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1. ABSTRACT 

In the past, microorganisms were not 

considered to be particularly important in brain 

development and functioning. However, recent 

evidence shows the existence of a bidirectional, 

and possibly multidimensional relationship 

between the body microbiota and the brain. The 

microbiota influence brain behavior in health or 

disease, by utilizing endocrine, neurocrine and 

immunologic signaling pathways. Also, the 

chemical mediators involved range from known 

neurotransmitters to small peptide molecules. 

Here, we discuss the evidence that currently exists 

in experimental animals and/or humans in support 

of the existence of a relationship involving the 

skin/gut microbiome, the brain, and behavior; and 

the mechanisms involved in such interactions. The 

implications of such interactions for shifts in 

behaviors, and the pathogenesis of behavioral and 

neurodegenerative disorders are also discussed. 

Finally, the possible clinical applications of 

deliberate manipulations of the microbiota 

composition and density for the management or 

prevention of behavioral and neurodegenerative 

disorders is discussed.  

2. INTRODUCTION 

Humans and animals share a life-long 

relationship with a number of microbial species 

resident on or within their body. A number of these 
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microbes maintain a symbiotic relationship with the 

host, and have been shown to regulate host’s 

nutrition/ metabolism, ensure the 

development/functioning of the immune system, 

maintain general health/wellbeing (1-2), and 

modulate the development of diseases (3).  

The mammalian microbiota is a unique 

ensemble of microorganisms that include bacteria, 

fungi, and viruses resident in the different niches 

(skin, gut, genitalia) on and within the body (4). 

The diversity of these microbes, and the significant 

inter-individual variations in their composition in 

health (1) and with aging (5) is reshaping our 

understanding of the extent of these relationships, 

as well as the implications for the development of 

chronic diseases (6) and brain disorders (4-5).  

In recent times, the term gut microbiota 

has been used to describe the microbial population 

resident in the gastrointestinal tract. Research 

exploring the gut microbiota has continued to 

expand our understanding of the widespread 

systemic implications of gut microbiota dysbiosis 

as it relates to the development of obesity, 

diabetes mellitus (7), inflammatory bowel diseases 

(8), skin diseases (9), and 

neurodevelopmental/neuropsychiatric (10-11) 

disorders.  

Recent advances demonstrate the 

importance of the microbiota (especially the gut 

microbiota) in the maintenance of brain structure 

and function, and the development of neurological 

disorders (5). The local and systemic benefits of 

the skin in regulating the homeostasis of epidermal 

keratinocytes and the host immune network are 

also being revealed (12). Ongoing research into 

the dynamics and molecular mechanisms of the 

gut-brain axis suggests the existence of a skin-gut-

brain axis (13-14), which may also (directly or 

indirectly) influence the development of the 

immune system and/or the brain (15-17). In this 

review, we discuss the evidence that currently 

exists in experimental animals and/or humans in 

support of the existence of a relationship involving 

the skin and/or gut microbiome, the brain, and 

behavior; and mechanisms involved in such 

interactions. 

2.1. The microbiota 

2.1.1. The microbiota in health 

The human body contains about a 

thousand different species of bacteria carrying at 

least 150 times more genes than exists in the entire 

human genome (18). The bacterial composition in 

and on the human body varies across subjects, and 

with multiple health conditions. Studies have shown 

that these variations are influenced by environmental 

factors including geographical locations, sex, race 

(19), dietary factors (20), social interaction (21-22) 

and genetics (23). The evolution of the microbiota 

with advancing age, as well as the important role it 

plays in human health maintenance and the 

development of diseases (24–26) have also been 

reported. 

In humans, earlier studies had reported 

that bacterial colonization of the ‘germ-free’ infant 

begins at birth, and gut microbial communities 

become demonstrable as early as the 1st week of life 

(27). Thereafter, the bacterial composition continues 

to fluctuate until about 1-3 years of age when it 

begins to approach the adult microbial composition 

(27-28) This notion that human microbial 

colonization begins at birth (in the birth canal for 

vaginally-delivered babies) since the uterus was 

considered sterile (29) was entertained for years. 

However, in the last few years, researchers have 

begun to question the sterility of the uterus (30-31), 

with suggestions that microbial colonization in 

humans (like in a number of other organisms) could 

possibly begin in-utero (29, 32). The presence of 

bacteria in close to a third of the placentas obtained 

following life-birth (33), evidence of bacteria in 

meconium (34), the demonstration of microbial DNA 

in the placenta (32) and amniotic fluid (31, 35) are 

evidence in support of this recent view. Evaluation of 

the microbiome of human placentas revealed the 

presence of microbial colonies consisting of non-

pathogenic microbiota including Fusobacteria, 

Tenericutes, Firmicutes, Bacteroidetes and 

Proteobacteria. This microbial composition was 

closely-related to the microbiota of the human oral 

cavity (32). Also, similarities between the microbial 

populations in the placenta, amniotic fluid and 

neonate’s meconium are all accumulating evidence 

supporting the prenatal colonization of the infant.  
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An initial contact with microbial colonies 

provides a nidus for a gradual evolution of these 

communities into a diverse eco-system, which is 

maintained throughout the host’s lifetime (36). A 

symbiotic relationship develops between the host 

and the microbial community, and this relationship 

may be critical for the sustenance of health and the 

prevention of disease. The rapid colonization of the 

infant skin within days of delivery has been shown to 

coincide with functional changes, including 

maturation of skin structure and function (37). Also, 

while the composition of microbial communities on 

the skin evolves with age and environment (39), 

proper and timely establishment of a healthy skin 

microbiome may be crucial in preventing the invasion 

of the body by potentially-harmful microbes (37). 

Failure of this could predispose to the development 

of cutaenous diseases, allergies, and inflammatory 

non-communicable diseases (12). Contact with 

microbial communities also contributes to the 

development of cutaenous homeostasis and immune 

system (37,39-40). The proper development of the 

immune system is also crucial to the development 

and proper functioning of most organ systems, 

including the human brain (12). The skin microbiome 

contributes significantly to the development of host 

immunity by influencing the host cells to produce 

endogenous antimicrobial peptides. It also modulates 

the host’s innate and adaptive defense system. In 

healthy skin, Staphylococcus epidermidis is a 

commonly-isolated microbe that protects humans 

from colonization by pathogenic bacteria (41). This 

shows that a balance between the host cells and 

resident bacteria is crucial for optimal skin defense 

and body health (42). 

The gut microbiota includes a diverse 

community of microbes that inhabit the bowel (8).  

Over 100 trillion bacteria (made up of about one 

thousand species) reside in the human 

gastrointestinal tract (43-44). The gut microbiota is 

fairly more stable than the skin microbiota, although, 

like the skin microbiota, it shows significant 

variations amongst healthy subjects (45). It varies 

with age, aging, nutrition, antibiotic therapy and 

illness (43). The gut microbiota is also important in 

the development and proper functioning of the 

immune system, and the synthesis of vitamins (44). 

Bacterial colonies in the gut also aid in metabolizing 

indigestible fibers and in the defense against 

colonization by infectious and/or opportunistic 

pathogens. They also contribute to the formation of 

the architecture of the intestine (46).  

The crucial role played by the microbiota in 

proper development and functioning of body organs 

have also been highlighted by studies that have 

evaluated the beneficial effects of prebiotics or 

probiotics supplements in humans (47-48). 

Supplementation of the milk of formula-fed infants 

with prebiotics oligosaccharides have been shown to 

promote the growth of probiotics members of the 

Bifidobacterium and Lactobacillus species; and 

inhibit the growth of pathogenic members of the 

Clostridium species (48). This has been associated 

with a decreased incidence of colic in these children 

(48). In rats, probiotic supplementation with 

Lactobacillus reuteri has been shown to increase the 

number of action potentials and the excitability of the 

enteric nervous system; with suggestions that this 

could modulate gut motility and pain perception (49). 

