 β
 

Derived intermediate variables 

21 
1β  

Derived intermediate variables 

22 
2β  

Derived intermediate variables 

23 γ
 

Derived intermediate variables 

24 y
 

Obtained value 

contd... 
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Table 2. Contd... 

SN Symbols Description of Symbol 

25 t  
Target value 

26 e  
Error 

27 

ISIT
 

Interspike timing 

28 V  
Membrane potential  

29 
LV

 
Leak potential 

30 

thresV
 

Threshold potential 

30 

extI
 

External current 

31 
Lg

 
Leak conductance of the membrane 

32 

t  
Fractional time 

33 

aggW
 

Aggregated weight 

34 τ  
Membrane constant 

35 
η(k, I, t) Accuracy for 

thk  protocol, 
thI , and 

tht  trial 

36 

sysη
 

System accuracy 

37 

mN
 

Total size of malaria dataset 

38 
T  

Total number of trials 

39 old  
Previous value 

40 new  
Updated value 

41 ψ
 

Learning factor 

42 
  

Frequency 

43 
K  

Number of inputs 

44 

segE
 

Exposure index of segregation 

45 

segI
 

Isolation index of segregation 

46 

dD
 

Dissimilarity index 

47 
X  

Total number of patients 

contd... 
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Table 2. Contd... 

SN Symbols Description of Symbol 

48 
Y  

Number of malaria positive cases 

49 N  
Population 

50 
ED

 
Exposed diseased 

51 
EH

 
Exposed healthy 

52 

ND
 

Non exposed diseased 

53 

NH
 

Non exposed healthy 

54 

maxT
 

Maximum temperature 

55 

minT
 

Minimum temperature 

56 Prm Parameter 

57 c  
Arbitrary constant 

58 CL Classifier 

59 WN Week number 

60 SD Standard deviation  

61 SN Serial number 

 

The performance of the model can be 

assessed based on very different aspects. The 

primary purpose of the verification process is to 

confirm whether or not the desired output is obtained. 

The quality of the model is always a critical issue (24), 

and this study therefore implements a two-phase 

performance evaluation to ensure both the reliability 

and the stability of the system. 

7.1. The Receiver operating characteristic 

curve 

The receiver operating characteristic 

(ROC) curve is used to validate the diagnostic 

capability of the ISI-BPNN classifier. The plotted 

curve and corresponding area under the curve (AUC) 

is shown in Figure 12. The AUC is 0.9636 for ISI-

BPNN, implying a 96% chance (or probability of 0.96) 

that model classifies the data correctly. Thus, the 

system is accurate enough to perform binary 

classification. Conventional classifiers have a lower 

AUC(s). 

7.2. Sensitivity analysis 

In the sample dataset, as shown in Table 6, 

there are four features to be input to the system and 

one response variable. The ground truth variables 

are the maximum and minimum temperatures, 

rainfall, and humidity. The threshold for maximum 

temperature is 40 ± 2.5°C, for minimum temperature 

15 ± 2.5°C, for rainfall 120 ± 5 mm and for humidity 

40 ± 5%. The accuracies are recorded in order to 

analyze the sensitivity to the variables, and are 

shown in Figure 13, Figure 14, Figure 15, and Figure 

16, for the four variables. It is clear from the standard 

deviation shown in Table 7 that the model has low 

sensitivity (< 5%) to all parameters. Other classifiers 

also have low sensitivity; however, ISI-BPNN is more 

robust than IFN, MLP, SVM and GCNN. 

8. SCIENTIFIC VALIDATION 

Validation defines the stability and 

robustness of the system. In this study, the 
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aggregated function can control the system 

dynamics. To validate the ISI-BPNN, two synthetic 

datasets are used and the malaria segregation index 

is calculated. In order to validate the proposed model, 

we use two datasets from the UCI machine learning 

repository called Thoraric Surgery 

 
 

Figure 7. Prediction results of ISI-BPNN for K-fold protocols (numbers on the bar are standard deviation) 

 
 

Figure 8. Actual vs. predicted malaria patients for the year 2014 
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(https://archive.ics.uci.edu/ml/datasets/Thoracic+Sur

gery+Data#) and Parkinson’s Disease 

(https://archive.ics.uci.edu/ml/datasets/parkinsons). 

