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1. ABSTRACT 

Quercetin-3-O-β-D-galactopyranoside, is a 

hyperoside flavonol glycoside with anti-cancer, anti-

inflammatory, and anti-oxidant activities that is 

derived from Hypericum and Crataegus plants. To 

this end, we examined the effect of this hyperoside in 

skin cancer cells lines and in DMBA/TPA induced 

skin tumors in vivo. In vitro treatment of cancer cells 

with hyperoside significantly inhibited 

phosphoinositide 3-kinase (PI3K)/protein kinase B 

(Akt)/mammalian target of rapamycin (mTOR)/p38 

MAPK axis, concomitantly activated the 5’AMP-

activated protein kinase (AMPK) signaling, inhibited 

proliferation, and induced apoptosis and autophagy. 

Hyperoside markedly inhibited diffuse epidermal 

hyperplasia and significantly reduced the changes in 

phosphorylated levels of PI3K, AKT, mTOR and 

AMPK while reducing p38 phosphorylation as well as 

of tumor burden in vivo in DMBA/TPA induced skin 

tumors. These data suggest that hyperoside might be 

of therapeutic value in chemoprevention of skin 

cancer. 

2. INTRODUCTION 

Nonmelanoma skin cancers (NMSC) 

include squamous cell carcinoma (SCC) and basal 

cell carcinoma (BCC) that account, respectively, for 

about 20% and 80% of all diagnosed NMSC cases in 

the world (1-2). However, some report a higher 

prevalence for SCC as compared to BCC (3). Apart 
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from ultraviolet radiation (UVR), the common factors 

causing NMSC are occupational and environmental 

exposures to polycyclic aromatic hydrocarbons 

(PAHs), arsenic, as well as the ionizing radiation (4). 

PAHs, which are known for their toxic, carcinogenic 

and mutagenic effects, are produced during the 

incomplete combustion of organic materials, like 

petroleum, wood and coal (5). Among the PAHs, 7, 

12 dimethylbenz(a)anthracene (DMBA) and 12-O-

tetradecanoylphorbol-13-acetate (TPA) are 

commonly used as a model for studying 

carcinogenesis of SCC, a multistep process that 

goes through initiation, promotion and formation of 

cancer (6-8). Impeding or reversal of such a process 

can be achieved by chemoprevention (9). One 

category of drugs considered for such 

chemoprevention is flavonoids, polyphenol 

compounds such as hyperoside (HS), that are 

derived from various plants (10-14) (Figure 1). SCCs 

undergo both apoptosis or programmed cell death 

(PCD) and autophagy (15). Thus, it follows that 

enhancement of these processes might stop or 

reverse the carcinogenesis. To this end, here, we 

examined the effect of hyperoside on cell 

proliferation, apoptosis and autophagy in vitro in a 

series of SCC cell lines and in vivo in SCCs that were 

induced by topical application of DMBA/TPA to skin. 

3. MATERIALS AND METHODS 

3.1. Cells and treatments 

Squamous cell carcinoma cell lines (A431, 

A432, HS-4) were obtained from American Type 

Culture Collection (Manassas, VA). Normal human 

skin cells (HACAT, HFF) were obtained from 

KeyGENE Biotech (Nanjing, China). Cell lines were 

cultured and maintained at 37 °C in MEM containing 

10% FBS (GIBCO, USA) and 1% penicillin/ 

streptomycin (GIBCO, USA) in a humidified 

atmosphere in presence of 5% CO2. Hyperoside 

(>98% purity) was purchased from Wako-Chem 

(Osaka, Japan), dissolved in DMSO and stored at –

20oC until further use. Upon thawing, hyperoside 

was diluted in DMEM medium at the indicated 

concentrations, with a final concentration of no more 

than 0.1% (v/v) DMSO. 

3.2. Animals and treatments  

All experimental procedures were approved 

by the Research Ethical Committee of Huai'an First 

People's Hospital, Nanjing Medical University. All 

experiments were performed following the Guide for 

the Care and Use of Laboratory Animals. A total of 60, 

6–7 week-old female mice were obtained from Institute 

of Cancer Research (Shanghai, China). Animals were 

kept, in germ-free conditions, in climate-controlled 

quarters with a 12 h light and dark cycle, and were fed 

ad libitum with food and water. Fifteen mice were 

randomly assigned into four groups as follows 

1. Group I: This group that serves as negative 

control received only the solvent vehicle 

(DMSO). 