Prenatal probiotics interventions have also been 

shown to modulate host-microbe interactions via their 

ability to influence the expression of Toll–like 

receptor-related genes in the placenta and fetal 

microbiome, thereby reducing the risk of the 

development of diseases like atopic dermatitis (50-

51). 

2.1.2. The microbiota in disease 

A complex symbiosis develops between the 

microbiota and the human body; its disruption could 

be detrimental to health and well-being. Microbial 

dysbiosis has been linked to a myriad of causes, 

including physiological alterations that occur due to 

antibiotic therapy, diet, and hygiene (44, 52). Also, 

physical activity (53) and environmental factors like 

temperature, humidity, ethnicity and cultural habits 

(54-55) can significantly alter the microbial 

composition of the human microbiota.  

A number of diseases have been linked to 

gut microbiota dysbiosis (Table 1), including 

metabolic diseases (obesity, type 2 diabetes mellitus 

and cardiovascular disease), digestive system 

disorders (inflammatory bowel disease, coeliac 

disease and colorectal cancers), skin conditions 

(acne, dermatitis and eczema), respiratory system 
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diseases (cystic fibrosis, chronic obstructive 

pulmonary disease and asthma), and  

neurological/neurodegenerative disorders such as 

autism spectrum disorders, schizophrenia, bipolar 

disorder, Parkinson’s disease, and Alzheimer’s 

disease (56–61). Studies in obese rodents and 

humans have demonstrated a predominance or 

relative abundance of certain microbes like the 

Firmicutes, or a reduction in the colonization by 

Bacteroidetes (62-63). Also, studies in germ-free 

mice have demonstrated the role of intestinal 

microbiota in fat storage (64–66).  The absence of 

intestinal microbes in these mice was protective 

against the development of diet-induced obesity 

(64–66).  

In humans, metagenome-wide association 

studies have shown that specific intestinal bacterial 

colonies or bacterial genes correlate significantly with 

type 2 diabetes mellitus. These studies also 

demonstrated low concentrations of certain bacteria, 

especially butyrate- and or short-chain fatty acid 

producing bacteria like Faecalibacterium prausnitzii 

and Roseburia intestinalis in subjects with type 2 

diabetes mellitus (67). The importance of gut 

microbiota in the control of blood glucose levels in 

diet-induced dysmetabolism was demonstrated in 

mice that were fed high-fat diet, in which oral 

administration of Akkermansia muciniphila was 

associated with improved glucose tolerance and 

attenuation of inflammation within the adipose tissue 

(68).The administration of metformin to these mice 

was also associated with an increase in the 

concentration of Akkermansia, a mucin-degrading 

bacterium, suggesting that modulation of the gut 

microbiota could impact the antidiabetic effects of 

metformin (68).  

Gastrointestinal diseases like coeliac 

disease and inflammatory bowel disease have also 

been linked to dysbiosis of the gut microbiota. De 

Palma et al. (69) reported a decrease in the levels of 

immunoglobulin (Ig) A-coated fecal bacteria in 

treated and untreated subjects with celiac disease 

(CD) compared to healthy controls. Levels of Ig G 

and Ig M-coated bacteria were also significantly 

lesser in treated CD compared to untreated CD 

subjects. Bacterial counts also revealed a decrease 

in the ratio of gram-positive to gram-negative bacteria 

in treated and untreated CD patients compared to 

healthy controls; while lower concentrations of 

Clostridium histolyticum, Faecalibacterium 

prausnitzii, Bifidobacterium and C. lituseburense 

were observed in untreated CD patients compared to 

healthy controls (69). 

Dysbiosis of the skin microbiome has also 

been observed in a few systemic diseases (70); 

however, how this contributes to disease 

pathogenesis and/or pathophysiology remains 

unclear (39,71). In patients with psoriasis, the skin 

microbiome has been reported to have high 

Table 1. Chronic diseases and alterations in bodily microbial density  

Disorder Host Microbial composition Reference 

 Obesity Humans ↑ Firmicutes ↓Bacteroidetes   

 

(62,63) 

Type 2 diabetes 

mellitus 

Human ↑ Faecalibacterium prausnitzii and Roseburia intestinalis   (67) 

Dysmetabolism Murine administration of Akkermansia muciniphila improved glucose control (68) 

Coeliac disease Human a decrease in the ratio of gram-positive to gram-negative bacteria, lower concentrations 

of Clostridium histolyticum, Faecalibacterium prausnitzii, Bifidobacterium and C. 

lituseburense with coeliac disease 

 

(69) 

Psoriasis Human high concentrations of Actinobacteria and Firmicutes  (39) 

Leprosy Human ↑ Proteobacteria with a reduction in Actinobacteria  (72) 

Atopic dermatitis Human The decrease in microbiome diversity, alteration in microbial diversity correlates with 

disease severity and linked to mutations in the fillaggrin genes.  

↑Firmicutes and staphylococci, Staphylococcus aureus and Staphylococcus epidermidis 

 

(42) 

Acne Human ↑Propionibacterium acnes  (73) 
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concentrations of Actinobacteria and Firmicutes (37). 

Also, in subjects with leprosy, (specifically lesional 

forms) the microbiome contained an abundance of 

Proteobacteria, with a reduction in Actinobacteria 

(72).  Patients with atopic dermatitis (AD) have a 

decrease in microbiome diversity, compared to 

healthy controls (42). This loss of diversity correlated 

with disease severity, and was also linked to 

mutations in the fillaggrin genes (42). In patients with 

AD, the skin microbiome has also been shown to 

harbor higher concentrations of Firmicutes and 

staphylococci such as Staphylococcus aureus and 

Staphylococcus epidermidis (42). Acne is another 

skin condition which is associated with the presence 

of Propionibacterium acnes (73). 

2.1.2.1. Antibiotic use and the microbiota  

The use of antibiotics has extended man’s 

life expectancy by an average of 20 years (74). 

However, it is very unfortunate that these agents 

have been indiscriminately used and/or abused. As a 

result of this, microbes are becoming increasingly-

resistant to antibiotics through a number of 

mechanisms, including enzymatic inactivation of the 

antibiotics, modification of the targets of the 

antibiotics and prevention of the accumulation of 

lethal intra-cellular concentrations of the antibiotic 

through efflux pumps (75). Antibiotic resistance may 

also occur through mutations and horizontal transfer 

of resistance genes. 

Uncontrolled or unguarded use of 

antibiotics has been shown to cause dysbiosis within 

the human microbiota. Gut dysbiosis has been 

associated with significant reduction in taxonomic 

richness, diversity, and evenness (76,77). Depletion 

of bacterial diversity, loss of potential competitors, 

lower expression of natural antibacterial, as well as 

decreased neutrophil-mediated killing, may enhance 

host’s susceptibility to exogenous pathogens or 

opportunistic members of the microbiota (78,79). 

Beyond alteration of composition, antibiotics can also 

affect gene expression, protein activity, and overall 

metabolism of the gut microbiome (80); allowing 

changes in the nutritional landscape of the gut which 

directs the expansion of pathogenic bacteria (81). 

Alterations in the gut microbiome that occur as a 

result of antibiotics use or abuse predisposes the 

host to infections that are caused by newly-acquired 

or opportunistic pathogens. The accumulation of 

resistance genes by members of the gut microbiota 

can also follow abuse of antibiotics.  

Antibiotic-induced dysbiosis may also 

adversely impact brain function. Antibiotics that are 

strong enough to kill off gut bacteria can also impede 

the growth of new brain cells in the hippocampus, a 

section of the brain associated with memory (82).  

3. THE BRAIN AND THE MICROBIOTA 

3.1. Brain development and the microbiota 

In recent times, researchers have begun to 

ask questions about the presence of a microbiome in 

the brain, especially following reports demonstrating 

the presence of microbes in the brain specimens of 

HIV-infected subjects (83). While the healthy human 

brain continues to be considered a sterile 

environment, the role of the microbiome in other 

regions of the body in modulating brain development, 

neurochemistry and behaviors (Table 2) have been 

examined (84–88).  

