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1. ABSTRACT 

Hyperhomocysteinemia induces stress 

response in endoplasmic reticulum (ERS). Here, we 

tested whether blockage of homocysteine (Hcy) 

induced ERS and subsequent apoptosis in vascular 

smooth muscle cells can be inhibited by blockage of 

PERK/eIF2α/ATF4/CHOP signaling. Short-term 

exposure of vascular smooth muscle cells to Hcy led 

to the phosphorylation of PERK (pPERK), which in 

turn, phosphorylated eIF2 alpha (peIF2α) and 

inhibited the unfolded protein response. Long-term 

Hcy exposure, however, increased the expression of 

ATF-4 and CHOP and led to apoptosis. Treatment of 

cells with salubrinal, a specific inhibitor for eIF2α 

decreased the expression of ATF-4 and CHOP, and 

prevented apoptosis. Together, the results show that 

PERK pathway is involved in Hcy-induced vascular 

smooth muscle cell apoptosis and that blocking the 

PERK pathway protects against this injury. 

2. INTRODUCTION 

Vascular disease is one of leading causes 

of mortality worldwide (1-3). Hyperhomocysteinemia 

(HHcy), which results from elevated homocysteine 

(Hcy) level, has been recognized as an independent 

risk factor for the development of cardiovascular 

disease and its complications (4-5). Vascular 

damage caused by HHcy is associated with the 

breakdown of the extracellular matrix (ECM), causing 

increased deposition of collagen that results in vessel 
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stiffness (6-7). Numerous studies have indicated that 

prolonged exposure of cells to HHcy results in 

programmed cell death, which aggravates the extent 

of the vascular damage (8-10). 

The endoplasmic reticulum (ER) is an 

organelle essential for protein modification, protein 

folding and calcium storage. Accumulation of 

misfolded proteins or imbalance of Ca2+ leads to ER 

stress (ERS). During ERS, three transmembrane 

proteins, protein kinase-like ER kinase (PERK), 

inositol-requiring kinase 1 (IRE1), and transcription 

factor-activating transcription factor 6 (ATF6), are 

activated and trigger an adaptive response (11-12). 

The N-termini of these unfolded protein response 

(UPR) receptors are located in the lumen of the ER, 

and their C-termini protrude into the cytoplasm, 

connecting ER to the cytoplasm. When PERK, IRE1 

and ATF6 are inactive, their N-termini bind to GRP78, 

a marker of ERS. However, when unfolded proteins 

accumulate in the ER, GRP78 dissociates from these 

molecules and subsequently triggers UPR. 

Phosphorylation of PERK results in phosphorylation 

of the α subunit of eukaryotic initiation factor 2 

(eIF2α), leading to the inhibition of protein synthesis 

(13-15). 

Activating transcription factor 4 (ATF4) is a 

bZIP transcription factor that is frequently 

upregulated during stress in cells. ATF4 controls the 

expression of a wide range of adaptive genes 

involved in amino acid transport and metabolism that 

allow cells to endure stress (16-17). However, under 

persistent stress conditions, ATF4 induces cell-cycle 

arrest, senescence or even apoptosis (18-19). Unlike 

most proteins, ATF4 is not inhibited by the 

phosphorylation of eIF2α during ERS. Activation of 

ATF4 leads to the induction of C/EBP homologous 

protein (CHOP), which is associated with the 

increased ERS induced apoptosis (20). 

Typically, eukaryotic cells undergo 

apoptosis either through and intrinsic or an extrinsic 

pathway. Apoptosis induced by extrinsic pathway 

involves the activation of caspases which results 

from the binding of tumor necrosis factor α to its 

receptor, tumor necrosis factor receptor α (TNF-

R α)(21). On the other hand, during the extrinsic 

pathway, Bcl-2 proteins mediates cytochrome C 

release from mitochondria to cytosol, which in turn, 

leads to activation of caspases and apoptosis (22). 

