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1. ABSTRACT 

Circulating tumour cells (CTCs) are shed 

into the bloodstream from both primary and 

secondary tumours and provide a non-invasive 

means to study tumor progression and response to 

treatment. Assessment of ribonucleic acid (RNA) and 

monitoring dynamic changes in gene expression 

profiles of CTCs extends their clinical and prognostic 

power and establish their role in guiding treatment. 

Among these methods, droplet digital (RT-ddPCR) 

technique provides a high sensitivity and detectibility 

of CTCs. RNA-sequencing (RNAseq) is the most 

comprehensive method, that would allow the 

simultaneous measurement of a large number of 

genes and theoretically the whole transcriptome. 

Since CTCs are heterogeneous in nature, single cell 

RNAseq methods are very valuable in assessing 

population dynamics and functional states of CTCs. 

While RNA in situ hybridization (RNA-ISH) is used 

relatively less frequently, it also allows for the 

assessment of expression of multiple genes within 

individual CTCs. Epithelial to Mesenchymal 

Transition (EMT) or Plasticity (EMP) is a major 

contributor to metastasis, providing a mechanism to 

allow cells to become migratory and invasive, and to 

survive in the bloodstream. Monitoring CTCs 

undergoing EMT may lead to improvement in their 

prognostic and predictive power. Here, we review 

various RNA analysis of CTCs and those that 

undergo EMT and their application in diagnosis, 

prognosis and treatment of cancers. 

2. INTRODUCTION 

Metastases are the cause of 90% of 

cancer-related deaths (1-4). Circulating tumour cells 

(CTCs) were identified for the first time in blood in 

1869 by the Australian surgeon Dr Thomas Ashworth 

(5). CTCs can enter the blood stream from either the 

primary tumour or secondary deposits (Figure 1). If 

they survive the unfavourable conditions in the 

vascular system, they can reach a new site where 

they may remain dormant for many years before 

establishing clinically significant metastases. 

Elevated CTC numbers quantified by a variety of 
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methods have been linked with poor clinical 

outcomes in many tumour types (6-10). CTCs may 

be present in the blood as either single cells or as 

clusters, of which clusters are more highly prognostic 

and more efficient at producing viable metastases 

when harvested (11, 12). 

Tumour biopsy, the gold standard in cancer 

diagnostics, is an invasive method for studying 

tumour cells, and is restricted to certain anatomical 

sites and larger deposits. By contrast, liquid biopsies 

that access CTCs and/or circulating tumour DNA 

(ctDNA) arising from all tumour deposits provide an 

opportunity for more comprehensive understanding 

of the molecular characteristics of metastatic 

deposits that may otherwise be sampled (13). 

However, it is not possible to prospectively attribute 

CTCs/ctDNA to a specific tumour deposit. Despite 

this caveat, CTCs have a potential role as diagnostic, 

prognostic and/or predictive markers (14). 

CTCs can be distinguished from blood cells 

using techniques based on their physical and/or 

molecular characteristics. Such physical 

characteristics include size, shape and deformability, 

while molecular characteristics include surface 

markers, RNA profiles, and DNA mutations (15). The 

major obstacles in effective identification of these 

cells are their heterogeneity and relatively small 

number in the blood among a high background of 

other cells (potentially including normal epithelial 

cells). 

Currently, CellSearchTM is the only 

instrument approved by the USA Food and Drug 

Administration for identifying CTCs. Antibodies are 

 
 

Figure 1. Role of epithelial mesenchymal plasticity in metastasis. It is proposed that a proportion of cells in the primary tumour alter their 

anchored state by undergoing a process known as EMT. Based on in vitro studies of EMT, it is thought that this facilitates tumour cell migration 

through stroma and intravasation into blood vessels where the tumour cells circulate in the blood as CTCs. EMT provides a mechanism that 

enables cells to resist anoikis and apoptosis and thus is likely to support CTC persistence in the harsh physical environment of the vasculature 

which lacks anchorage-dependent survival signals. EMT-positive CTCs are also better equipped to escape the blood vessels (extravasate), 

and give rise to new metastatic deposits. If they have the ability and receive relevant stimuli to undergo MET, they can again become more 

epithelial in nature and proliferate to form a new colony. Recent reports also suggest that some CTCs remain epithelial, or predominantly 

epithelial, and do not go through EMP cycles of EMT and MET. The different colours and shapes of cells in the diagram depict EMP 

heterogeneity of these cells. CTC, circulating tumour cell; EMP, epithelial mesenchymal plasticity; EMT, epithelial mesenchymal transition; 

MET, mesenchymal epithelial transition. 
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used for detection by immunocytochemistry (ICC), 

however fixation in the CellSearchTM method reduces 

the viability of these CTCs for further analyses such 

as culture. The CellSearchTM system separates 

epithelial CTCs from other cell types using immuno-

magnetic beads conjugated to antibodies against the 

epithelial marker EpCAM, and then assesses the 

phenotype of the cells using antibodies to the 

epithelial cytokeratins 8, 18 and 19, and CD45 (9). 