2. Group II: This group was treated with 

indicated doses of DMBA/TPA (Sigma 

Aldrich, USA). 

3. Group III: This group was treated with 

indicated dose of DMBA/TPA and 8 μM HS. 

4. Group IV: This group was treated with 

indicated dose of DMBA/TPA and 16 μM HS. 

SCCs were induced by intra-dermal 

injection of 60 μg of DMBA in skin of the back of the 

animals. Two weeks later, the animals received intra-

dermal injection of 4 μg TPA twice a week for a total 

of 22 weeks. The effect of hyperoside was examined 

by 1 min topical skin application of either 8 or 16 μM 

HS dissolved in DMSO/acetone 1:9 (V/V), 30 min 

before DMBA/TPA mixture was introduced to skin. 

The control animals received the vehicle alone. The 

 
 

Figure 1. The procedures for animal experiments as described in the materials and methods. 
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injections were carried out five days a week for 22 

weeks, after which the size of tumors were measured 

with a caliper and the animals were sacrificed, the 

normal skin and tumors were removed and were 

immediately stored in liquid nitrogen, or fixed 10% 

Formalin. 

3.3. Cell viability analysis 

1×103 cells/well were seeded in 96-well 

plates (Corning, USA) containing complete growth 

medium. On the following day, all cells were treated 

with different concentrations of hyperoside (0, 1, 5, 

10, 25, 50 and 100 μM) and incubated at 37 °C for 

0, 12, 24 and 48 h. Then, the cell viability was 

measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-2H-tetrazolium bromide (MTT) Cell 

Viability Assay Kit (Abnova, USA). Briefly, post 

hyperoside treatment, 15 µL of MTT reagent was 

added to each well and incubated for 4 hours at 

37°C. Later, 100 µL of the solubilizer was added to 

each well and mixed gently on an orbital shaker for 

1 hour at room temperature. Then, optical density 

was measured at 570 nm on an absorbance plate 

reader (Elx800TM absorbance microplate reader, 

BioTek Instrument, Inc., Vermont). Each experiment 

was repeated three times. 

3.4. Flow cytometric assay 

Apoptosis was analyzed by the Annexin V-

FITC/ propidium iodide (PI) apoptosis detection kit 

from KeyGENE (Nanjing, China). Cells were 

harvested and washed with cold PBS twice and 

processed according to manufacturer’s instructions. 

In brief, cells were treated with 100 µl binding buffer 

containing annexin V-FITC and PI and incubated on 

ice for 15 min in the dark. Then, 400 µL ice-cold 

binding buffer was added to cells and these were 

analyzed by a flow cytometer (BD Biosciences, 

USA) (16). 

3.5. Migration analysis 

1×105 skin cancer cells/well were seeded 

in the top chamber of 24-well Transwell micropore 

polycarbonate membrane filter, with a pore size of 

8-μm (Millipore, USA).After 24 h, cells on the top 

surface of membrane were gently removed, and 

cells that migrated onto the bottom surface of wells 

stained and then counted in five random fields, 

under a light microscope. 

3.6. Scratch wound-healing assay 

Human skin cancer cells were seeded in a 6-

well plate and once reaching confluence, a thin 

“wound” was introduced by scratching the monolayer 

with a pipette tip. Cells then were washed with PBS 

and images were captured under an inverted scope 

along the length of the scratch at 0 h and 24 h after 

introduction of the wound. 