Human brain development begins in-utero 

and extends through adolescence into early 

adulthood. It is an intricate process that involves the 

migration of cells over long distances (in-utero), with 

extensions of their cell processes over even greater 

distances (4,89). The protracted course of pre- and 

post-natal brain development and the complexity of 

the process increase its vulnerability, providing a 

window of opportunity for environmental factors to 

exert influences that modulate brain structure, 

function and neurotransmitter/receptor expression 

(4,76, 87). In the last decade or more, there have 

been suggestions that the microbiota (especially the 

gut) influences brain development and maturation 

(86,90). 

While examining the impact of normal gut 

microbiota on brain development in mice, Diaz Heijtz  

et al. (86) concluded that early-life but not late-life 

exposure of germ-free mice to normal gut microbiota 

was associated with the modulation of motor activity 

and anxiety-like behaviors (86). These modulatory 

effects on behaviors occurred via their ability to 

influence canonical signal pathways, and release of 
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brain neurotransmitter (including serotonin, 

dopamine and noradrenaline) and synaptic-related 

proteins like synaptophysin (86). Sudo et al (90) 

reported that post-natal reconstitution of germ-free 

mice with normal gut microbiota flora containing 

Bifidobacterium infantis improved the response of 

germ-free mice to stress by influencing 

adrenocorticotrophic hormone levels in mice (90). 

Studies in rodents have also demonstrated the 

antidepressant effects of Bifidobacterium infantis via 

its ability to normalize the concentration of pro-

inflammatory cytokines and tryptophan (91-92). Gut 

microbiota have also been reported to influence the 

expression and synthesis of receptors and 

neurotransmitters (including serotonin) which are 

important in brain development (93). Desbonnet et al. 

(91) also reported that in rat pups of dams colonized 

with Bifidobacterium infantis  a decrease in frontal 

cortex concentration of serotonin, and an increase in 

plasma levels of kynurenic acid and tryptophan were 

observed, when compared to pups of non-colonized 

controls (91). 

During the first three years of life, microbial 

colonization of the different niches on and within the 

human body occurs rapidly. There is an initial 

domination of the microbiota by members of the 

Actinobacteria and Proteobacteria phyla, and then a 

gradual shift towards Firmicutes and Bacteroidetes 

domination as adulthood is reached (94-95). This 

process also coincides with the period of brain 

development (spanning from early-life to 

adolescence) during which synaptogenesis and 

pruning goes on in the brain (94-97). In the growing 

infant, there is increasing advocacy for the 

consideration of the gut microbial communities as 

modifiable influencers of brain development and host 

behavior (98–101) The involvement of the gut 

microbiota in the programming of the brain circuitries 

that modulate a number of behavioural responses 

including stress, anxiety, cognition, motor 

coordination and social interaction during early brain 

maturation (90, 99,102–105) have also been 

reported.  

Gut microbiota depletion (due to use of 

antibiotics from early adolescence) was associated 

with cognitive deficits, alteration in tryptophan 

metabolism, and a significant decrease in the 

expression of oxytocin, brain derived neurotropic 

factor and vasopressin in the adult brain (106). There 

have been suggestions that gut microbial depletion 

or dysbiosis may play a role in the pathogenesis of 

attention-deficit-hyperactivity and autism spectrum 

disorders. A number of studies have also implicated 

the central nervous system in the pathogenesis and 

pathophysiology of some functional gastrointestinal 

tract diseases including inflammatory bowel disease 

and irritable bowel syndrome (107-108). Studies 

have also demonstrated the beneficial effects of 

Table 2. Brain development and the microbiota  

Model Neurodevelopmental changes References 

Mice  Exposure of germ-free mice to normal gut microbiota early in life influenced brain development, motor 

activity and anxiety-like behaviours by modulating canonical signal pathways, and the expression of 

genes synaptic-related proteins like synaptophysin and PSD-95 in the striatum. 

(86) 

Mice Germ-free mice had alteration in levels of noradrenaline, dopamine and serotonin (86) 

Mice Post-natal reconstitution of germ-free mice with normal gut microbiota flora containing Bifidobacterium 

infantis improved the stress response of the germ-free mice by influencing adrenocorticotrophic 

hormone levels and development of the hypothalomopituitary axis 

(90) 

Mice Absence of normal gut microbial flora as observed in germ-free mice was associated with a decrease 

in the expression of the mRNA of N-methyl-D-aspartate receptor subunit in the amygdala  

(86,87) 

Mice A decrease in the expression of serotonin receptor in the hippocampus and increased hippocampal 

expression of brain-derived neurotrophic factor has also been reported in germ- free mice 

(102, 103) 

Rat Bifdobacterium infantis colonization was associated with antidepressant effects and a ↓serontonin 

levels in frontal cortex and an ↑ kynurenic acid and tryptophan  

(91-92) 

Mice Antibiotic-induced depletion of gut microbiota from early adolescence caused cognitive deficits, 

alteration in tryptophan metabolism and ↓oxytocin, ↓brain derived neurotropic factor and ↓vasopressin 

in the adult brain  

(106) 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/bifidobacterium-longum-subsp-infantis
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prenatal prebiotics and probiotic interventions in 

disease prevention (50-51,109) suggesting that 

these could be effective novel methods in preventing 

and/or managing neurodevelopmental disorders like 

autism and attention deficit hyperactivity disorder. 

Studies demonstrating the concurrence of postnatal 

neurodevelopment and the establishment of the gut 

microbiota provide evidence of a possible bi-

directional modulation or regulation of the maturation 

of one another (110).  

The constitution of the skin microbiome 

(like that of the gut) is a reflection of the synergy of 

the functional metabolic activity of the host tissues 

and resident microbes, which are greatly influenced 

by host behavior and the surrounding environment. 

In the last decade, there have been suggestions that 

the brain interacts with the skin, like in a “skin-brain” 

axis. Also, the extensive innervation of the skin has 

led researchers to consider it a sort of “diffuse brain” 

(111). The occurrence of skin disorders like psoriasis 

and atopic dermatitis is now being associated with 

the development of behavioral disorders like 

posttraumatic stress disorder, anxiety, and 

depression (112–114). Some studies have also 

shown that the colonization, virulence, and adhesion 

of skin microbes could be modulated by peptide 

neurohormone, neurotransmitters and steroid 

hormones (14).  These neuropeptides such as 

vasoactive intestinal peptide, catecholamines, 

calcitonin gene-related peptide, nerve growth factor 

and substance P, can be secreted by some skin cells. 

However, while the idea of a skin-brain or brain–skin 

axis is plausible, the full extent of this relationship 

(unidirectional or bidirectional) remains largely 

speculative. 

3.2. Neurobehavioral phenotypes and the 

microbiome 

Gut microbiota influences on the central 

nervous system were first reported following 

observations that laxatives and/or oral antibiotics 

could mitigate the progression of hepatic 

encephalopathy (87). In the symbiotic relationship 

between man and microbes, the human body 

provides lodgings and nutrition, while microbes repay 

this favor by ensuring the maintenance of health/well-

being, and prevention of outsider invasion (115). The 

roles of microbes in ensuring optimal brain 

development and functioning have been reported 

(86, 87, 90,103,1116). Also, current research is 

beginning to report the importance of the microbiota 

in modulating host behaviors (Table 3). 

Studies in germ-free or antibiotic-treated 

fruit-fly (Drosophila melanogaster) showed 

hyperlocomotion and increased walking speed, 

which was reversed by mono-colonization with the 

fruit-fly commensal Lactobacillus brevis (117). In 

another study by Akami et al (118), increase in 

foraging behaviors of Oriental flies (Bactrocera 

dorsalis) was determined by the intestinal microbiota 

consisting mainly of members of the 

Enterobacteriaceae family (118). In mammals, the 

importance of the microbiota in modulating dietary 

behaviors and metabolic profile been reported. In a 

study in which cultured and uncultured human fecal 

microbiota were transferred from weight-discordant 

twins (obese and lean) to germ-free mice, it was 

observed that the germ-free mice colonized with 

obese fecal microbiota showed significantly-higher 

weight increases compared to mice colonized with 

microbiota from the lean twin (66). Also, co-habitation 

of these two mouse groups was associated with a 

transformation of the metabolic profile of the obese 

microbiota mouse groups to a lean-like state (66). 