The UCI repository has the largest available 

collection of datasets for performing tests on machine 

learning and artificial intelligence. The Thoracic 

 
 

Figure 9. Actual vs. predicted malaria patients for the year 2015 

 
 

Figure 10. Actual vs. predicted malaria patients for the year 2016 

https://archive.ics.uci.edu/ml/datasets/Thoracic+Surgery+Data%23
https://archive.ics.uci.edu/ml/datasets/Thoracic+Surgery+Data%23
https://archive.ics.uci.edu/ml/datasets/parkinsons
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Surgery dataset has 17 attributes and 470 instances 

associated with classification problems. It has two 

classes, true (Y) and false (N), and of the 470 

records, 70 are true instances and 400 false. 

8.1. Malaria segregation index (MSI) 

Segregation analysis is performed in order 

to statistically validate the developed model. The 

index of dissimilarity, segregation, exposures and 

odds ratio/ risk ratio are calculated. These as given 

as follows: 

8.1.1. Index of Dissimilarity 

To find the dissimilarity, we need to 

calculate the distribution of malaria and non-malaria 

throughout the evaluations of a particular village. The 

index has a minimum value of zero and a maximum 

of 100. 

 (13) 

where , , ,  and  are the 

number of cases in a particular village, the non-

malaria cases in that village, total number of 

malaria patients throughout the year, total 

number of non-malaria cases throughout the year 

and the number of villages considered, 

respectively. The summation is applied to the 

total number of villages and the respective 

numbers of cases in that location. The average 

dissimilarity index for the nine villages in the 

Ponda area was 5.670. Using a normalization 

scale of between zero and one, the DI is 0.0567. 

The similarity can be computed as

, giving a percentage 
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Figure 11. Prediction accuracies for (a) different data sizes (b) different classifiers (numbers on the bar are standard deviation) 
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similarity of 94.3%. From the above analysis, we 

conclude that ISI-BPNN is statistically significant, 

validating our hypothesis. 

8.1.2. Isolation Index of segregation 

The isolation index of segregation is 

given by: 

 (14) 

where  is the isolation index of 

segregation, and  is the total population of the 

 village. The isolation index obtained for the 

villages was very close to zero, meaning that the 

predictions made by ISI-BPNN were very close to the 

actual results. The isolation index obtained was 

0.0011, implying that the majority (malaria) 

population and minority (non-malaria) populations 

are equally distributed among the villages. 

8.1.3. Exposure or interaction measure of 

segregation 

The exposure index of segregation is 

given by: 

 (15) 

where  is the exposure measure of 

segregation,  is the total population of the village, 

 is the number of non-malaria cases in that village 

and  is the number of villages. A lower exposure 

index means a lower dissimilarity between the 

predicted and actual results. All values are calculated 

based on the predicted number of cases with respect 

to the total population. The exposure index obtained 

for Ponda was 0.0149, meaning that ISI-BPNN 

exhibited a very low dissimilarity between the actual 

and predicted results. 