CD45 is used to identify contaminating 

haematopoietic cells such as lymphocytes. Thus a 

cell must be CD45- and EpCAM/cytokeratin+ to be 

classified as a CTC. However, this technique only 

identifies a subset of CTCs in the sample since the 

restricted profiling does not recognise the full 

spectrum of heterogeneous phenotypes of CTCs 

(16). CTCs may have low EpCAM expression level 

and assays that use antibodies against EpCAM miss 

a significant proportion of CTCs (17). In addition, 

some non-tumour epithelial cells, which express 

EpCAM and cytokeratin, may also be present in the 

blood (18). Despite these caveats, there are a large 

number of studies that demonstrate the high 

prognostic value of CTC numbers as measured by 

CellSearchTM in numerous cancer types (7, 8, 19, 

20). 

Epithelial to mesenchymal plasticity (EMP) 

or transition (EMT) of in CTCs has been reviewed 

extensively (21-23). During this process, epithelial 

cells can modify their architecture to attain a 

mesenchymal phenotype (24) - an intimately 

controlled process vital in wound healing, 

embryogenesis and maintaining homeostasis (24). 

EMT in carcinoma cells results in cells going through 

a number of morphological and biochemical changes 

to become more mesenchymal in nature. These 

changes cause reduced cell adhesion to the 

neighbouring cells and increased motility in cells, 

assisting them to disseminate from the primary 

tumour and move to other parts of the body (25). 

When tumour cells reach another site, the reverse 

process of mesenchymal epithelial transition (MET) 

is required to enable the cells to re-acquire their 

epithelial state and colonise the metastatic site. The 

mesenchymal state is typically a transient state and 

sometimes associated with reduced proliferation. 

Thus the re-acquired epithelial state allows the 

cancer cells to proliferate at the new location (26). 

Increased invasiveness, motility, loss of cell polarity, 

resistance to therapy and survival in unfavourable 

conditions are all attributes of tumour cells that have 

undergone EMT (27-29). Each of these events 

promote metastasis and formation of secondary 

tumours (30). Thus EMT has been proposed to be 

one of the inceptive steps of metastasis (31). 

Although this dogma was recently challenged (32), a 

number of refutations and rationalisations have 

subsequently demonstrated that detecting EMT 

during the metastatic process is contingent on the 

experimental models employed and the specific 

technical approaches utilised (27, 33, 34). 

It is unusual for cancer cells to go through 

complete transition to a fully mesenchymal state. 

Rather, it is more common to find epithelial-

mesenchymal hybrid cells representing intermediate 

states on the epithelial-mesenchymal axis (Figure 1) 

(35-38). This plasticity is now considered a hallmark 

of metastasis (39). Hybrid EMT states have been a 

focal point of discussion regarding metastasis 

recently (37, 40, 41), and a number of laboratories 

are using both epithelial and mesenchymal markers 

in their assays to enable detection of various CTC 

phenotypes along the epithelial-mesenchymal axis 

(27, 34, 42). Investigations into the driving forces and 

mechanisms behind these changes may lead to 

better ways of diagnosing and treating cancer using 

new targets (43). It is unlikely that current studies 

have defined all the mechanisms involved in 

triggering EMT, but a number of signalling pathways 

have already been implicated in this process (44, 45). 

An early study of EMT in CTCs used 

magnetic bead separation to isolate cells of interest 

in parallel to CellSearch™ (46). Epithelial CTCs were 

first obtained using anti-CD326 (EpCAM)-coated 

magnetic beads, after which non-epithelial cells were 

enriched by using CD-45-antibody depletion to 

remove white blood cells. They found TWIST1 and/or 

SNAIL1 mRNA transcripts were detected in the 

epithelial-like CTCs from 82% of patients, and 

SNAIL1 and ZEB1 transcripts were detected in the 

mesenchymal-like CTCs in 60.7% of patients. 