There have been reports associating obesity and 

related dysmetabolism with an increase in the 

incidence of mood disorders, depression and 

cognitive decline (119-120). The possibility of 

replicating these features in murine models of obesity 

(121) has allowed researchers to examine the role of 

diet and dysmetabolism on neurobehavior (122-123). 

Bruce-Keller and colleagues (122) reported that mice 

colonized with high-fat diet microbiota (with a 

preponderance of bacteria from the phylum 

Firmicutes and a depletion of Bacteroidetes) had 

alteration in exploratory activity, cognition and 

stereotypic behavior compared to controls (122).  

Diaz Heijtz  et al. (86) reported increased 

locomotor activity and rearing behaviours in germ-

free mice, while Desbonnet et al (104) reported 

evidence of increased self-grooming and alteration in 

social interaction evidenced by avoidance of  
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Table 3. Neurobehavioral phenotypes and the microbiota  

Model Microbial composition/procedure Behavior Phenotype reference 

Drosophila 

melanogaster 

Germ-free(GF) antibiotic-treated flies Motor ↑locomotion ↑walking speed  (117) 

Drosophila 

melanogaster 

 Lactobacillus brevis  Motor Reversal of ↑locomotion 

↑walking speed 

(117) 

Bactrocera 

dorsalis 

Enterobactereacea Foraging behavior Basal Increase in foraging  (118) 

 Mice High-fat diet microbiota Exploratory activity, 

cognition 

↑Locomotor activity, and 

↓cognition  

(122) 

Mice GF Locomotor activity ↑Locomotor and rearing (86) 

Mice GF Stereotypy, social 

interaction 

↑grooming, ↓social investigation, 

avoidance of conspecifics, 

(104) 

Mice GF Memory ↓short term recognition memory 

and working memory 

124 

Mice Oral antibiotic depletion of  microbiota Exploratory activity ↑exploratory activity (84) 

Mice GF anxiety ↓Basal anxiety (87, 102) 

Mice GF depression ↓ time spent  immobile (125) 

Mice Lactobacillus rhamnosus  Anxiety, depression Increased open-arm time and 

decreased immobility time 

(128) 

Mice Colonization with Citrobacter rodentum cognition ↑Stress-induced memory loss (124) 

Human Age-associated dysbiosis (↑Bacteroidetes 

↓Firmicutes) 

cognition ↓cognition (126) 

Humans ↑Alcaligeneceae and Porphyromonadaceae, 

Veillonellaceae in cirrhotics with hepatic 

encephalopathy 

cognition Memory loss (127) 

Mice Maternal high-fat diet-induced microbiota 

low in  

Social interaction ↓social interaction, ↓preference 

for social novelty 

(132) 

Mice Lactobacilus reuteri Social interaction ↑social interaction, (132) 

Rat Peri-conceptional use of  antibiotic  Social interaction, 

anxiety 

↓social interaction, ↑anxiety (133) 

Mice Use of antibiotics to deplete microbiota 

during adolescence 

Social memory ↓social memory in adulthood (106) 

Mice Bacteroides fragilis Cognition, social 

interaction and 

anxiety 

↑social interactions, ↓stereotypy, 

↓anxiety and ↓sensorimotor 

deficits 

(3) 

Rat Bifidobacterium infantis  Depression decreased immobility time (92) 

Mice Bifidobacterium breve Cognition ↑cognitive abilities (135) 

Rats Lactobacillus helveticus and Bifidobacterium 

longus 

anxiety ↓anxiety in the conditioned 

defensive burying test 

(136) 

Mice Prebiotic administration of human milk 

oligosaccharides 3′Sialyllactose or 

6′Sialyllactose 

anxiety ↓stress-induced anxiety (137) 

Human Lactobacillus casei Anxiety and 

depressive-like 

behaviors 

↓anxiety and depressive-like 

behaviours 

(138,139) 

contd... 
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Table 3. Contd... 

Model Microbial composition/procedure Behavior Phenotype reference 

Human Bifidobacterium longum and Lactobacillus 

helveticus  

Psychological stress 

indices 

↓ somatization, anger, anxiety 

and depression 

(136) 

Human Administration of prebiotic trans-

galactooligosaccharide to irritable bowel 

syndrome sufferers 

anxiety ↓ anxiety (140) 

 

conspecifics, decreased preferences for novel 

conspecifics, and decreased time spent in social 

investigation (104). In another study using germ-free 

mice Gareau et al (124) reported impairment of short-

term recognition memory and working memory (124), 

while Zheng et al (125) reported antidepressant-like 

response (125). Gareau et al (124) also observed 

that colonization of mice with pathogenic bacteria 

Citrobacter rodentum was associated with 

accentuation of stress–induced memory loss (124).  

In humans, there have been reports of a 

loss of microbial diversity with aging (with a 

predominance of Bacteroidetes and a decrease in 

Firmicutes) and the presence of an age-associated 

cognitive decline in the same age group (126). In a 

study examining gut microbial diversity of cirrhotics 

with or without hepatic encephalopathy (HE), it was 

reported that (compared to healthy controls), 

cirrhotics had a preponderance of commensals from 

the phyla Enterobacteriaceae, Alcaligeneceae, and 

Fusobacteriaceae, with low concentrations of 

Lachnospiraceae and Ruminococcaceae (127). 

However, in cirrhotics (with HE) a higher 

concentration of Alcaligeneceae and 

Porphyromonadaceae Veillonellaceae was 

observed, which correlated positively with cognitive-

deficits, high levels of pro-inflammatory markers 

(TNF-α, IL-2, IL=6 and IL-13) and endotoxemia (127). 

Oral antibiotics–induced microbiota 

depletion in mice have also been reported to 

transiently alter the microbial composition of the gut, 

resulting in an increase in exploratory behavior and 

an increase in the hippocampal expression of brain- 

derived neurotropic factor (84). These changes did 

not occur with intraperitoneal administration of the 

antibiotics (84). A few studies have also reported that 

in germ-free mice, the basal behavior was anxiolysis 

(86, 102) compared to the expected aversion for 

open spaces (a protective feature) in mice with 

normal gut microbiota. In the germ-free mice, this 

alteration in anxiety-related behaviors was 

accompanied by an increase in the expression of 

brain derived neurotropic factor (BDNF) in the 

hippocampus (dentate gyrus), a decrease in the 

expression N-methyl-D-aspartate receptor subunit in 

the central amygdala, and a decrease in serotonin 

receptor expression by the dentate gyrus region of 

the hippocampus (102). In another study, Bravo e al 

(128) reported that long-term treatment of healthy 

mice with Lactobacillus rhamnosus probiotic was 

associated with anxiolysis in the elevated plus-maze 

and decreased immobility time in the forced swim 

test; there was also a significant decrease in the 

levels of stress-induced corticosterone levels and 

region-specific increase in the expression of γ-amino 

butyric acid receptor mRNA. These features were 

however abolished with vagotomy (128), suggesting 

that these effects were vagus nerve dependent. 

Currently, the role of the gut microbiota in 

social interaction and the development of social 

behavior has being studied extensively (123,129–

132), using either germ free mice, or following 

colonisation with probiotic (132). Peri-conceptional 

exposure to antibiotics has also been shown to alter 

social behavior and induce anxiety (133). The use of 

antibiotics to deplete mouse gut microbiota during 

adolescence was associated with impairment of 

social memory in adulthood (106), features which 

corresponded with a reduction in mRNA levels of 

vasopressin and oxytocin in the mouse 

hypothalamus (106). In general, alterations in social 

memory and neurobehavior could also be attributed 

to the ability of gut microbiota to modulate 

myelination of neurons in the prefrontal cortex (134). 