8.1.4. Odds ratio and risk ratio analysis 

Odds ratios are the measure of the 

outcome and exposure of the disease. This measure 

is used to compute the stability of a system. If the 

odds ratio (OR) is equivalent to the risk ratio (RR), 

then system is considered to be stable. The values of 

exposed/non-exposed vs. diseased/healthy 

populations used to calculate the OR and RR are 

given in Table 8. The risk ratio and odds ratio are 

calculated as  and 

, where  is exposed 

diseased, is non-exposed diseased, is 

exposed healthy, non-exposed healthy,  is 

the odds ratio and  is the risk ratio, we have: 
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Table 3. ISI-BPNN accuracies (%) in different data combinations 

CN ISI-BPNN 

CN1 89.93 

CN2 88.09 

CN3 98.67 

CN4 99.28 

Average 93.99 

SD 5.8 
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Here, we can observe 

 

i.e. the values obtained for OR and RR for 

malaria cases are approximately similar, showing that 

we have a low dissimilarity in malaria classifications 

between the actual number of cases and the predicted 

number of cases used to identify malaria-prone zones. 

This validates the hypothesis and demonstrates the 

superior performance of ISI-BPNN. 

8.2. Validation on thoracic data 

The Thoracic Surgery dataset is 

multivariate, and the attributes are an integer and a 

real number. The data are from primary lung cancer 

patients who underwent major lung resections. The 

dataset is related to patients who survived for one or 

more years after the operation, and life expectancy is 

used as the class in the dataset. Patients who 

survived for one or more years are classified as True 

(T) and patients who did not survive as False (N). 

8.3. Validation on Parkinson’s dataset 

The Parkinson’s dataset contains values of 

biomedical voice measurements of patients with 

103.26
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Table 4. Classifier accuracies (%) in different data combinations in K2 protocol 

K2 Protocol 

CN MLP SVM IFN GCNN ISI-BPNN 

1 86.45 86.31 80.27 85.81 92.58 

2 87.34 82.35 86.45 85.68 92.45 

3 87.67 86.82 87.34 86.06 93.45 

4 86.45 87.42 93.45 85.66 84.18 

5 87.34 77.53 91.57 87.01 93.45 

6 89.79 80.27 91.68 87.57 93.45 

7 88.74 86.45 80.27 81.21 91.57 

8 86.85 89.24 86.45 91.53 91.68 

9 87.89 89.87 87.34 92.48 93.22 

Mean 87.61 85.14 87.2 87 91.78 

SD 1.09 4.17 4.68 3.35 2.94 

K10 protocol 

1 88.87 95.16 85.81 91.27 98.01 

2 90.15 95.44 85.68 93.16 98.99 

3 84.45 89.63 86.06 86.62 99.28 

4 92.02 90.6 85.66 87.13 97.84 

5 92.78 88.59 87.01 88.54 96.93 

6 86.45 92.11 87.57 88.92 98.01 

7 80.19 92.71 81.41 90.27 98.67 

8 81.79 93.24 91.53 90.54 97.89 

9 82.82 93.71 91.43 91.82 96.93 

Mean 86.61 92.35 86.9 89.8 98.06 

SD 4.58 2.36 3.11 2.17 0.81 

 



Spiking BPNN for malaria incidence prediction 

321 © 1996-2020 
 

Parkinson’s disease. There are 23 records of 

Parkinson’s disease among the 31 records in the 

dataset. The dataset consists of 23 attributes and 197 

instances, and is a multivariate dataset containing 

real attributes that are specifically used for 

classification problems. This was originally used in a 

feature selection method for voice disorders using 

recorded speech signals. The improvement shown 

by ISI-BPNN in comparison with conventional 

classifiers on the Thoracic Surgery and Parkinson’s 

datasets for the K2 and K10 protocols is given in 

Table 9. The comparative analysis of validation 

datasets is shown in Figure 17. 

Experiments were carried out to test the 

robustness and validate the proposed method using 

the Thoracic Surgery and Parkinson’s datasets. The 

average accuracy for the Thoracic Surgery dataset 

for the K2 protocol was found to be 0.7588, and for 

the K10 protocol, this was 0.8236; the average 

accuracy for the Parkinson’s dataset for the K2 

protocol was found to be 0.8175, and for the K10 

protocol, this was 0.8818, as represented below in 

Figure 18. 