Clinical specimens with no detectable CTCs using 

CellSearchTM were found to have mesenchymal 

CTCs using this approach, demonstrating the 

selectivity of the CellSearchTM system to isolate only 
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a proportion of total CTCs in a sample (46). 

Consistent with this, recent studies using a variety of 

non-CellSearchTM techniques have identified both 

EpCAM-positive and -negative subpopulations of 

CTCs within individual patient blood samples (38, 

47), however only the EpCAM+ component has 

proven to be prognostically important (48). 

Consistent with this, previous research 

showed no prognostic value of EMT gene expression 

in peripheral blood from prostate cancer patients, 

despite CTC enumeration having reasonable inverse 

correlation with overall survival (OS) (49). This study 

also found that some patients with low CTC numbers, 

and thus predicted to have a good prognosis, re-

presented with disease progression. However this 

study used the CellSearchTM system for CTC 

isolation, which will have missed CTCs that were 

further along the EMT axis with very low or no 

EpCAM expression. These findings emphasise the 

need to use additional / alternative CTC isolation 

approaches for comprehensive coverage. There is a 

crucial need to identify more CTC-associated 

biomarkers that can be efficiently used to identify and 

isolate CTCs (50, 51). Plastin3 is one such protein, 

the expression of which is not altered by EMT in 

colorectal cancer cells (52). Analogously, VAR2CSA 

malaria protein has been used to isolate CTCs from 

hepatic, lung, pancreatic, and prostate carcinoma 

patients due to its binding to a cell surface onco-foetal 

form of chondroitin sulfate proteoglycan that remains 

unaffected by EMT in cancer cells (53). 

3. BEYOND ENUMERATION: RNA 

ANALYSIS OF CTCS 

Tumour cells undergo phenotypic changes, 

driven by alterations at the genetic and transcriptomic 

level, that may allow them to escape the primary 

tumour and/or survive as CTCs. Various studies have 

explored changes in RNA expression profiles of 

tumour-associated genes in patient-derived samples 

to shed light on the underlying mechanisms in 

tumourigenesis (54-57). RNA expression has also 

provided important insights into the nature, 

heterogeneity and potential functionality of CTCs 

(Table 1). RNA analysis has been used to gain a 

better understanding of the molecular drivers of 

tumourigenesis and metastasis. In particular, we will 

provide examples of RNA studies pertaining to EMT. 

4. METHODOLOGIES FOR RNA STUDIES 

Various methods have been used for RNA 

detection and quantification in CTC studies (Figure 2, 

Table 2). These usually allow interrogation of multiple 

markers. In some cases, multiple techniques are 

used simultaneously to ensure that the cells being 

examined are indeed cancer cells. For instance, 

assessment of physical properties and RT-qPCR 

analysis of gene transcripts can be used on the same 

samples to supplement each other in order to reduce 

the chances of inadvertently analysing non-CTCs in 

a given sample (i.e. false positives) (42, 64). 

4.1. RT-qPCR 

RNA amplification using reverse 

transcriptase-quantitative polymerase chain reaction 

(RT-qPCR) has historically been the most frequently 

used technique for monitoring gene expression in 

CTCs and metastatic tumours in clinical research 

studies. Since RNA needs to be first obtained and 

purified from intact cells, the workflow starts with a 

cell lysis step. Purified RNA is reverse transcribed 

and the resultant cDNA is assessed by quantitative 

PCR (qPCR). A droplet digital PCR (ddPCR) has also 

been used on reverse transcribed CTC RNA (65) 

whereby the samples are divided into smaller 

reactions within lipid droplets, allowing cDNA from 

one cell to be independently quantified, increasing 

the reliability of the results. This technique has 

enabled detection of CTC-derived RNA transcripts in 

early stage localised cancer patients having very low 

CTC numbers that could otherwise be easily missed 

(54). However, only one gene can be quantified at a 

time and assays with multiple genes are time 

consuming and costly. 

RT-qPCR is a robust platform to quantify 

gene expression, used widely on tumour biopsy 

samples and in CTC pre-clinical, and clinical studies. 

