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1. ABSTRACT  

In Drosophila melanogaster, in response 

to developmental transcription factors, and by 

repeated initiation of DNA replication of four 

chorion genes, ovarian follicle cells, form an onion 

skin-type structure at the replication origins. The 

DNA replication machinery is conserved from 

yeast to humans. Subunits of the origin recognition 

complex (ORC) is comprised of Orc1, Orc2, and 

Cdc6 genes. While mutations of Orc1 and Orc2 

and not Cdc6can be lethal, overexpression of 

these genes lead to female sterility. Ecdysone, is 

a steroidal prohormone of the major insect molting 

hormone 20-hydroxyecdysone that in Drosophila, 

triggers molting, metamorphosis, and oogenesis. 

To this end, we identified several ecdysone 

receptor (EcR) binding sites around gene 

amplification loci. We also found that H3K4 was 

trimethylated at chorion gene amplification origins, 

but not at the act1 locus. Female mutants 

overexpressing Lsd1 (a dimethyl histone H3K4 

demethylase) or Lid (a trimethyl histone H3K4 

demethylase), but not a Lid mutant, were sterile. 

The data suggest that ecdysone signaling 

determines which origin initiates DNA replication 

and contributes to the development. Screening 

strategies using Drosophila offer the opportunity 

for development of drugs that reduce gene 

amplification and alter histone modification 

associated with epigenetic effects. 

2. INTRODUCTION 

In Drosophila melanogaster, different DNA 

replication systems are used during development 
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(1- 5). During Drosophila oogenesis, endoreplication 

occurs in nurse cells, whereas both endoreplication 

and chorion gene amplification occur in follicle (fc) 

cells (1-5). The amplification of Drosophila chorion 

genes is necessary for eggshell formation, and 

mutations that disrupt amplification, such as those in 

cyclin E, orc2 (6, 7), chiffon (Dbf4) (8), humpty dumpty 

(9), and mcm6, cause female sterility. Orc2, orc5, and 

orc6 mutants have strong S-phase defects (7,10, 11). 

Surprisingly, dE2F1, dDP (12), dE2F2 (13, 14), Rbf 

(15), and the Myb complex (16,17) are necessary for 

this gene amplification process (18,19). We 

previously proposed that chorion gene amplification 

after repeated initiation of DNA replication at the 

origins occurs in response to developmental signals,  

initiated via transcription factors, in ovarian fc cells 

(20).  

Orc1 is a large subunit of the origin 

recognition complex (ORC) and functions as the main 

subunit of the prereplication complex. In Drosophila, 

Orc1 levels are transcriptionally upregulated by E2F 

(21, 22) and downregulated by the anaphase promoting 

complex via proteolysis (23, 24). Neither Orc1 nor Orc2 

in the salivary and ovarian fc cells is required for 

endoreplication (25). In the absence of Orc1, most 

amplification is diminished, whereas if Orc1 is 

overexpressed, DNA replication occurs throughout the 

nucleus. These results suggest that Orc1 is a limiting 

factor at least in some tissues (22). On the other hand, 

endoreplication in Drosophila does not require ORC for 

initiation, demonstrating that ORC-independent DNA 

replication can also occur (25).  

In this study, we investigated where 

initiation of DNA replication begins and what triggers 

it at the chorion gene loci. in Drosophila. we report 

that regulation of signal transduction and DNA 

replication, especially with respect to the ecdysone 

receptor (EcR) and its cofactor TRR (26, 27), a 

histone H3 lysine 4 (H3K4) trimethylase, determines 

Orc1 loading at these loci. 

3. MATRERIALS AND METHODS 

3.1. Fly stocks 

Fly strains were maintained at 25°C on 

standard food. C323a-Gal4 driver and flies harboring 

UAS-EcR isoform transgene were obtained from the 

Bloomington Stock Center. Flies with orc1+-

promoter-Orc1-GFP-9myc, UAS-Orc2-GFP-9myc, 

UAS-Orc1-GFP-9myc, UAS-Cdc6-GFP-9myc, or 

UAS-GFP were from M. Asano (Duke University 

Medical Center). UAS-Lsd1 was a gift from N. Dyson 

(HarvardMedical School, Boston, USA). UAS-Lid and 

UAS-Lid jmjC* were from R.N. Eisenman (Fred 

Hutchinson Cancer Research Center, Seattle, USA). 

Female sterility experiments were performed as 

described previously (28). 

3.2. ChIP assay 

ChIP assays were performed mainly 

according to Kohzaki et al. (29, 30). Egg chambers 

from Orc1-GFP-9myc flies (23) were dissected 

from the ovaries of fattened flies in non-

supplemented Grace’s medium (GIBCO-BRL). 