The improvements offered by ISI-BPNN 

over conventional classifiers on these two datasets 

were found to be 11.4% for the Thoracic Surgery 

dataset and 6.05% for the Parkinson’s dataset. 

These values show that if the size of the training 

dataset is increased, the accuracy of the system is 

high compared with the smaller dataset provided 

Table 5. Improvements (%) in ISI-BPNN 

Model Protocol IFN GCNN SVM MLP 

K2 5.6 9.7 7.7 4.7 

K10 9.19 9.2 6.18 11.9 

Mean 7.39 9.45 6.94 8.3 

SD 2.54 0.35 1.075 5.09 

 

 
 

Figure 12. ROC curve and corresponding area under the curve 
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during execution. In the K2 protocol, half of the data 

are used for training and the other half for testing, 

giving lower accuracy for both datasets compared to 

the K10 protocol, where 90% of the data are used for 

training and 10% for testing. Thus, the proposed 

method is validated against two datasets. 

We trained ISI-BPNN using the training 

data, and then used the testing data to generate 

predictions. This process was repeated with the 

MLP, GCNN, SVM, and IFN schemes. Table 9 

shows the results using the proposed method and 

other existing methods such as MLP, IFN, SVM 

and GCNN using K10. We can easily see that ISI-

BPNN outperforms the other models, giving 

accuracies of 89.93%, 98.67%, and 99.28% for 

monthly and yearly data and historical data over 

three years. 

To validate the proposed methodology, we 

performed these tests on two more datasets called 

Parkinson's and Thoraric Surgery, retrieved from the 

UCI Repository. The results are shown in Table 10. 

After every round, the dataset was shuffled and the 

protocol was applied. The results obtained from 

these validation experiments shows that the 

accuracy of ISI-BPNN increases as the size of the 

training dataset. 

Table 6. Sample dataset 

WN T max (°C) T min (°C) Humidity (%) Rainfall (mm) # patients 

1 30 17 55 3 52 

2 30 17 56 4 62 

3 31 17 55 14 45 

4 32 18 62 12 45 

5 33 19 60 5 32 

6 34 20 58 31 48 

 

 
 

Figure 13. Sensitivities to minimum temperature 
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Figure 14. Sensitivities to maximum temperature 

 

 
 

Figure 15. Sensitivities to rainfall 
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9. DISCUSSION 

In this study, we proposed a new spiking 

function embedded in the BPNN framework called 

ISI-BPNN, which was applied to predict the 

occurrence of malaria disease in different 

geographical regions of Goa. The sensitivity of ISI-

BPNN towards metrological factors was analyzed. 

The model was benchmarked against a set of four 

conventional classifiers: MLP, IFN, SVM, and GCNN. 

ISI-BPNN showed superior performance, yielding a 

cross-validation accuracy of 93.22% using K2 (50% 

training) and 99.28% using K10 (90% training). Our 

benchmarking results showed an improvement of 

11.9% against an MLP and 9.19% against IFN 

models. ISI-BPNN was also tested for reliability and 

stability. The hypothesis for the model was validated 

using the two synthetic datasets called Thoracic 

Surgery and Parkinson's. The results showed very 

low deviation (<5%), thus demonstrating the 

robustness of the model. The study was carried out 

on a system with the following specifications: 8 GB 

RAM, Intel® Xeon® CPU E5-2620 v4@ 2.10 GHz, 

64-bit operating system, x64-based processor, using 

the software application MATLAB R2015a. 

We performed this study using data for the 

western coastal regions of India, where the 

population index is low compared with the northern 

regions and the local flora and other metrological 

indices are very different. These coastal areas are 

very suitable for the survival of malaria-carrying 

 
 

Figure 16. Sensitivities to humidity 

Table 7. Standard deviation in classifiers for parameters. 