It is a gene-specific platform with high sensitivity and 

is cost-effective compared to other RNA detection 

methodologies (66). Since CTCs are so rare in the 

blood amongst a large background of other cells, 

amplification of RNA plays a significant role in 

accurate detection of signal. The cDNA produced 
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during reverse transcription is in such minute 

quantities that a pre-amplification step is quite 

common before the individual assessment of genes 

in the final qPCR or ddPCR reaction (54, 55). 

The expression of EMP-associated 

epithelial and mesenchymal genes in CTCs isolated 

from breast cancer patients identified using RT-

qPCR has demonstrated that the EMT shift in CTCs 

does not always correlate with that of their originating 

tumours, emphasising the need for separate 

examination of these potential circulating seeds of 

metastasis (47). It has been observed that CTCs 

have gene expression profiles more similar to 

metastases than their primary tumours. In a 

prospective study on metastatic colorectal cancer 

patients using a 34 gene RT-qPCR assay, the 

majority of patients (74%) had CTC gene expression 

profiles more similar to the metastatic deposits than 

to their primary tumours (61). In another study, CTC 

RNA isolated from HER2-positive metastatic breast 

cancer patients was subjected to RT-qPCR analysis  

Table 1. Clinical studies that have investigated RNA in CTCs  

Cancer type  Key findings/ observations  Reference  

Breast cancer Identification of patients non-responsive to ER suppression treatment, using quantitative 

CTC-derived ER signalling. 

(54) 

Breast cancer No correlation between expression of EMT-inducing transcription factors TWIST and 

SLUG in primary tumour tissue and CTCs.  

(47) 

Breast cancer Presence of mesenchymal-like CTCs is associated with OS and hybrid CTCs, expressing 

both epithelial and mesenchymal marker genes, are associated with poor clinic-

pathological characteristics.  

(58) 

Breast cancer Presence of mesenchymal-like CTCs is associated with disease progression. EMT is a 

dynamic state of CTCs that can vary at different time points during therapy with a strong 

correlation with therapy response and disease progression.  

(40) 

Breast cancer CellSearchTM System potentially misses CTCs that have undergone EMT and lost EpCAM 

gene expression.  

(46) 

Breast cancer Individual CTC analysis is possible and elevated levels of EMT-associated genes 

observed in these cells.  

(59) 

Breast cancer Gene expression profiles of CTCs are very heterogeneous. RT-qPCR has higher 

sensitivity than CellSearchTM but needs validation using a larger patient cohort.  

(60) 

Colorectal cancer RNA expression of CTCs is more similar to metastases than primary tumours. (61) 

Liver cancer CTC gene signature enables lineage-specific detection. Patients suffering from HCC can 

be distinguished from patients with other cancers and liver diseases. 

(57) 

Melanoma Monitoring of treatment response using CTC scoring is highly consistent with clinical 

assessments, and can recognise patients who would respond to immune checkpoint 

inhibition therapy. 

(55) 

Pancreatic cancer  Upregulation of WNT genes in CTCs may contribute to metastasis and these signalling 

pathways can be potential therapeutic targets.  

(62) 

Prostate cancer An increase in expression of EMT-associated genes and decrease in expression of 

epithelial-associated genes in patients after initiation of radiotherapy. 

(42) 

Prostate cancer CTC derived signature is informative of cancer cell dissemination in localised cancer and 

response to abiraterone in metastatic disease. 

(56) 

Prostate cancer Androgen deprivation therapy activates noncanonical WNT signalling in CTCs, which 

plays a role in therapy resistance.  

(63) 

Prostate cancer Expression of EMT-associated genes in CTCs may play a role in the development of 

castration resistant prostate cancer.  

(64) 

RNA-based CTC studies have been conducted for a number of cancers to date, and have uncovered a number of key players in cancer 

dissemination and metastasis. A number of key findings published between 2011 and 2018 have been summarised, with a focus on EMT 

observations. CTC: circulating tumour cell; EMT, epithelial mesenchymal transition; ER, Oestrogen Receptor; HCC, hepatocellular 

carcinoma; OS, overall survival. 
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Figure 2. Schematic workflow of techniques used for RNA-based analysis of CTCs. (a) After initial CTC isolation, cells can either be analysed 

individually or as a population. Individual cell studies include RNA-ISH and single cell RNAseq. Population based studies include RT-PCR and 

RNAseq. (b) RNAseq: RNA isolation is followed by reverse transcription. The cDNA is then fragmented to form a cDNA library and sequenced. 