3.7. Western blot analysis 

Western blot analysis was performed as 

previously described (17). Briefly, cells were rinsed 

with ice-cold PBS three times and lysed in ice-cold 

lysis buffer in the presence of a freshly prepared 

protease inhibitor cocktail. For carrying Western 

blotting on skin and skin tumors, 100 mg of frozen 

tissue were also lysed in 1ml lysis buffer (pH 7.4, 

50 mM Tris-HCl, 150 mM NaCl, 1 mM NaF, 1 mM 

ethyleneglycol-bis(aminoethylether)-tetraacetic 

acid, 1% NP-40, 1 mM phenylmethane-sulfonyl 

fluoride, and 10 μg/ml leupeptin). Following 

centrifugation of the lysates at x12,000 g for 20 min 

at 4°C, the total protein concentration in the lysates 

were quantified by BSA protein assay kit (Thermo, 

USA). Then, 40 ng of protein extracts were 

resolved in 10%-12% SDS-PAGE, and then blotted 

to polyvinylidene fluoride membrane (PVDF) 

(Millipore, USA). The membranes were blocked for 

2 hr with 5% skim fat dry milk dissolved in 0.1% 

Tween-20 and Tris-Buffered Saline (TBS). 

Membranes were incubated, overnight at 4°C, with 

primary antibodies (Table 1) dissolved in blocking 

buffer. Bands were revealed by 

chemiluminescence using Pierce ECL Western 

Blotting Substrate reagents (Thermo Scientific). All 

experiments were performed in triplicates and 

validated three times. 

3.8. Hematoxylin and eosin staining  

Formalin fixed skin and tumor tissues of 

experimental mice were embedded in paraffin 

blocks and sectioned at 3 μm thickness. Sections 
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were de-paraffinized, rehydrated in descending 

series of alcohol and stained with hematoxylin 

and eosin (H&E) stain. The thickness of 

epidermis was measured by using Magnuspro 

software and in H&E staining sections by Image-

J software (USA). 

3.9. Immunohistochemical staining 

The tissue sections were subjected to a 

pH based antigen retrieval, by exposing the 

sections to HCl (3.5 M) for 20 min at room 

temperature. Sections were then washed in PBS 

for 3 times. Following quenching of endogenous 

peroxidase by immersion of sections in peroxidase 

(0.3%), the tissue sections were incubated with 

normal goat serum (5%) for 30 min followed by 

incubation with the anti-Ki67 primary antibody 

(1:100 dilution; ab15580, Abcam, USA) for 2 h at 

room temperature. The sections were then 

incubated with HRP-conjugated secondary 

antibody, and after the sections were washed in 

PBS, they were developed using diaminobenzidine 

(DAB, ChemService, USA). 

3.10. Statistical analysis 

Data were expressed as the means ± 

standard errors of the mean (S.E.M.). Statistical 

analysis was carried out using GraphPad PRISM 

(version 6.0; Graph Pad Software) and ANOVA 

with Dunnet’s least significant difference. A p-

value of less than 0.05 was considered to be 

statistically significant. 

Table 1. Primary antibodies used in Western blot analysis 

Primary antibodies Dilution ratio Corporation 

Rabbit anti-p-AURKA 1:1000 Abcam 

Rabbit anti-AURKA 1:1000 Abcam 

Rabbit anti-Bcl-2 1:1000 Cell Signaling Technology 

Rabbit anti-Bcl-xl 1:1000 Cell Signaling Technology 

Rabbit anti-Caspase-3 1:1000 Abcam 

Mouse anti- Caspase-9 1:1000 Abcam 

Rabbit anti-PARP 1:1000 Cell Signaling Technology 

Rabbit anti-Cyto-c 1:1000 Abcam 

Rabbit anti-Apaf-1 1:1000 Abcam 

Rabbit anti-PTEN 1:1000 Abcam 

Rabbit anti-Beclin-1 1:1000 Cell Signaling Technology 

Rabbit anti-LC3-I/II 1:1000 Cell Signaling Technology 

Rabbit anti-p-PI3K 1:1000 Cell Signaling Technology 

Rabbit anti-PI3K 1:1000 Cell Signaling Technology 

Rabbit anti-AKT 1:500 Cell Signaling Technology 

Rabbit anti-p-AKT 1:1000 Cell Signaling Technology 

Rabbit anti-p-mTOR 1:1000 Abcam 

Rabbit anti- mTOR 1:1000 Abcam 

Rabbit anti-p-AMPK 1:1000 Abcam 

Rabbit anti-AMPK 1:1000 Abcam 

Rabbit anti- p38 1:1000 Cell Signaling Technology 

Rabbit anti-p-p38 1:1000 Cell Signaling Technology 

GAPDH 1:200 Santa cruz 
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4. RESULTS 