HHcy increases the expressions of both 

GRP78 and GRP94 in various cell types including 

vascular smooth muscle cells (VSMCs) (23-24) 

suggesting that these cells are susceptible to ERS 

and apoptosis. In this work, we tested whether Hhcy 

leads to ERS and apoptosis and whether these 

processes are mediated by the PERK signal 

pathway. The findings lend support to the view that 

Hcy-induces apoptosis in vascular smooth muscle 

cells and that blocking the PERK pathway protects 

against this injury. 

3. MATERIALS AND METHODS 

3.1. Reagents 

DL-homocysteine and salubrinal were 

obtained from Sigma (St. Louis, MO, USA). Dulbecco’s 

modified Eagle’s medium (DMEM), trypsin-EDTA and 

fetal bovine serum (FBS) were purchased from Gibco 

Technologies (Logan, UT, USA). Antibodies against 

GRP78 (ab21685) and GRP94 (ab18055) were 

purchased from Abcam (Boston, MA, USA). Antibodies 

against PERK (3192s), p-PERK (3179s), eIF2a 

(5324s), p-eIF2a (3597s), ATF4 (11815S), CHOP 

(2895s), cytochrome c (4280), TNF-α (6945) and β-

actin (12262s) were purchased from Cell Signaling 

Technology (Boston, MA, USA). 

Electrochemiluminescence (ECL) Western blotting 

detection reagents were obtained from Millipore 

(Bedford, MA, USA). Cell Counting Kit-8 (CCK-8) and 

LDH Assay Kits were purchased from Beyotime 

(Jiangsu, China). A TUNEL Apoptosis Detection Kit III 

was purchased from Boster (Wuhan, China). Total RNA 

Isolation Kit and Revert Aid First Strand cDNA 

Synthesis Kit were purchased from TAKARA (Dalian, 

China). 

3.2. Cell culture and treatments 

Mouse aortic VSMCs (MOVAS cells) were 

purchased from the Cell Line Bank of the Chinese 

Academy of Sciences (Shanghai, China). MOVAS 

cells were cultured in DMEM containing 15% FBS, 

100 U/mL penicillin and 100 µg/mL streptomycin at 

37 °C in a 5% CO2 environment. Cells that had grown 
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to 80% confluence were used for the following 

treatments. Some cells were exposed to a medium 

containing 5 mmol/L Hcy for 0, 6, 12, 24 36 or 48 h. 

Other cells were pretreated with 20 µmol/L salubrinal 

for 30 min and then cells were exposed to a single 

dose of 5 mmol/L Hcy for 48h. 

3.3. Cell viability and injury detection 

CCK-8 assay was used to measure cell 

viability. MOVAS cells were seeded in 96-well plates. 

After cultured for 6 to 24 h, cells were subjected to 

various treatments. The cell medium from each well 

was replaced with 200 µL of fresh culture medium 

plus 20 µL of CCK-8 solution, and the cells were 

incubated for 80 min at 37 °C. A microplate 

absorbance reader (Bio-Rad) was used to measure 

the absorbance at a wavelength of 450 nm. Lactic 

dehydrogenase (LDH) is a key enzyme in the 

conversion of pyruvate to lactate under anaerobic 

conditions (25). The leakage of LDH is an important 

index of cell membrane damage, which often leads to 

the necrotic cell death (26). Cell culture medium is 

collected for detection of LDH after hcy treatment. 

The extent of LDH that leaked from damaged cells 

was assessed at 450 nm by colorimetric detection. 

3.4. Immunofluorescence staining 

At 70–80% confluence, the MOVAS cells 

transferred to a 60 mm culture dish and washed three 

times with 1 x PBS. Cells were fixed in cold 4% 

paraformaldehyde for 20 min and washed three times 

with 1 x PBS for 5 min per wash. Cells were 

permeabilized with 0.2% Triton X-100 for 10 min. 