CL Prm MLP SVM IFN GCNN ISI-BPNN 

T max 2.92 2.36 2.17 3.35 2.13 

T min 3.56 4.17 3.11 2.17 3.52 

Rainfall 2.44 2.89 2.85 2.19 2.61 

Humidity 1.35 1.7 0.59 1.92 0.58 
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parasites. Based on the relevant metrological and 

environmental factors, we prepared the model to 

predict the incidence of malaria. Malaria is a major 

problem in India and its neighboring countries, this 

study is an attempt to model an Indian region to 

propose a model which can identify malaria-free 

zones in India. A target of the WHO is to make India 

malaria-free by 2030, and support for this study was 

provided by the Indian Government, with the aim of 

researching public epidemics and healthcare and 

preventing the spread of this life-threatening 

diseases. In the future, this work will be extended and 

used to eliminate malaria to meet the goal of zero 

cases of this disease. 

Validation protocols like segregation 

analysis were applied to the obtained results, and we 

can see that the proposed model outperforms 

existing methods. Better prediction results and higher 

accuracy are obtained as the data size is increased; 

if the training dataset is small, the accuracy is low and 

when we increase the size of the training dataset, the 

accuracy increases to a satisfactory level. The 

performance of the proposed method is also 

evaluated using malaria data. Monthly, half-yearly 

data, annual and five-year combined data are used 

for this performance evaluation. A workflow model is 

given in Figure 2, and this illustrates the process of 

this study. Firstly, the collected data were 

preprocessed and missing values cleaned. The 

dataset was divided into training and testing data 

according to the K-fold technique; here, 10-fold 

cross-validation (10 CV or K10) and 2-fold cross-

validation (2 CV or K2) were carried out. We 

considered several estimation parameters such as 

the accuracy and stability over the datasets. The 

dataset was shuffled using the 10-CV method (which 

uses 90% data for training and 10% for testing) and 

the 2-CV method (50% data for training and 50% data 

for testing). The performance evaluation phase of the 

proposed system gives very interesting results, as 

shown above. A segregation analysis is also 

performed to test the similarity and dissimilarity index 

of the model. For each village in Ponda, the value of 

the dissimilarity (out of 100) is obtained as follows: 

5.49 for Cundaim, 5.009 for Querim, 4.880 for 

Adcolna, 4.255 for Ponchawadi, 5.653 for Durbhat, 

3.204 for Codar, 5.213 for Niranchal and 3.363 for 

Siroda. In these experiments, we used data from 

2014 and 2015 for training and 2016 data for testing. 

From the above dissimilarity index analysis, we 

conclude that the villages of Siroda, Codar, 

Ponchawadi, Adcolna and Niranchal have an 

accuracy close to 97%, and thus are prone to 

malaria. If we consider Ponda as an overall location, 

we need to find the total population and the total 

number of cases in all the villages of Ponda; this 

gives the total population of Ponda as 165,830 

including both urban and rural areas, and the number 

of malaria cases is found to be around 2,853 from 

entire dataset. Using these values in the evaluation, 

we obtained a dissimilarity index of 5.670 for the 

entire Ponda location, with a ground similarity of 

about 94.30. We can conclude that the Ponda area is 

not malaria-prone, because there was a decrease in 

the average number of malaria patients in 2016 

Table 8. Odds Ratio table 

Odds Ratio Index Diseased Healthy 

Exposed 2806 57944 

Non exposed 47 105033 

 

Table 9. Classifier accuracies (%) in K2 and K10 

Protocol SVM MLP IFN GCNN ISI-BPNN 

K2 85.14 86.61 86.91 83.14 91.78 

K10 92.35 87.61 89.81 87 98.06 

Average 88.75 87.11 88.36 85.07 94.92 

SD 5.09824 0.707107 2.05061 2.729432 4.440631 
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compared to 2014 and 2015. In addition to the 

dissimilarity index, we also computed the isolation 

and exposure indices and showed that the ISI-BPNN 

exhibits very low dissimilarity to the number of actual 

and predicted malaria cases. 