Formaldehyde was added to a final concentration 

of 2%, and cross-linking was allowed to proceed 

for 15 min at room temperature on a rotator. The 

cross-linking reaction was stopped by incubation 

with glycine at a final concentration of 0.125 mM 

for 5 min. The cross-linked egg chambers were 

washed twice with 1 ml of TBS, then twice with 1 

ml of lysis buffer (30). The egg chambers were 

disrupted by sonication. Sonication and all 

postsonication procedures were performed as 

described previously (30). IgG (ab18413) and Myc 

antibody (9E10)  was used in the ChIP assays. 

EcR and TRR antibodies were described 

previously (26, 27). H3K4me3 (ab8580) and 

H3K4me2 (ab7766) antibodies were purchased 

from Abcam (Cambridge, UK). Primers used were 

the same as those reported previously (29, 30). 

3.3. Microscopy and histology 

Total RNA was isolated using Trizol 

Reagent (Invitrogen). Oligo dT primers and a 

Takara high fidelity RNA PCT kit (Takara, Kyoto, 

Japan) were used for generation of 

complementary DNA. Then, real-time PCR was 

performed using a SYBR Green I kit (Takara) and 

the Applied Biosystems 7500 real-time PCR 

system (Applied Biosystems, Foster City, CA, 

USA). RNA expression efficiencies decreased to 

25% in every case (28).  
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4. RESULTS 

4.1. Orc1 loading  coincides with gene 

amplification locus for Drosophila 

oogenesis 

Steroid hormones, including the 

prohormone ecdysone,  play crucial roles during 

animal development. In Drosophila, ecdysone 

triggers molting, metamorphosis, and oogenesis 

through its effect on the gene expression network 

(28, 31-41). Ecdysone functions by binding to a 

nuclear receptor, EcR (42). EcR heterodimerizes with 

the retinoid X receptor ortholog Ultraspiracle (USP), 

which acts as a general heterodimer partner for the 

class of factors represented by EcR (39, 43-45). This 

heterodimer is required for binding to the ligands or 

their target DNA. The dimer activates EcR response 

gene expression by recruiting co-regulators. TRR, 

which is a histone methyltransferase capable of 

trimethylating H3K4, is required as a coactivator of 

EcR by modifying the chromatin structure at 

ecdysone-responsive promoters (26, 27). Ecdysone 

induces gene amplification at the Sciara coprophila 

DNA puff II/9A (46, 47). 

Recently, we showed that Orc1 binds to 

ace1, ace, and ori-β directly (30) using flies with a 

single copy orc1 promoter orc1+-GFP-9myc 

transgene (Orc1-GFP9myc) (23). In eye imaginal 

disc of this transgenic fly, the behavior of Orc1-

GFP9myc was essentially identical to that of ORC1. 

1. Accumulation of Orc1-GFP9myc prior to CycB in 

late G1 or early S phase, 2. Persistence of both Orc1-

GFP9myc and CycB throughout G2, 3. Removal of 

Orc1-GFP9myc from chromatin during M phase upon 

accumulation of PH3, 4. Disappearance of all three 

antigens (Orc1-GFP9myc, CycB and PH3) upon 

entry into the subsequent G1 (24) but not in ovary, 

especially in follicle cells. We previously showed that 

the transgene expressed in ovary using ChIP assay 

(30). Here we considered this issue using 

microscopes histologically. 

In this Orc1-GFP9myc fly, Orc1-GFP was 

expressed similarly to endogenous Orc1 (Figure 1A 

and C) and localized to fc cells (Figure 1B and D). We 

asked whether response elements are found around 

the gene amplification loci. We detected several EcR 

putative binding sites (Figure 2A). In these fly ovaries, 

we performed a ChIP assay using EcR-C monoclonal 

antibody and TRR polyclonal antibody (26, 27). We 

detected signals at ace3, ori-β, and ace1 (Figure 2B 

and C). The amounts of ace1, ace3, and ori-β PCR 

products obtained using EcR, TRR, H3K4me3, Myc 

(for Orc1) and IgG antibodies relative to those 

obtained using H3K4me2 antibody were 

considerably different (t-test, p < 0.05) (48). Also, the 

amounts of ace1, ace3, and ori-β PCR products 

obtained using EcR, TRR, Tri-Me, and Myc (for Orc1) 

antibodies were not statistically different (t-test, p > 

0.05) (48) (Figure 2). These data suggest that EcR, 

TRR, and Orc1 might form a complex for initiation of 

DNA replication. 

4.2. Epigenetic controls lead to Orc1 

loading at gene amplification loci 

Four EcR isoforms have been isolated (41, 

49), and each has a tissue-specific function during 

development. We overexpressed each EcR in fc 

cells. Overexpression of all EcRs except EcR.B1 led 

to female sterility, but overexpression of the EcR 

mutant F645A, which did not have transcription 

activity, did not (Figure 3A). Therefore, ecdysone 

may regulate gene amplification directly through 

transactivation. 