Nonspecific binding was blocked with serum from the 

same host as that of the secondary antibody for 30 

min. Cells were incubated with primary antibodies 

(1:200 dilution) at 4 °C for 14–18 h, washed and then 

incubated with secondary antibodies (1:500 dilution) 

at room temperature for 2 h (in the dark). After three 

washes with PBS, cells were stained with DAPI and 

sealed with glycerin. 

3.5. Western blotting analysis 

Cells were collected after being washed 

with ice-cold PBS and were then lysed in RIPA lysis 

buffer containing PMSF (1:100) for 30 min on ice. 

After centrifugation at 12000 ×g for 3 min at 4 °C, the 

supernatants were collected for determination of the 

protein concentration using a bicinchoninic acid 

(BCA) protein assay kit. Supernatants were mixed 

with Laemmli loading buffer at a 4:1 ratio, and the 

mixtures were then boiled at 100 °C for 10 min. 

Extraction of cytosolic proteins was performed 

according to the manufacturer’s instruction. Protein 

samples were separated by gel electrophoresis and 

transferred to a polyvinylidene fluoride (PVDF) 

membrane. Membranes were blocked with 5% nonfat 

dry milk dissolved in Tris-buffered saline containing 

Tween 20 (TBST) for 2 h at room temperature. After 

incubation with primary antibodies (1:1000 dilution) at 

4 °C for 14 h, membranes were incubated with 

secondary antibodies (1:3000 dilution) for 2 h at room 

temperature. An ECL detection kit was used to scan 

the bands, and Image Lab software was used to 

collect and analyze the data. 

3.6. Real-time quantitative RT-PCR 

Total RNAs were isolated with the RNA 

Isolation Kit, and first-strand cDNA was synthesized 

using RevertAid First Strand cDNA Synthesis Kit. 

The qPCR amplification reactions were performed 

with Maxima SYBR Green qPCR Master Mix. 

GAPDH served as an internal control. Three replicate 

samples were processed at each time point. Relative 

quantification was performed using the 2-∆C C T
 

method. RT-PCR primers (Sangong, Shanghai, 

China) are listed in Table 1. 

3.7. Evaluation of apoptosis 

Apoptosis was detected in MOVAS cells by 

using terminal deoxynucleotidyl transferase-

mediated dUTP nick end-labeling (TUNEL) assay kit 

according to the manufacturer’s instructions. Briefly, 

after treatments, the MOVAS cells were incubated 

with TdT and fluorescein-labeled dUTP for 45 min at 

37 °C, followed by incubation with staining with DAPI 

to label the nuclei and photography using a confocal 

microscope (Olympus FluoView 2000). To calculate 

the percentage of apoptotic cells, five random fields 

were counted for each of the five groups. 

3.8. Statistical analysis 

The results are presented as the mean ± SD. 

The data were analyzed via one-way ANOVA followed 
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by Dunnett’s test or Student’s t-test using 

Statistical Package for the Social Sciences (SPSS) 

13.0 software. A p value of < 0.05 was considered 

to be statistically significant. 

4. RESULTS 

4.1. Hcy induces ERS in VSMCs 

Upon accumulation of unfolded proteins 

in the ER, the ER stress chaperones, HSPA5 

(GRP78) and GRP94 dissociate from these 

unfolded proteins and subsequently trigger UPR. 

The treatment of MOVAS cells by Hcy respectively, 

increased, by about 3.22 and 1.49 folds, the levels 

of mRNAs of HSPA5 and PDIA3, an essential 

redox-sensitive activator of PERK (figure 1B-C). 

The increased expressions of ER stress 

chaperones, GRP78 and GRP94 were detected by 

immunofluorescence staining and Western blotting 

(figure 1A, 1D-F).  

4.2. Hcy activates PERK signaling pathway 

in VSMCs 

To decipher whether Hcy signals through 

PERK in VSMCs, MOVAS cells were treated with 

Hcy (5 mmol/L) for up to 48 hr (27). After 12 hr, the 

treatment led to increased expression of 

phosphorylated PERK (pPERK) and its 

downstream effector molecule, eIF2α (peIF2) 

(figure 2A-E). These levels continued to persist 

and then fell at 36 to 48 hr (figure 2A-E). 