9.1. Benchmarking 

The benchmarking study and comparative 

analysis is shown in chronological order, and the 

attributes are depicted in the columns of the Table 

11. As can be observe, none of the previous studies 

applied the CV protocol (see column C6). Although 

many authors have worked on malaria disease, most 

have used laboratory data from blood samples, and 

have classified malaria-infected and healthy cells. 

These authors have also included malaria parasite 

and species data to identify the disease in their study. 

In some of these studies, metrological data were also 

used. In the present study, we focused on 

 
 

Figure 17. Validation accuracy for the dataset (a) Thoracic Surgery and (b) Parkinson’s 
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metrological data and obtained malaria data from a 

regional government hospital. Scientific validation is 

given in column C7. The proposed method exhibits 

better accuracy than other methods (see column C9). 

As completely different approaches have been 

developed over the last ten years, many experiments 

have been carried out to achieve the present state of 

the art. However, despite the large variety of studies, 

current performance is not satisfactory for clinical 

use. Several prior articles simply discuss the 

sensitivity and specificity of classification, 

representing just one in operation purpose on a 

receiver in operation characteristic. Some 

publications aim to identify the progress and control 

status, which may add an additional complete 

analysis of any technique for various sensitivity 

necessities. 

Austeclino et al. (33) used immunological 

and epidemiological data and the past infection 

history of the patient for malaria diagnosis. An ANN 

and a Bayesian network (BN) were used with a 

comparison of the classification (diagnosis) results 

using light microscopy and polymerase chain 

reaction (PCR) laboratory methods. The authors 

reported improvements in accuracy of 18.75% and 

6.25% for the ANN and BN, respectively, compared 

with microscopic laboratory tests. Memeu et al. (36) 

developed a method of identification of parasite life 

stages using blood smear images. These authors 

used an ANN for the classification of infected 

erythrocytes in different stages of the parasite life 

cycle. The results showed an accuracy of 

identification of species of the plasmodium family of 

96.3%. Chavan et al. (35) used image processing 

method for malaria screening involving an SVM-

based classifier, and used a gray-level co-occurrence 

matrix to extract features from RBC colored images 

(later converted to grayscale) which were used as 

input to an SVM and an ANN. These authors 

 
 

Figure 18. Bar representation of accuracies for two datasets (numbers on the bar are standard deviation) 
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obtained classification accuracies of 98.25% and 

78.53% for SVM and ANN, respectively. Chiroma et 

al. (24) discussed the classification of malaria using 

thin and thick blood smears with a Jordan-Elman 

neural network (recurrent neural network). These 

authors achieved a classification accuracy of 96.4%. 

Vijeta et al. (34) performed prediction of malaria 

outbreaks using SVM and ANN as data mining 

classifiers, and obtained RMSE values of 0.12 and 

0.47, respectively, i.e. with superior performance 

from the SVM. Purnima et al. (31) developed an 

ANN-based classifier for the binary classification of 

red blood cells (infected vs. normal) taken from 

holographic images. This system was trained on the 

quantitative features derived from the cellular 

images, and demonstrated an accuracy of 90%. 

Rahila et al. (30) used the patient’s medical history 

(including shivering, vomiting, dry cough, back pain 

and headache) and symptoms as input to the MLP 

and performed malaria classification as positive or 

negative. Authors used backpropagation, 

backpropagation with momentum and a resilient 

propagation learning rule for MLP training, and 

obtained a classification accuracy of 85% in the 

backpropagation learning method. Santosh et al. (12) 

presented an ANN that used a sigmoid function as an 

activation function for a prediction model for the 

prevalence of malaria using big data processing; this 

was applied to the southern regions of India, and 

addressed the problem of scalability and time 

complexity for traditional machine learning 

algorithms. Belay (32) applied a support vector 

regression (SVR) and ANN in the classification of 

malaria data. The results showed values of root mean 

square error (RMSE) of 4.29 and 5.57, respectively, 

for the SVR and ANN. In the proposed method, we 

develop a new spiking function and obtain the ISI, 

which is aggregated and used as an input to the 

sigmoid function. The new sigmoid function is also 

used as an activation function in the backpropagation 

algorithm, and is called ISI-BPNN. Metrological 

factors are used as input data for the number of 

malaria cases within a particular geographical 

location. We also used K2 and K10 K-fold validation 

protocols, where we achieved accuracies of 88.09% 

and 98.67% for K2 and K10, respectively. 