We next asked whether H3K4 is converted 

to the trimethylated form (H3K4me3) by TRR. TRR 

was identified as a Set domain protein in Drosophila 

and is highly homologous to Drosophila TRITHORAX 

protein and to human ALL-1/HRX. TRR mutants trr1 

and trr3 are embryonic lethal 8 (26). H3K4me3 is 

associated with transcriptionally active genes in 

eukaryotes (50, 51). We checked the localization of 

H3K4me3 around the gene amplification loci. Actin 

5C is transcribed during early embryogenesis, and its 

5’UTR is trimethylated, not dimethylated. We found 

H3K4me3 around ace3, ori-β, and ace1. H3K4 was 

also dimethylated (Figure 2B and 2C). These data 

showed that the gene amplification locus encoding 

genes for choriogenesis is euchromatic. Gene 

amplification was be induced by ecdysone signaling 

(Figure 2B and C). We observed a correlation 

between gene amplification-associated H3K4me3 

and TRR loading in fc cells (Figure 2B and 2C). To 

investigate the biological significance of H3K4me3, 
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we overexpressed H3K4 demethylase Lsd1 or Lid in 

fc cells. Many groups have isolated H3K4 

demethylases and trimethylases in the same species 

(52-60). In Drosophila, Lsd1 is a dimethyl histone 

H3K4 demethylase (58) and Lid is a trimethyl histone 

H3K4 demethylase (61-63). Lsd1 or Lid 

overexpression in females caused sterility (Figure 3A 

and 3B). By contrast, females expressing Lid jmjC*, 

which has a mutation in its active site, or Cdc6 or 

GFP (28) were normal. These data suggest that 

H3K4me3 is essential for gene amplification. 

Orc1 is the key player in initiation because 

it binds to chromatin via its BAH domain and is 

 
 

Figure 1. Distribution of Orc1 and Orc1-3HA-GFP. (A, B) Antibody straining reveals the distribution of endogenous Orc1 using anti-Orc1. (C, 

D) Fluorescent signals from Orc1-GFP9myc driven by the orc1 promoter. This transgene was in a wild-type background. In A and C, 

arrowheads show the morphogenetic furrow (MF) in eye-antennal imaginal discs. MF migrates from the posterior (the left side) to the anterior 

(the right side). Most eye disc cells first undergo one synchronous cell cycle and then enter a prolonged G1/G0 phase. In B and D, dots indicate 

gene amplification loci associated with Orc1 and Orc1-3HA-GFP.  
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degraded in a cell cycle-dependent manner (21, 30, 

35, 64). For functional ORC formation, Orc1 requires 

the Orc core complex, Orc2–5 (9, 29, 65, 66). Orc1 is 

loaded on gene amplification origins (Figure 2A and 

B). These data suggest that developmental signals 

can regulate gene amplification. We speculate that 

gene amplification this reaction is coupled to 

transcription.  

In summary, the data suggest that 

ecdysone signaling determines which origin initiates 

DNA replication (Figure 4). 

 
 

Figure 2. (A) Schematic representation of EcR-binding sites. Asterisks indicate putative binding sites. The USP-binding site was reported 

previously (60-61). (B) Association of EcR, TRR, H3K4me3, H3K4me2, and Orc1-GFPmyc with chorion gene elements in vivo. ChIP assays 

were performed as described in Methods with anti-EcR, anti-TRR, anti-H3K4me3, anti-H3K4me2, and anti-myc antibody. DNA was amplified 

using PCR primers specific to ace1, ace3, ori-β, and act5C 5’UTR as described previously (29) in Figure 2A. These primers were also used 

to amplify DNA isolated from whole cell extracts before immunoprecipitation (WCE). The experiments were repeated to confirm reproducibility. 

The same PCR products were loaded onto separate gels for each primer set. The samples derived from the same experiment and the gels 

were processed in parallel. “– “ was shown that IgG was used as negative control. (C) Quantitation of ChIP assays was performed at the times 

as described (N) using NIH image (Image J). The amounts of PCR products obtained from 10% input of WCE were taken to be equal to 1.0. 

As negative control, IgG was used. As a sample, about ori-β PCR products, the product of EcR, TRR, Tri-Me and Orc1 was compared with 

that of Di -Me. *; T test, p<0.05. The amounts of ace1, ace3, and ori-β PCR products obtained using EcR, TRR, Tri-Me, and Myc (for Orc1) 

antibodies were not statistically different (t-test, p > 0.05). 
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5. DISCUSSION 

5.1. Ecdyson signals could regulate chorion 

gene amplification in Drosophila 

development 

Here, we showed that EcR regulates 

chorion gene amplification through the activity of the 

H3K4 trimethylase TRR. Overexpression of H3K4 

demethylases Lsd1 and Lid, but not the jmjC mutant 

Lid jmjC* (63), led to female sterility. Because EcR, 

TRR (26, 30), and Orc2 mutants experience a growth 

defect before chorion gene amplification, EcR 

signaling may direct gene amplification. The 

heterodimer partner USP was identified originally as 

chorion factor 1, which binds to the chorion s15 cis-

regulatory element (2, 67, 68). This elementincludes 

ori-β and the putative EcR-binding sites (Figure 2A). 