4.1. Hyperoside reduces viability, migration, 

colony formation, apoptosis and autophagy 

of skin cancer cells in vitro 

Hyperoside treatment did not impact the 

viability of HACAT and HFF normal human skin cell 

lines (Figure 2 A-B) whereas the viability was 

significantly reduced in A431, A432 and HS-4 cancer 

ce lls that were treated for 0, 12, 24 and 48 h with 

escalating doses of hyperoside (0, 1, 5, 10, 25, 50 and 

100 μM) (Figure 3 A-D). This treatment increased 

apoptosis and reduced the migration, and colony 

formation in cancer cells (Figure 4-5). Moreover, 

consistent with such results, there was down-

regulation of Bcl-2 and Bcl-xl that protect cells from 

apoptosis whereas the pro-apoptotic signals, Bax 

and Bad were upregulated (Figure 6). In addition, 

there was an increase in the executors of apoptosis 

including cytochrome C, caspase-9, caspase-3 as 

well as evidence for PARP cleavage (Figure 6). 

Examining the PTEN, Beclin-1 and LC3I/II that 

participate in the autophagic cell death showed that 

these were all increased in cells that were treated 

with hyperoside in a dose dependent manner while 

those that inhibit autophagic cell death, namely, 

phosphorylated levels of PI3K/AKT/mTOR were 

reduced (20-21, 27)(Figure 7 A-B). The 

phosphorylated AMPK and MAPK that maintain 

 
 

Figure 2. Hyperoside exerts no toxicity to normal skin cells, in vitro. Human normal skin cells (A) HACAT and (B) HFF were exposed to the 

indicated concentrations of hyperoside for 0, 12, 24 and 48 h. Next, MTT analysis was used to evaluate cell viability. Results are shown as 

mean ± SEM (n = 8 in each group). *p < 0.05, **p < 0.01 and ***p < 0.001 versus the Control group without any treatment. 
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energy homeostasis and survival were increased in 

cancer cells treated with hyperoside (Figure 7 C). 

Consistent with reduced proliferation, 

phosphorylated AURKA that is increased in cells 

undergoing mitosis (18), was reduced in skin cancer 

cells treated with hyperoside (Figure 8). 

 
 

Figure 3. Hyperoside inhibits proliferation of skin cancer cells. (A) The chemical structure of hyperoside. Human skin cell lines, including (B) 

A432, (C) A431, and (D) HS-4, were treated with the indicated concentrations of hyperoside, ranging from 0 to 100 µM for 0, 12, 24 and 48 h. 

Then, the cells were harvested for MTT analysis to evaluate cell viability. Results are shown as mean ± SEM (n = 8 in each group). *p < 0.05, 
**p < 0.01 and ***p < 0.001 versus the control group without any treatment. 
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4.2. Hyperoside reduces DMBA/TPA 

induced skin cancer in vivo 

Fifteenth weeks after treatment with 

DMBA/TPA, animals developed skin tumors. The 

body weight of animals that harbored DMBA/TPA 

induced cancers and were treated without or with 

hyperoside did not change indicating safety of 

hyperoside for animal use (Figure 9). Treatment 

with DMBA/TPA increased the epidermal thickness, 

while this effect was suppressed by hyperoside 

(Figure 10 A-B). Consistent with such a 

hyperproliferative state in skin, there was an 

increase in the phosphorylated AURKA as well as 

 
 

Figure 4. Hyperoside induces apoptosis in human skin cancer cells. Human skin cancer cell lines A431, A432 and HS-4 were treated with 

hyperoside at the indicated doses for 24 h. Then, (A) the cells were collected for flow cytometric analysis. The quantification of (B) A431, (C) 

A432 and (D) HS-4 was exerted following the flow cytometry. Results are shown as mean ± SEM (n = 8 in each group). *p < 0.05, **p < 0.01 

and ***p < 0.001 versus the control group without any treatment. 
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the number of Ki-67 positive cells in DMBA/TPA-

treated mice was higher as compared to the control 

group whereas treatment with hyperoside reduced 

such an increase (Figure 10 C). 