Table 1. Primer sequences 

Gene Forward primer 5′- 3’ Reverse primer 5′- 3’ 

GRP94 CAGTTGGATGGGTTAAACGCA CAGTTGGATGGGTTAAACGCA 

Hspa5 AGC GAC AAG CAA CCA AAG AT AGC GAC AAG CAA CCA AAG AT 

GAPDH TGT GTC CGT CGT GGA TCT GA TGT GTC CGT CGT GGA TCT GA 

 

 
 

Figure 1. Cells were treated with 5.0 mmol/L Hcy for 12 h. A. immunofluorescence staining of GRP78 and GRP94. Arrow points to positive 

cells. Scale bar, 10 µm. B-C. Quantitative RT-PCR of Hspa5 and GRP94. D-F. Western blotting of GRP78 and GRP94. *p< 0.05 versus the 

control (0 hr). 
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4.3. Hcy is cytotoxic and induces apoptosis 
in VSMCs 

To decipher whether Hcy is cytotoxic to 

VSMCs, MOVAS cells were treated with Hcy (5 

mmol/L) for up to 48 hr (27). Consistent with 

causing damage, Hcy increased the extracellular 

level of LDH enzyme activity in a time-dependent 

manner (Figure 3B). Cell viability also 

progressively decreased reaching 59.13% at 48 hr 

(Figure 3A). 

Both Bax and Bcl-2 are apoptosis-related 

factors that play a critical role in apoptosis by 

activation of caspase-3 (28-29). Hcy treatment 

also led to a significantly decreased the Bcl-2 

 
 

Figure 2. The expression levels of p-PERK, p-eIF2α, ATF4, and CHOP were determined via Western blot analysis. β-Actin was selected as 

the loading control. The data are presented as the mean ± SD of three independent experiments. *p< 0.05 versus the control (0 hr). 

 
 

Figure 3. Cells were treated with 5.0 mmol/L Hcy for 0, 6, 12, 24, or 48 h. A. Cell viability assessed by CCK-8 assay. B. LDH enzyme activity. 

The data are means ± SD from three independent experiments. *p< 0.05 versus the control (0 hr). 
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levels which protects cells from apoptosis and 

increased Bax which activates caspase and 

apoptosis (Figure 4B, 4D-E). Consistent with such 

results, treatment of MOVAS cells with Hcy also 

significantly increased the activity of cleaved 

caspase-3 and the percentage of TUNEL+ 

apoptotic cells (Figure 4A-C). Treatment of cells 

with Hcy, however, did not change the expression 

of TNF-α (Figure 4F-G). 

4.4. Inhibition of PERK pathway protects 
the VSMCs against Hyc induced cell 
damage 

To further confirm the role of the PERK 

pathway in Hcy-induced apoptosis, salubrinal, a specific 

 
 

Figure 4. A. TUNEL stained MOVAS cells. Nuclei were stained with DAPI. Arrow points to apoptotic cells. Scale bar, 20 µm. B. Western 

blotting of Cleaved Caspase-3, Bcl-2, Bax, TNF-α and ACTIN *p< 0.05 versus the control (0 hr). 
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inhibitor for eIF2α dephosphorylation (30) was 

employed to block the PERK signaling pathway. 

While MOVAS cells that were incubated with Hcy (5 

mmol/L) for 48 hr showed increased p-eIF2α and 

ATF4 expression, pretreatment with salubrinal (20 

μmol/L) for 30 min blocked these responses and also 

blocked the Hcy mediated increase in CHOP (Figure 

5A-D). 

Inhibition of PERK signaling by salubrinal 

blocked cell damage as evidenced by increased 

expression of Bcl-2 and decreased expression of 

Cytochrome c, Bax, cleaved caspase-3, and 

decreased the extracellular release of LDH (Figure 

6B, Figure 7B-E). This inhibition also prevented the 

decrease in cell viability and the increase in the 

number of TUNEL+ apoptotic cells that were inducible 

by Hcy treatment (Figure 6A, 7A). 