Hoban et al. (134) also reported evidence of 

abnormal hypermyelination of axons in male germ-

free mice (134). Studies in the mouse model of 
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autism have also revealed that oral treatments with 

Bacteroides fragilis were associated with 

improvements in social interactions, stereotypic 

behaviors, anxiety-related behaviors and 

sensorimotor deficits (3).  

The role of the microbiota in the modulation 

of neurobehavior and/or brain neurochemistry has 

also been demonstrated by studies using prebiotics 

or probiotic interventions. In rodents, probiotic 

intervention with Bacteroides infantis was associated 

with decreased immobility time in the forced swim 

paradigm (92). Buffington et al. (132) demonstrated 

that a maternal diet that is high in fat caused 

microbiota dysbiosis, deficits in social interaction, 

preference for social novelty and a decrease in the 

neuronal oxytocin immunoreactivity in the 

paraventricular nucleus of the hypothalamus in the 

maternal high-fat diet offspring, compared to normal 

diet fed controls. However, there was restoration of 

behavioral deficits, microbiota dysbiosis and oxytocin 

immunoreactivity following reconstitution with 

Lactobacillus reuteri probiotic (132), demonstrating 

that these deficits were possibly due to low-

concentrations of Lactobacillus reuteri in mouse pups 

(132). Colonization with specific members of the 

Bifidobacterium breve species have been associated 

with alteration of the fatty-acid composition of the 

brain in favor of fatty-acids that improve of cognitive 

abilities (135). Also, in rats, probiotic formulations of 

Lactobacillus helveticus and Bifidobacterium longus 

were associated with a decrease in anxiety-related 

behaviors measured in the conditioned defensive 

burying test (136). The use of prebiotic intervention 

to promote selective proliferation of commensal 

bacteria has also been reported to modulate 

neurobehavior. Tarr et al (137) reported that a diet 

rich in human milk oligosaccharides 3′Sialyllactose or 

6′Sialyllactose reduced stress-induced anxiety-like 

behavior in the open field and light/dark preference 

paradigms (137).  

In humans, the benefits of probiotic 

intervention on the modulation of behavior have also 

been demonstrated. In healthy adults with baseline 

depressive symptoms or patients with chronic fatigue 

syndrome, the probiotic administration of 

Lactobacillus casei was associated with 

improvement in symptoms of depression and anxiety 

respectively (138-139). Probiotic formulations of 

Bifidobacterium longum and Lactobacillus helveticus 

administered to otherwise healthy subjects was also 

associated with a decrease in psychological distress 

including somatization, anger, anxiety and 

depression, using relevant clinical indices (136). 

Administration of prebiotic trans-

galactooligosaccharide to irritable bowel syndrome 

sufferers was associated with significant reduction in 

anxiety and also an increase in the concentration of 

bifidobacteria in fecal samples (140). 

A number of other studies have also 

reported the possible influences behavioral 

modification can exert on microbial density or 

diversity (141-142). Exposure to social disruption 

stress in rodents was associated with a decrease in 

the relative abundance of bacteria of the genus 

Bacteroides, and an increase in those belonging to 

the genus Clostridium. There was also an associated 

increase in the circulating levels of interleukin 6 (IL-

6) and monocyte chemo-attractant protein (MCP)-1 

(142) Increased levels of IL-6 and MCP-1 have also 

been observed to correlate positively with increased 

concentration of bacteria from 3 genera including 

Coprococcus spp, Pseudobutyrivibrio sp, and Dorea 

spp (142). In mice exposed to chronic restraint stress, 

a significant increase in Citrobacter rodentium 

colonization with an associated increase in the gene 

expression for tumor necrosis factor alpha in colonic 

tissue has been demonstrated (141). Accumulating 

evidence of the ability of gut microbiota to influence 

neurobehaviour and the alteration of microbiota 

diversity and density due to influences from 

neurobehavioural modifications further confirm the 

possible existence of a bidirectional communication 

that allows brain signals to influence sensory, motor 

and secretory functions of the gut, while visceral 

messages from the gut can in turn influence 

neurobehavior, social behavior and brain chemistry 

(123).  

Also the relationships that link the gut 

microbiome, skin microbiome, and the brain could be 

crucial in understanding the contributions of bacteria 

to the development of odor cues, which is known to 

contain important information about the host’s social 

relationships and social behaviors. Studies have 

shown that the intensity of the human odor and/or its 
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chemical composition is closely-linked to the skin’s 

microbial diversity and composition (143–145). The 

interaction of the skin microbiota, the sweat glands, 

and the brain is important in the creation of human 

odors that allows kith recognition of kin, the detection 

of fear in animal prey, and sexual behaviors in 

animals (146). There have been reports suggesting 

that Staphylococcus epidermidis which is part of the 

normal skin microbial flora has the ability to degrade 

leucine content of sweat causing foot odor. Also, 

colonization of the plantar skin by Bacillus subtilis has 

been associated with strong foot odor (143). Absence 

of axillary odor has also been linked to paucity of 

gram positive bacteria (145). 

3.2.1. Signaling pathways/mediators and 

molecular alterations involved in 

behavior/microbiota interactions 

The communication between the gut 

microbiota and the brain affects behavior. This 

communications occurs via neural, immune and 

endocrine pathways that connect the microbiota to 

the central nervous system (147). The interactions 

(Table 4) between microbiota and brain alter 

neurobehavior, signal pathways, neurotransmitters 

and hormones (Figure 1); it also modulates the 

expression of receptor mRNA in different regions of 

the brain (86, 90, 102, 124, 147). 

Neural pathways involve efferents from the 

central nervous system to the gut, and afferents from 

the gut to the central nervous system. Efferent 

signals that are conducted from the central nervous 

system to the gut modulate gut motility, secretion, 

and permeability, which in turn affect microbiota 

composition. The efferent pathway relies on 

neurotransmitters such as acetylcholine. The afferent 

signals are transmitted from the gut to the central 

nervous system via the vagus nerve which is capable 

of recognizing microbial products and cellular 

components. The changes that had been observed in 

the brain include region-dependent alterations in 

levels of gamma-aminobutyric acid (GABA) mRNA 

gene expression (128). Bravo et al (128) reported 

that colonization with Lactobacillus rhamnosus was 

associated with a decrease in the expression of 

GABAB1b mRNA in the amygdala, hippocampus and 

locus coeruleus; with an increase in the prefrontal 

cortex and cingulate cortex. The expression of 

GABAAα2 mRNA was decreased in the cortical region, 

and increased in the hippocampus/amygdala (128). 

The role of GABA in maintaining central 

excitation/inhibition balance has been reported (148). 

Studies examining the impact of gut microbiota on 

neurotransmitters concentration in germ-free mice 

have reported that hippocampal concentrations of 

serotonin and 5-hydroxyindoleacetic acid (metabolite 

of serotonin) were elevated compared to control 

(103); while a decrease in the expression of the 

serotonin receptor mRNA was observed in the 

dentate gyrus (102). The expression of brain derived 

neurotropic factor (BDNF) increased in the dentate 

gyrus (102), and decreased in the cornus ammonis 

(CA) 1 region of the hippocampus, amygdale and 

cingulated cortex (86, 90, 124). While the content and 

expression of BDNF is modulated by the gut 

microbiota, brain derived neurotropic factor itself 

regulates neurogenesis, supporting the result of a 

recent study that demonstrated increased 

hippocampal neurogenesis in adult germ-free mice 

(149). There was also reduced expression of different 

subunits of the N-methyl-D-aspartate receptor; the 

NR1 in the cortex (90), NR2a in the cortex and 

hippocampus (90) and NR2b in the central amygdale 

(102). Diaz Heijtz et al (86) reported a decrease in 

the expression of nerve growth factor-inducible clone 

A and dopamine receptor in the striatum, and an 

increase expression of dopamine receptor in the 

hippocampus of germ–free mice (86).  