The size of the tumors was significantly 

reduced with 8 μM or 16 μM hypreoside in the 

DMBA/TPA treated mice indicating that hyperoside 

suppresses tumorigenesis (Figure 11). The tumors 

 
 

Figure 5. Hyperoside suppresses growth of skin cancer cells. Human skin cancer cell lines of A431, A432 and HS-4 were treated with 

hyperoside at the indicated doses for 24 h, followed by further analysis. (A) Migration of human skin cancer cell lines, A431, A432 and HS-4. 

(B) The analysis of scratch wound width of A431, A432 and HS-4 after hyperoside administration. Results are shown as mean ± SEM (n = 8 

in each group). *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group without any treatment. 
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showed increased apoptosis, down-regulation of 

Bcl-2 and Bcl-xl and up-ergulation of Bax, Bad, 

Cyto-c and Apaf-1, activation of caspase-9, 

caspase-3 and PARP cleavage and these effects 

were reduced by treatment with hyperoside (Figure 

12 A). Hyperoside treatment also increased 

autophagy-associated proteins including PTEN, 

Beclin-1 and LC3II (Figure 12 B). Furthermore 

hypreoside reversed the DMBA/TPA-induced 

changes in phosphorylated levels of PI3K, AKT, 

mTOR and AMPK while reducing p38 

phosphorylation (Figure 12 C-D). 

5. DISCUSSION 

Skin cancer is caused by a variety of 

carcinogens including chemicals, radiation, and UV 

light. Given that the incidence of skin cancer has been 

rising, there is a need for evaluating strategies that can 

offer a safe chemopreventive effect. Here, we tested 

Quercetin-3-O-β-D-galactopyranoside, as a candidate 

with such an effect. In vitro treatment of cancer cells 

with hyperoside inhibited proliferation, and induced 

apoptosis and reduced autophagy. In vivo, hyperoside 

markedly inhibited diffuse epidermal hyperplasia that 

is often seen in skin cancers as well as of tumor burden 

in vivo in DMBA/TPA induced skin tumors. Consistent 

with such an impact on proliferation, phosphorylated 

AURKA that is increased in cells undergoing mitosis, 

was reduced in skin cancer cells treated with 

hyperoside (18). These findings show that hyperoside 

stops cancer progression through various 

mechanisms, including regulation of proliferation, and 

by inducing apoptosis and autophagy. The effect of 

hyperoside is likely mediated by increasing Bcl-2 and 

Bcl-xl that protect cells from apoptosis as well as by 

reducing the pro-apoptotic signals, Bax and Bad. 

Hyperoside also significantly halted activation of 

apoptotic cascade induced by executors of apoptosis 

including cytochrome C, caspase-9, caspase-3 and 

markedly reduced PARP cleavage which occurs in 

cells that undergo apoptosis. These data suggest that 

hyperoside might be of therapeutic value in 

chemoprevention of skin cancer. 

The mammalian target of rapamycin 

(mTOR) is considered as a pro-survival signal 

transduction pathway that prevents apoptosis (19). 

Following stress, mTOR depletion inhibits cell growth 

and proliferation and increases autophagy and 

apoptosis (20). The PI3K/AKT are also involved in 

regulation of cell cycle, protein synthesis, apoptosis 

and proliferation (19, 21-22). We show here, that 

hyperoside normalizes phosphorylated levels of 

PI3K/AKT/mTOR (23-24, 25) and effectively reduces 

p38 phosphorylation, a MAPK known to play a crucial 

role in several cellular processes, including cell 

proliferation (26-27). 

AMPK was highly phosphorylated, while 

p38 was de-phosphorylated by hyperoside 

administration, further confirming the suppressive 

effects of hyperoside on skin cancer, which was 

directly proved by reduced tumor incidence and the 

number of tumor lesions formed in DMBA/TPA 

treated mice, in vivo. Additionally, hyperoside 

induced reduction in epidermal thickness and the 

number of Ki-67 positive cells further showing that it 

has the ability to restrain tumor cell growth or skin 

hyperplasia.