9.2. A Special note on the sigmoid function 

The sigmoid function is an activation 

function used in a backpropagation algorithm. As 

the input to the conventional sigmoid function is 

replaced in the proposed model with an 

aggregated spiking function, the protocol is known 

as ISI-based backpropagation. The new sigmoid 

function plays a vital role in the system dynamics. 

Once all these analytical studies performed, we 

can see from many points that, the developed 

model is obtaining its goal. The hypothetical 

system used for the development of this model was 

Table 10. Validation of ISI-BPNN in validation data 

Protocol 

Shuffled set 

Thoraric Surgery Parkinsons 

K2 K10 K2 K10 

set1 0.7057 0.8019 0.8071 0.9357 

set2 0.7181 0.8179 0.7829 0.9031 

set3 0.7153 0.8282 0.8145 0.8484 

set4 0.7243 0.8071 0.8019 0.8631 

set5 0.7104 0.8126 0.8179 0.8301 

set6 0.7213 0.8045 0.8282 0.8698 

set7 0.8606 0.8027 0.8374 0.8418 

set8 0.8566 0.8645 0.8131 0.9126 

set9 0.8701 0.8734 0.8306 0.9345 

set10 0.7059 0.8235 0.8418 0.8789 

Average accuracy 0.7588 0.8236 0.8175 0.8818 

Standard Deviation 0.0718 0.0255 0.0177 0.0379 
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evaluated using several measures, and those 

measures were justified by tests and analysis. One 

of the major factors in the success of the 

developed model is a lower computational 

complexity due to the spiking sigmoid function. The 

developed model has a lower order of 

computational function, making it faster and less 

complex than legacy models. Another factor is the 

use of K-fold protocols for shuffling the data during 

computation, which makes the system more 

reliable in terms of the different sizes of data 

inputs. We observed that for a smaller training 

dataset, the prediction accuracy was poor, but 

when of the size of the test dataset was increased, 

the accuracy increased. For the larger training set, 

the accuracy was about 99.28%, as shown in the 

benchmarking study. The learning behavior of the 

system is similar to the natural neurons in the 

human brain; as more knowledge is obtained, 

performance increases. In the same way, the 

accuracy of the proposed method is higher for 

larger training samples. From this point of view, we 

have achieved our goal of learning and developing 

a biological neuron model. 

9.3. A Note on spiking neuron models 

Neural networks are often used for 

classification and regression tasks. Feng et al. 

(25,26) discussed IFN models with current inputs as 

part of a development series of third-generation 

neural networks. A neuron model was trained and 

applied to a binary classification (zero or one) 

equivalent to XOR gates. A spike was generated if 

the voltage was greater than a threshold when the 

current was applied to an R-C circuit. Mishra et al. 

(22) applied single and quadratic IFN models to the 

binary classification of an XOR problem (similar to 

Feng et al. (25)) and to a linear regression-based 

classification. Wulfram et al. (27) showed 

mathematically that a single neuron can be used for 

classification, and referred to this as the plasticity 

phenomenon. Chandra et al. (28) presented a new 

neuron model similar to quadratic IFN for 

classification, using a lower-order activation function, 

and demonstrated a reduction in computational 

complexity. Schollas et al. (29) presented the 

modeling of bio-inspired neural network and applied 

to time domain beamforming, model was used for 

Table 11. Benchmarking against previous results in the literature 

RN C1 C2 C3 C4 C5 C6 C7 C8 C9 

Works Data 

types 

Classifier 

types 

Feature 

types 

# 

Features 

K-

fold 

CV* 

Scientific 

validation 

Data 

size 

Accuracy 

(%) 