We propose that EcR-USP-TRR binds to the region 

between S18 and ori-β. 

We previously showed that transcription 

factors regulate ORC loading and initiation of DNA 

replication via chromatin modifications in S. 

cerevisiae (69) and Drosophila (30). The initiation 

of gene amplification is linked to histone H3 and 

H4 hyperacetylation and H1 phosphorylation in 

Drosophila (70). Indeed, in Drosophila fc cells, 

binding of Rpd3 or Polycomb proteins to origins 

decreases their initiation activity, whereas binding 

of the Hat1 homolog, Chameau acetyltransferase, 

increases origin activity (1). The assay used an 

artificial technique because of fusing these 

proteins to the Gal4 DNA binding domain. Then, 

the situation in vivo remains unclear. dE2F-dDP-

Rbf interacts with DmOrc and dE2F1, and DmOrc 

binds to chorion gene amplification loci in vivo (15). 

Because the authors did not identify the E2F-

binding site or the mutation disrupting the 

interaction, it is unknown whether they bind directly 

or indirectly. 

EcR isoforms are functionally distinct. 

When early genes are expressed in tissues, the EcR-

A isoform is dominant. The other EcR isoform, EcR-

B1, is the predominant isoform in both the imaginal 

and larval cells of the larval midgut (71). What 

induces differences in expression and function? 

Bender et al. suggested that tissue-specific 

coactivators, such as TRR, may provide the link 

between the transcription machinery for a given gene 

and a particular EcR isoform (31). If this is the case, 

it would be the coactivator that determines which EcR 

isoform is used to activate the gene. These might be 

akin to the plethora of putative coactivators recently 

found for vertebrate nuclear receptors (31, 72) 

(Figure 4). 

 
 

Figure 3. (A) Overexpression of dominant negative forms of EcR 

led to female sterility. Females with the c323a-Gal4 driver were 

crossed with male flies harboring a UAS-EcR isoform transgene (a 

responder). The progeny (males or females) having the indicated 

responder and c323awere crossed with wild-type Canton-S (CS) 

flies. All responders were tested: if no bar is visible, there were no 

progeny with wild-type growth rates and rates of larvae emergence. 

The experiments were performed several times (N). The numbers of 

progeny from CS (male) × c323a expressing EcR families (female) 

are 100% (blue bars in Figure 3A). (B) Overexpression of Lsd1 and 

Lid, but not Lid jmjC*, led to female sterility. Assays were performed 

as described in Figure 3A with flies harboring UAS-Lsd1, UAS-Lid, 

or UAS-Lid jmjC* transgenes. The experiments were performed 

several times (N). The numbers of progeny from CS (male) × c323a 

expressing Lsd, Lid, or Lid jmjC* families (female) are 100% (blue 

bars in Figure 3A).  
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In mammals, many transcription factors are 

proto-oncogenes, including c-Jun, c-Myb, and c-Myc 

(20, 73). Their oncogenicity is thought to be due to 

dysregulation of the transcription that they promote. 

By contrast, we speculate that it is the dysregulation 

of replication caused by the multifunctionality of these 

transcription factors that contributes to their 

oncogenic potential. This speculation is supported by 

previous reports (20, 74). c-Jun homologhas been 

shown to regulate ORC loading in S. cerevisiae (69) 

and a c-Jun ortholog, Gcn4, promotes ORC loading. 

In Drosophila, a myb gene mutant induces a defect 

in S-phase progression in several tissues. c-Myc 

modulates DNA replication origin activity through the 

regulation of Cdc45 loading (74, 75). We previously 

propose that the DNA replication machinery 

contributes to development (28, 77). Changes in the 

space- and time-controlled process of development 

 
 

Figure 4. Schematic representation of the putative mechanism by which ecdysone signals could regulate chorion gene amplification. EcR: 

Ecdyson receptor, USP: RXR ortholog, Ultraspiracle, TRR: Histone H3K4 methyltransferase, ORC: Origin recognition complex 
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can lead to dys-regulated DNA synthesis, checkpoint 

activation, genomic instability, and/or cell death. 

In America, 12.1% of women aged 15–44 

have impaired fecundity and 7.3 million (12.0%) have 

never used infertility services, and 6.7% of married 

women aged 15–44 are infertile (77). 

The life cycle of Drosophila is short. 

Screening strategies using these flies could 

potentially lead to the development of drugs for the 

treatment of sterility. 
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