 
 

Figure 6. Hyperoside alters apoptosis-related regulators. Human 

skin cancer cells, A431, were treated with hyperoside at the 

described doses for 24 h followed by, Western blot analysis for Bcl-

2, Bcl-xl, Bax, Bad, Cyto-c, Apaf-1, Caspase-9, Caspase-3 and 

PARP cleavage. Results are shown as mean ± SEM (n = 8 in each 

group). *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group 

without any treatment. 
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Figure 7. Hyperoside modulates autophagy, PI3K/Akt/mTOR Axis, AMPK and p38 signaling in skin cancer cells. Human skin cancer cells, 

A431, were treated with hyperoside at the described doses for 24 h followed by Western blot analysis for (A) PTEN, Beclin-1, LC3-I/II, and (B) 

PI3K, AKT and mTOR phosphorylation, (C) AMPK and level of phosphorylation of p38. Results are shown as mean ± SEM (n = 8 in each 

group). *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group without any treatment. 

 

 

The treatment of cancer cells with hyperoside also 

increased phosphorylated AMPK, an evolutionarily 

conserved serine/threonine protein kinase, that 

serves as an energy sensor in all eukaryotic cells, 

maintains energy homeostasis and regulates both 

proliferation and apoptosis (28). Thus, treatment with 

hyperoside might confer resistance to the tumor 

development and halts further progression of tumors. 

Hyperoside also alters autophagy, a 

conserved cellular process involved in cell survival 

and death whereby cellular organelles and proteins 

are engulfed by autophagosomes, digested within 

lysosomes, and recycled to sustain cellular  



Hyperoside suppresses skin cancer 

473 © 1996-2020 

 

 
 

Figure 8. Hyperoside suppresses phosphorylated AURKA and alters apoptosis-related regulators. Human skin cancer cells, A431, were 

treated with hyperoside at the described doses for 24 h followed by Western blot analysis for determining the phosphorylation of AURKA. 

Results are shown as mean ± SEM (n = 8 in each group). *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group without any 

treatment. 

 

 

 
 

Figure 9. Hyperoside reduces skin cancer growth in DMBA/TPA-treated mice. Body weights shown as mean ± SEM (n = 20 in each group). 
*p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group without any treatment. 
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Figure 10. Hyperoside inhibits growth of DMBA/TPA-induced skin cancer. (A) Top: Representative images of epidermal proliferation. Bottom: 

immunostaining of Ki-67. (B) The epidermal thickness was quanifited using H&E staining. (C) Quantification of number of Ki-67 positive cells. 

Results are shown as mean ± SEM (n = 8 in each group). *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group without any treatment. 

 

 
 

Figure 11. Effect of hyperoside on incidence of DMBA/TPA induced tumors in mice. Results are shown as mean ± SEM (n = 20 in each 

group). *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group without any treatment. 
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Figure 12. Effect of hyperoside in DMBA/TPA-treated mice on Western blotting of (A) Bcl-2, Bcl-xl, Bax, Bad, cleaved Cyto-c, Apaf-1, Caspase-

9, Caspase-3 and PARP, (B) PTEN, Beclin-1, LC3-I/II, and (C) PI3K, AKT and phosphorylated mTOR (D) Phosphorylated AMPK and p38. 

Results are shown as mean ± SEM (n = 8 in each group). *p < 0.05, **p < 0.01 and ***p < 0.001 versus the control group without any treatment. 

 

homeostasis (29-32). Regulators of autophagy 

include microtubule-associated protein II light chain 3 

(LC3-II) that regulates autophagy by binding to the 

membranes of the autophagosomes (30, 33), Beclin 

1 which acts as a tumor suppressor (34) and PTEN 

that, by virtue of inducing autophagy, causes 

inhibition of tumor growth (35). The effect of 

hyperoside treatment included preventing cancer 

induced changes of LC3I/II, Beclin-1 and PTEN. 

In conclusion, this study demonstrates that 

hyperoside shows potential in reducing tumor 

burden by increasing apoptosis and autophagy and 

by activating the signaling required in such 

processes. 
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