Antibiotic-induced depletion of gut 

microbiota was associated with increased expression 

of BDNF in the hippocampus (84). Matsumoto et al 

(150) also reported increase in dopamine 

concentration in the cerebral cortex of germ-free 

mice compared to mice colonized by normal 

microbial flora (150), which supports the increased 

exploratory activity reported by previous studies (86, 

102). Colonization of mice with non-invasive parasite 

Trichuris muri was associated with colonic 

inflammation and anxiety-like behavior, while in-situ 

hybridization revealed a decrease in hippocampal 

expression of BDNF mRNA (151). Gareau et al (124) 

also reported decreased BDNF expression in mice 

colonized with citrobacter roduntum following 

induction of stress (124). Intervention with probiotic 

Bifidobacterium infantis was associated with a 

decrease in the frontal cortex concentration of 5– 
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Table 4. Microbiota-mediated neurochemical and molecular alterations  

Model Microbial 

Composition/Mediators 

Brain region/tissue Neurochemical/Molecular alteration  Reference 

Mice  

Lactobacillus rhamnosus  

Hippocampus, amygdala, LC 

Prefrontal cortex, cingulated 

gyrus 

↑ GABAAα2 mRNA ↓ GABAB1b mRNA 

↓ GABAAα2 mRNA   ↑GABAB1b mRNA 

(128) 

Mice GF Hippocampus ↑ serotonin and 5-hydroxyindoleacetic (103) 

Mice GF Dentate gyrus ↓ serotonin receptor mRNA (102) 

 

Mice 

 

GF 

Dentate gyrus  

Cornus ammonis 1 region of the 

hippocampus, amygdala and 

cingulate cortex  

Hippocampus 

↓BDNF 

↑BDNF 

↑neurogenesis 

(102) 

(86, 90, 124) 

(149) 

Mice  

GF 

Cortex 

Cortex and hippocampus  

Central amygdala 

↓ N-methyl-D-aspartate receptor; the NR1 

↓NR2a 

↓NR2b  

(90) 

(90) 

(102) 

Mice  

GF 

Striatum 

Hippocampus 

↓ nerve growth factor-inducible clone A 

↓Gopamine receptor 

↑dopamine receptor 

(86) 

(86) 

Mice GF Cerebral cortex ↑Dopamine (150) 

Mice Antibiotic-induced 

depletion of microbiota 

Hippocampus ↑BDNF (84) 

Mice Trichuris muri Hippocampus ↓ BDNF mRNA (151) 

Mice Citrobacter roduntum CA1 region of the hippocampus ↓BDNF expression (124) 

Mice  

Bifidobacterium infantis 

Frontal cortex 

Amygdala 

Paraventricular nucleus 

↓5–hydroxyl indole acetic acid 

↓3,4-Dihydroxyphenylacetic acid 

↓cFos expression 

(92) 

(90) 

Mice GF Hypothalamus ↑corticotropin-releasing factor gene 

expression and protein levels ↑Plasma ACTH 

(90) 

Rats Bifidobacterium 

pseudocatenulatum 

Bifidobacterium animalis 

subsp lactis and 

Propionibacterium 

jensenii  

Hypothalamus ↓dopamine and adrenaline ↑ACTH (reversal 

of maternal-separation stress induced 

derangements) 

reversal of maternal-separation stress 

induced biochemical derangements and 

microbial density 

(157) 

(155) 

Rats IBS microbiota Colonic colonic genes involved in glucocorticoid 

receptor signaling  

(156). 

 

Mice GF or mice deficient of 

SCFAs receptor FFAR2a 

(GPR43) 

Microglia ↓ Fcgr2β, Mapk8, IL-1α, and Cd86., Janus 

kinase 3 and the signal transducer and 

activator of transcription 1 (Stat1 

↑ Nfkbiα) and the central microglia 

transcription and survival factors (Sfpi1 and 

Csf1r) 

(166) 

Mice GF Hippocampus,hypothalamus ↑Apoptosis,  (153) 

Mice GF Prefrontal cortex Hypermyelination, overexpression of myelin-

related genes 

(134) 

 

hydroxyl indole acetic acid and amygdaloid cortex 

concentration of 3, 4-Dihydroxyphenylacetic acid, 

metabolites of serotonin and dopamine respectively 

(92); and a decrease in the expression of cFos in the 

paraventricular nucleus (92), neurotransmitter 

modulations that could be related to the 

antidepressant effects observed in the forced swim 

test. A number of these studies confirm previous 
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reports associating hippocampal depletion of 

neurotransmitters with the development of depression 

and depressive-like symptoms (152). Neuronal 

apoptosis has also been linked to the gut microbiota. 

In the hypothalamus and some regions of the 

hippocampus, increased apoptosis was observed in 

neonatal germ-free mice when compared with control 

mice, this was also accompanied by increase microbial 

count and density (153). Neuron myelination and 

myelin plasticity have also been reported to be 

impacted by the gut microbiota; in germ-free mice, 

evidence of hypermyelination of the axons in the 

prefrontal cortex as well as over-expression of myelin-

related genes have been reported (134). 

The endocrine pathway involves the 

hypothalamo-pituitary-adrenal (HPA) axis, and the 

secretion of hormonally-active peptides such as 

peptide YY. Changes in the HPA axis response can be 

triggered by impulses originating from the brain (e.g. 

due to stress), or from the gut microbes who can 

positively or negatively regulate the HPA axis (90). In 

germ-free mice, restraint stress has been observed to 

cause increased HPA response, leading to an 

elevation of hypothalamic corticotropin-releasing 

factor gene expression/protein levels, a decrease in 

cortical/hippocampal brain-derived neurotrophic 

factor, and an elevation of plasma adrenocorticotropic 

hormone (ACTH)/corticosteron (90). However, 

colonization by specific microbiota at certain periods in 

their life can either normalize their HPA response to 

stress, or make them to continue to show exaggerated 

responses (90). This influence has been suggested to 

profoundly impact behaviors like anxiety, attention, 

and certain aspects of memory. 

Probiotic intervention (from postnatal day 2 

to 21) with a strain of Bifidobacterium 

pseudocatenulatum reversed neuroendocrine and 

neurobehavioural changes induced by maternal 

deprivation induced stress (154). The 

neuroendocrine response included an attenuation of 

stress-induced increase in corticosterone levels, and 

catecholamine levels in the hypothalamus. A down-

regulation of maternal-deprivation stress–induced 

increase in intestinal levels of interferon gamma and 

catecholamine (dopamine and adrenaline) was also 

demonstrated (154).  

Maternal probiotic supplementation with 

Bifidobacterium animalis subsp lactis and 

Propionibacterium jensenii has also been shown to 

reverse the changes induced by maternal-separation 

stress or the adult-stress protocol on biochemical 

parameters and microbial density (155). In rats pups 

exposed to maternal-separation stress, an increase 

 
 

Figure 1. Showing how the gut microbiota via neural, homonal or endocrine mechanisms modulatesbrain function and chemistry. 
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in plasma levels of ACTH and fecal concentration of 

enterococci, Escherichia coli, and clostridia has been 

shown. In adult animals exposed to stress, an 

increase in both ACTH and corticosterone levels was 

observed; there was also a decrease in the density of 

Bifidobacteria, and an increase in Escherichia coli 

and Bacteroides (155). Transplantation of fecal 

microbiota from patients with irritable bowel 

syndrome into germ free mice has also associated 

with anxiety-related behavior, increased 

gastrointestinal transit time, alteration in the intestinal 

barrier (156). There was also increased expression 

of colonic genes involved in glucocorticoid receptor 

signaling (156).  

In line with the bidirectional communication 

that occurs in the gut-brain axis, the neurons of the 

autonomic nervous system and neuroendocrine 

mediators carry outputs from the brain to the gut. 