5. DISCUSSION 

HHcy is an independent risk factor for the 

development of vascular disease (31-32). 

Derangements in the metabolism of methionine 

and/or Hcy leads to the rise of intracellular Hcy and 

subsequently to the leakage of a large amount of Hcy 

to the surrounding tissues. The concentration of Hcy 

in tissues and plasma rises with age, and over time, 

high levels of Hcy causes vascular damage with 

numerous complications (33). HHcy is associated 

with the breakdown of the extracellular matrix (ECM), 

which, ultimately, through increased deposition of 

collagen results in vessel stiffness (5-7). 

Hcy also induces NO depletion, oxidative 

stress, and ERS (5-7). One candidate for the Hcy 

inducible ERS is the PERK signaling pathway which 

is involved in the development of cerebro-vascular 

disease (34). In mammalian cells, PERK is a key 

molecule that regulates UPR-related signal 

transduction pathways. Activation of PERK signaling 

pathway induces the phosphorylation of eIF2α 

(peIF2α), which in turn, inhibits protein synthesis and 

enhances the ER protein-folding capacity. However, 

chronic PERK signaling leads to upregulation of 

ATF4 and CHOP expression (35). Under normal 

 
 

Figure 5. Western blot analysis of p-PERK, p-eIF2α, ATF4, and CHOP. β-actin was used as the loading control. Data are presented as the 

mean ± SD from three independent experiments. *p< 0.05 versus the control (0 hr). #p< 0.05 versus the Hcy group. 
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Figure 6. A. Cell viability was determined by CCK-8 assay. B. The LDH enzyme activity in culture medium was determined by LDH content 

kit. The results are expressed as the means ± SD of three independent experiments. *p< 0.05 versus the control (0 hr). #p< 0.05 versus the 

Hcy group. 

 

 
 

Figure 7. A. TUNEL stained MOVAS cells. Nuclei were stained with DAPI. Scale bar: 20 µm. B-E. Western blotting of Cleaved Caspase-3, 

Bcl-2, Bax, Cytochrome C. β-actin was used as the loading control. *p< 0.05 versus the control (0 hr). 
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conditions, ATF4 allows cells to endure stress, 

however, under persistent stress conditions, ATF4 

induces cell-cycle arrest, senescence or even 

apoptosis (16-19). CHOP, on the other hand, is a 

mediator of apoptosis induced by ERS. Increased 

CHOP promotes the expression of BH3-only 

proteins, Bim and Bax. The transfer of Bax proteins 

to the mitochondria, leads to the activation of 

caspase-3 and apoptosis (36-37). The studies 

carried out here show that in VSMCs, Hcy 

significantly increases the expression of GRP78 and 

GRP94 and while it activates p-PERK and p-eIF2a, it 

does not not increase CHOP expression. However, 

prolonged Hcy treatment enhances the expression of 

both ATF-4 and CHOP and significantly increases 

the rate of apoptosis in VSMCs. Lack of changes in 

TNF-α levels by Hcy and induced changes in 

expression of Bcl-2, Cytochrome c, and BAX are 

consistent with CHOP mediated ERS induced 

apoptosis likely by promoting mitochondrial outer 

membrane permeablization (38). 

One rationle for prevention of Hcy mediated 

vascular damage is to block ERS and subsequent 

apoptosis in VSMCs. Hcy induces ERS through 

PERK signaling. It has been shown that salubrinal, 

which is a selective inhibitor for eIF2a 

dephosphorylation affords protection against ERS 

(39). As shown here, blocking the PERK signaling 

pathway in VSMCs by salubrinal decreased CHOP 

protein expression, increased cell viability and 

decreased VSMCs apoptosis. Together, these 

findings confirm that VSMCs can be protected from 

Hcy induced ERS and subsequent apoptosis by 

blocking the PERK signaling pathway.  
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