R1 (33) Laboratory data Bayesian net Environmental variables, 

clinical treatments 

7 N+ Y# 580 80% 

R2 (36) Malaria species 

data 

MLP Color, morphological, 

texture 

- N+ N+ 205 90.34% 

R3 (35) Laboratory data SVM, MLP Images - N+ N+ 140 87.8% 

R4 (24) Blood smear Jordan-

Elman NN 

- 6 N+ Y# 450 96.4% 

R5 (34) Metrological data SVM, MLP Environmental variables 6 N+ Y# 1680 89% 

R6 (31) Laboratory data MLP RBC samples, images 6 N+ N+ 48 90% 

R7 (30) Laboratory data MLP Blood samples, symptoms - N+ Y# 376 85% 

R8 (12) Clinical and 

metrological data 

MLP Environmental variables, 

clinical treatments 

5 N+ Y# 52 80% 

R9 (32) Laboratory data MLP - 5 N+ Y# - 87% 

R10 Proposed 

work 

Metrological data ISI-BPNN Environmental variables 4 K2 Y# 4744 88.09% 

R11 Proposed 

work 

Metrological data ISI-BPNN Environmental variables 4 K10 Y# 4744 98.67% 

*CV – Cross-validation, RN – Row number, #Authors used the method, +Authors did not used method 
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sonar ranging, focusing and steering. This work was 

influenced by two contributions from Yadav et al. (13) 

and Chandra et al. (28), in which a new spiking model 

was presented by the authors. 

9.4. Strengths, weaknesses and extensions 

It can be observed that ISI-BPNN 

performs better in terms of prediction. Due to the 

use of a lower-order function, the model has a lower 

computational complexity than traditional models; 

as the size of the dataset and the number of 

iterations are increased, the proposed model 

performs faster, and the time complexity is lower. 

The scope of this experiment is limited to numerical 

types of data, and a limited amount of collected data 

is used. We can use this system for a broad range 

of datasets, and can extend the model to add more 

features such as the ratio of vegetation, water index, 

geographical area and population index to achieve 

better results. This model can also be applied to 

different datasets for the early prediction of disease. 

Based on our results, it is evident that our model can 

be used as an early predictor for malaria for 

epidemic-prone regions. We could also adapt fuzzy 

rule sets to give more robustness to the system. 

Through this study, we can serve public epidemic 

healthcare and prevent the spread of life-

threatening diseases by the early prediction of 

disease. In future, this work will be extended to help 

ensure the goal of zero cases of malaria. 

10. CONCLUSIONS 

This study has presented an ISI-based 

BPNN (ISI-BPNN) architecture that uses a single-

pass spiking learning strategy with a parallel 

structure that is useful for nonlinear regression tasks. 

We demonstrated that ISI-BPNN was more efficient 

than the MLP, IFN, SVM, and GCNN models. A 

malaria dataset was collected through the National 

Institute of Technology, Goa. The results 

demonstrated that ISI-BPNN shows superior 

performance, yielding a cross-validation accuracy of 

93.22% for K2 (50% training data) and 99.28% for 

K10 (90% training data). Our benchmarking results 

showed an improvement of 11.9% against the 

multilayer perceptron and 9.19% against IFN models. 

ISI-BPNN was also tested for its reliability and 

stability. Our proposed ISI-BPNN model effectively 

predicted the class of malaria-prone regions as high 

or low risk for consecutive years. In future, ISI-BPNN 

could be extended to the prediction of malaria-prone 

areas in other Indian states and worldwide. This 

model could also be extended to the prediction of 

diseases in different geographical locations. We 

conclude that spiking model found to be efficient than 

classical neuron models for classification. 
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