Biologically active peptides including peptide YY 

(PYY), neuropeptide Y and pancreatic polypeptide 

are expressed at distinct levels of the gut–brain axis 

(157). Peptide YY and pancreatic polypeptide are 

expressed exclusively by the endocrine cells of the 

digestive system, while NPY is expressed at all levels 

of the gut–brain and brain–gut axis (157). PYY is 

synthesized in the gut by enteroendocrine cells with 

the G protein-coupled receptor FFAR3 (Gpr41) which 

sense dietary proteins/fats, and microbial-derived 

short-chain fatty acids (158). The PYY that is 

transported to the brain affects feeding behavior, 

while in the GIT, it by triggers satiety, reduces food 

intake, and slows the GI motility (158).  

The immune pathway involves the 

influence of microbial antigens and metabolites on 

the immune system, which in turn affects the central 

nervous system. It is known that specific microbes 

and their products can use different mechanisms to 

influence the development and functions of particular 

subsets of immune cells (159). Microbial antigens 

might trigger the immune system and contribute to 

the pathogenesis of neurodegenerative disorders 

such as multiple sclerosis which has profound 

behavioral components (160-161). On the other 

hand, the microbial metabolites that affect immune 

function include chemical mediators such as small 

chain fatty-acids (acetic acid, propionic acid and 

butyric acid) and tryptophan metabolites. The short 

chain fatty acids (SCFAs) are mainly produced by 

large-intestinal bacterial fermentation of the complex 

carbohydrates. They modulate gut motility, enhance 

intestinal epithelium integrity, increase mucus 

production, promote regulatory T-cells, and inactivate 

nuclear factor kappa B (162-164). In the 

gastrointestinal system, SCFAs induce the release of 

neuropeptides and hormones including glucagon-like 

peptide 1 and PYY from intestinal enteroendocrine 

cells (165), via the activation of the G protein-coupled 

receptors (GPRs; GPR41, GPR43, and GPR109A), 

and also by acting as epigenetic regulators. SCFAs 

modulate gene expression through the inhibition of 

histone deacetylases.  

In the central nervous system, SCFAs are 

important in the modulation of microglial maturation 

and homeostasis (166). The microglia in germ-free 

mice exhibited global defects including altered cell 

size, immature phenotypes and impaired innate 

immune response. These features were also 

evident in mice deficient of SCFAs receptor FFAR2a 

(GPR43) (166). Genome-wide mRNA studies 

revealed significant differences in mRNA profiles of 

microglia genes of germ-free compared to specific-

pathogen (SPF) mice (166). A total of 198 genes 

were observed to be downregulated while about 173 

genes were unregulated in microglia from germ-free 

mice, compared controls (166).A number of the 

downregulated genes were genes that had been 

linked to cell activation including Fcgr2β, Mapk8, IL-

1α, and Cd86. Also diminished were genes such as 

Janus kinase 3 and the signal transducer and 

activator of transcription 1 (Stat1), which are linked 

to signaling of type I IFN receptors (166).  

Upregulated genes in the germ-free mice microglia 

include a number of genes responsible for the 

inhibition of transcription (Nfkbiα) and the central 

microglia transcription and survival factors (Sfpi1 

and Csf1r) (166), which are usually downregulated 

in microglia (167-168).  

Bacterial populations in the gut have also 

been reported to be capable of producing hormones 

and/or neurotransmitters similar to that produced by 

humans (169). Members of the Bifidobacterium 

species produce gamma-amino butyrate (GABA), 

Lactobacillus species secrete acetylcholine and 

GABA, while Escherichia produce norepinephrine, 
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dopamine and serotonin.  Serotonin is also produced 

by the Streptococcus and Enterococcus spp, while 

dopamine and norepinephrine is produced by 

members of the Bacillus species. These 

neurotransmitters that are produced by microbes 

could also impact neurobehaviour (169-170).  

3.3. Brain disorders and the microbiota  

The microbiota contributes to the 

maintenance of the central nervous system structure 

and function through direct interactions between the 

enteric nervous system and the gut microbiota (171-

172), or indirectly through the modulation of 

endocrine, immunological, and neural pathways 

(173). Gut microbiome dysbiosis has been 

associated with the development of neuropsychiatric 

disorders, including bipolar disorder, anxiety 

disorder, schizophrenia, autism, chronic fatigue 

syndrome, major depressive disorder and stress 

(174–176). Neurodegenerative diseases like 

Alzheimer’s disease, Parkinson’s disease, and stroke 

have also been linked to microbiome dysbiosis (177).  

A number of studies (Table 5) have 

demonstrated the presence of alterations in specific 

microbes (or their metabolites) with the occurrence of 

central nervous system disorders (55,178–182). 

Following the examination of fecal samples of 

children with autism, Finegold and colleagues (183-

184) reported low levels of microbes within the phyla 

Actinobacteria and Firmicutes, and an increase in the 

concentration of Proteobacteria and Bacteroidetes, 

when compared to healthy controls (183-184). The 

presence of high loads of Bacteroidetes, Bacteroides 

vulgatus, and Desulfovibrio species were observed in 

the feces of severely- autistic children (183). Song et 

al. (178) reported an abundance of Clostridia in 

children with autism who had gastrointestinal 

disorders (178), while Kang et al (185) reported 

evidence of a decrease in microbial diversity and the 

presence of lower levels of Coprococcus, Prevotella, 

and Veillonellaceae in stool samples of autistic 

children (185). In the valproic acid model of autism in 

rodents, alterations in the concentrations of 

Firmicutes and Bacteroidetes occurred alongside 

autism-like social behaviors (186). In children with 

attention deficit hyperactivity disorder, an increase in 

fecal Bifidobacterium has also been reported (187). 

In Rete syndrome, alteration of the gut microbiota has 

also been described; and examination of stool 

samples from patients revealed a decrease in 

Table 5.  Brain disorders and alterations in microbiota density  

Disorder/Behavioural alterations Host Microbial composition  Reference 

 Autism spectrum disorder Humans ↑Clostridia, Bacteroidetes, Bacteroides vulgates, 

Desulfovibrio species, Proteobacteria  ↓ Actinobacteria 

and Firmicutes ↓microbial diversity ↓Coprococcus, 

Prevotella and Veillonellaceae species 

(178,183–185) 

Autism spectrum disorder Murine  ↑Bacteroidetes, ↓ Firmicutes  (186) 

Attention deficit hyperactivity disorder  Human ↑ Bifidobacterium (187) 

Rete syndrome Human ↑Bifidobacterium, Actinomyces, Clostridia  Enterococcus, 

Lactobacillus, Escherichia, and Shigella  species  

(180) 

Major depressive disorder Human ↑Bacteroidetes, ↓ Lachnospiraceae  (188). 

Major depressive disorder Human ↑ Proteobacteria, Bacteroidetes and Actinobacteria (189) 

Major depressive disorder Human ↑ Actinobacteria ↓ Bacteroidetes (125) 

Parkinson’s disease Human ↓Enterobacteria and Prevotella species  (179) 

Alzheimer’s disease Murine ↓Akkermansia   and Allobaculum ↑Rikenellaceae   (182) 

Anxiety, anhedonia and depressivelike 

behaviour 

Rat Fecal transplantation of microbiota from depressed 

patients  

(125, 190) 

ASD: Autism spectrum disorders, ADHD: Attention deficit Hyperactivity disorder, MDD: Major depressive disorder, PD:  Parkinson’s 

disease, AD: Alzheimer’s disease. 
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microbial diversity and an increase in levels of 

Bifidobacterium, Bacteroidaceae, Actinomyces, 

Clostridium Enterococcus, Lactobacillus, 

Escherichia, and Shigella species (180). In patients 

with major depressive disorder (MDD), there have 

been reports suggesting a preponderance of 

Bacteroidetes phyla and a decrease in 

Lachnospiraceae (188). Jiang et al. (189) reported an 

increase in the concentration of Proteobacteria, 

Bacteroidetes and Actinobacteria in depressed 

patients; while Zheng et al (125) reported a relative 

abundance of Actinobacteria and a decrease in 

Bacteroidetes in patients with MDD compared to 

healthy controls (125). A cause-effect relationship 

has also been demonstrated between the microbiota 

dysbiosis and mood disorders, using fecal 

transplantation studies (125, 190). Transplantation of 

fecal microbiota from depressed patients to rodents 

was associated with the induction of depression-like 

behavior (125). Anxiety and anhedonia were also 

reported in rats colonized with fecal microbiota from 

depressed patients (190). 

A number of neurodegenerative disorders 

have been associated with microbiota dysbiosis.  In 

Parkinson’s disease, it had been suggested that the 

pathogenesis may have actually arisen from the 

abnormalities in the gut before spreading via the gut-

brain axis to the brain (191). However, what is 

generally obvious is increasing evidence in support 

of the existence of a brain-gut interaction (107,110), 

and possibly the involvement of the brain-skin cross 

talk (192) in the pathophysiology of a number of 

neurodegenerative disorders. Examination of fecal 

samples from Parkinson’s disease patients revealed 

a decrease in the population of Enterobacteria and 

Prevotella species (179). The transfer of microbiota 

from new-onset, treatment-naïve PD patients to 

groups of germ-free mice has also been shown to 

lead to worsening motor deficits (193). In Alzheimer’s 

disease, an association has been established 

between the presence of beta-amyloid plaques and 

microbial dysbiosis (182). Alzheimer’s disease has 

also been associated with alterations in microbial 

diversity and population. Studies using transgenic 

mice revealed Alzheimer’s disease-induced 

alteration of microbial diversity, with alterations in the 

populations of Bacteroidetes and Firmicutes; 

specifically lowering the population of Akkermansia 

and Allobaculum, and increasing the population of 

Rikenellaceae (182). 

In recent times, the  brain-skin crosstalk 

has been proposed, as reported by studies that have 

demonstrated over-activation of neuropeptides in 

skin disorders like psoriasis and atopic dermatitis; 

and revealed skin conditions related to 

neuroimmunological stress (194–197). Mijouin et al. 

(113) also reported that exposure of the skin microbe 

Bacillus cereus to substance P was associated with 

increased cytotoxicity,  increased caspase-1 activity, 

and morphological changes in the actin cytoskeleton 

(113). In neurodegenerative disorders like 

Parkinson’s disease and Alzheimer’s disease, direct 

alteration of the skin microbial density or diversity is 

rarely reported. Instead, the evidence of skin 

involvement would include an increase in melanoma 

and non-melanoma skin cancers in Parkinson’s 

disease (198), or altered skin physiology in 

Alzheimer’s disease (199). However, the precise role 

of the skin microbiome in all these is still a subject of 

research. 

3.4. Behavioral disorders, the microbiota, 

and future therapeutic implications  

Based on available evidence, it is easy to 

deduce that manipulation of the microbiota may be a 

therapeutic tool in the management or prevention of 

behavioural disorders. Along this line, the study of 

how this knowledge can be used specifically for the 

management of behavioral disorders is an advancing 

field that holds a lot of promise. Human behavioral 

disorders that have been linked to microbiota 

dysbiosis include ADHD, ASD, schizophrenia, bipolar 

disorders, major depression, anxiety disorders, 

obsessive-compulsive disorder, eating disorders; 

and specific neurological disorders such as AD, PD, 

and  MS (200). However, beyond the recognition or 

identification of a link, the questions is to what extent 

can manipulation of the microbiome be used in the 

therapy of these disorders, and what the future holds 

if therapy is steered in this direction. Also, while the 

global market for agents that may be of benefit in the 

prevention or management of dysbiosis continues to 

expand, the extent to which they may be used in the 

clinical management of behavioral disorders remains 

largely unknown. Again, the multifactorial origin of a 
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number of disorders implies that targeting the 

microbiome alone is not likely to be enough for 

therapy. However, some scientists are in support of 

the idea of targeting the microbiota as novel 

therapeutic options in the management of 

neuropsychiatric and neurodegenerative diseases. 

Their support for the exploration of this novel 

approach to therapy has been backed by a number 

of theories, including: a) the “old friend” hypothesis, 

b) the gut microbiota hypothesis, and c) the leaky-gut 

theory.  

The old friend theory suggests that a 

symbiotic relationship has existed between man 

and microbes from time immemorial (201), this 

relationship is crucial to the maintenance of the 

balance of nature as well as the health and well-

being of humans. The transformations that have 

occurred as a result of modernization (leading to 

changes in lifestyle, diet and healthcare) have 

greatly reduced man’s exposure to microbes, which 

has in turn altered man’s immune system and brain 

development (202). The gut microbiota theory of 

brain disorders initially arose from the results of a 

2002 study that demonstrated resistance to disease 

and improvement in health and brain function 

following the feeding of Lactobacillus–fermented 

fodder to pigs; and subsequently from accumulating 

evidence linking the gut microbiota to 

neurobehavioural dysfunction and the development 

of mood disorders and mental illness (202-203). 

The leaky gut theory is based on the hypothesis that 

the human body has two main barriers, the blood 

brain barrier (BBB) and the gut barrier. The gut 

barrier regulates the movement of nutrient and 

signal molecules into the body, and prevents the 

entry of microorganisms. However, the BBB with the 

aid of tight junctions regulates the entry and exit of 

molecules in central nervous system. The 

maintenance of the integrity of these barriers is 

critical to health and wellbeing (204-205). The 

importance of the gut microbiota in the development 

of the BBB was demonstrated by Braniste et al. 

(206), when they reported that in germ-free mice an 

increase in the permeability of the BBB was 

observed when compared to mice with normal gut 

flora. This was observed to persist to adulthood and 

was also associated with a decrease in the 

expression of tight junction proteins (occludin and 

claudin-5) (206).  

These theories portray the important role 

the microbiota–gut-brain axis could potentially play in 

the prevention of and development of drugs for the 

management of brain disorders; also, accumulating 

preclinical evidence continues to support these 

views. A number of methods directed at improving 

the microbiota such as the transplantation of fecal 

microbiota, and the use of probiotics or prebiotics 

have been shown to have significant benefits in 

health and disease. In children with ASD, seven-to-

eight weeks of microbiota transfer therapy altered the 

gut microbiome and improved both gastrointestinal 

and behavioral symptoms (207). These 

improvements were associated with increased 

overall bacterial diversity and an increase in the 

abundance of Bifidobacterium, Prevotella, and 

Desulfovibrio species (207). Also, several systematic 

reviews have indicated that probiotics can effectively 

improve mood in humans (208-209), offering promise 

in the management of depression. In a clinical trial 

involving patients with mania, 24 weeks of adjunctive 

probiotics (using Lactobacillus rhamnosus strain GG 

and Bifidobacterium animalis subsp. lactis strain 

Bb12) were shown to prevent psychiatric re-

hospitalizations after discharge, especially in 

individuals with elevated levels of baseline systemic 

inflammation (210).  

From the foregoing, while it is becoming 

increasingly-evident that manipulations of the 

microbiome can be clinically-beneficial for a limited 

number of behavioral disorders, for the vast majority, 

research is yet to substantiate their benefit in 

humans. Therefore, more effort is needed towards 

conducting research in this area, especially, 

considering the fact that orthodox medications have 

not proven to be fully-satisfactory in the management 

of a number of such disorders. 

4. CONCLUSION 

The increase in the knowledge of the 

microbiota and how they influence brain development 

and behavior has revolutionized our perception of the 

microbes that live in and on our bodies. Presently, we 

are aware that the brain and the gut microbiota can 

communicate with each other via neural, endocrine 
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and immunological pathways; and that these 

communications might be important in the 

pathogenesis of neurological and behavioral 

disorders. Also, a number of chemical mediators that 

act as messengers along such pathways are already 

being identified. However, while novel therapies that 

target these pathways are being investigated, only 

limited progress has been made in the area of 

microbiome manipulation for the prevention and 

management of behavioral/neurological disorders. 

As more resources are dedicated to research in this 

area, the coming years are likely to yield more 

interesting findings and possible clinical applications 

that might revolutionize the management of 

behavioral and neurological disorders. 
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