(c) RT-PCR: Similar to the initial RNAseq workflow, RNA isolation is fol lowed by cDNA preparation. This cDNA is either quantified using qPCR 

or using ddPCR, in which case the input sample is first dispersed into 20,000 lipid droplets, amplified and then fluorescence detected. (d) RNA-

ISH: CTCs are fixed and cytospun onto slides followed by permeabilisation. CTC RNA is then hybridised using fluorescently labelled nuclear 

probes and imaged under a microscope. 
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to identify RNA levels of transcription factors that 

induce EMT and some stem cell-associated features 

(46). Despite a small patient cohort, an association 

between EMT transcription factors (TWIST1, 

SNAIL1, ZEB1, and TG2) and clinical outcomes was 

reported. Interestingly, no association was found 

between the EMT transcription factors and cancer 

stem cell markers (CD24, CD44, and CD133). On 

similar lines, Chang et al. used RT-qPCR on 

circulating RNA in prostate cancer patient blood 

Table 2. Characteristics of selected RNA-based CTC clinical studies 

Study 

year 

Cancer type Enrichment 

method 

Detection 

method 

Tumour 

stage 

Localised/metastatic Patient 

number 

NHV Reference 

2018 Breast 

cancer 

Microfluidic CTC-

iChip 

RT-ddPCR I-IV Localised and 

metastatic 

120 33 (54) 

2018 Breast 

cancer 

Density gradient 

centrifugation and 

anti-CD45 immuno-

magnetic bead 

depletion 

RT-qPCR I-III Localised 83 22 (58) 

2015 Breast 

cancer 

RosetteSep™ 

negative selection 

kit 

RT-qPCR I-III Localised 102 60 (47) 

2013 Breast 

cancer 

HbCTC-Chip RNAseq and 

RNA-ISH 

NA Metastatic 41 5 (40) 

2012 Breast 

cancer 

Ficoll-hypaque 

density gradient 

and negative 

selection using 

antibodies 

RT-qPCR NA Metastatic 28 20 (46) 

2012 Breast 

cancer 

MagSweeper RT-qPCR NA Localised and 

metastatic 

50 90 (59) 

2011 Breast 

cancer 

Dynabeads® 

Epithelial Enrich, 

Invitrogen, 

CellSearchTM 

RT-qPCR I-IV Localised and 

metastatic 

92 28 (60) 

2016 Colorectal 

cancer 

CellSearchTM 

System 

RT-qPCR II-IV Metastatic 133 NA (61) 

2017 Liver cancer Microfluidic CTC-

iChip 

RT-ddPCR NA Localised and 

metastatic 

63 26 (57) 

2018 Melanoma Microfluidic CTC-

iChip 

RT-ddPCR III-IV Metastatic 82 36 (55) 

2012 Pancreatic 

cancer 

HbCTC-Chip RNAseq NA Metastatic 21 10 (62) 

2018 Prostate 

cancer 

CellCollector® RT-qPCR NA Localised 

 

108 36 (42) 

2018 Prostate 

cancer 

Microfluidic CTC-

iChip 

RT-ddPCR I-IV Localised and 

metastatic 

88 39 (56) 

2015 Prostate 

cancer 

CellSearchTM 

System 

RT-qPCR NA Metastatic 70 20 (49) 

2015 Prostate 

cancer 

Microfluidic CTC-

iChip 

RNAseq NA Localised and 

metastatic 

38 NA (63) 

2013 Prostate 

cancer 

Size-based filtration RT-qPCR NA Localised and 

metastatic 

9 NA (64) 

NA, not available; NHV, normal healthy volunteer; RNA-ISH, RNA- in situ hybridisation; RNAseq, RNA sequencing; RT-ddPCR, reverse 

transcriptase-droplet digital polymerase chain reaction; RT-qPCR, reverse transcriptase-quantitative polymerase chain reaction. 
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samples to identify EMT marker transcripts (TWIST1 

and vimentin) (49). Some stem cell genes (ABCG2, 

PROM1 and PSCA) were also investigated. Although 

expression levels of stem cell-associated genes 

correlated well with OS, EMT-associated genes did 

not. The inconsistency in results between the 

Giordano (46) and Chang (49) studies may be 

attributed to the method of RNA acquisition; 

Giordano and colleagues performed RNA isolation 

from enriched CTC fractions while Chang and 

colleagues used blood-borne RNA. 

Another RNA analysis study in prostate 

cancer of 17 genes involved in tumour progression, 

including those associated with EMT (GDF-15), 

prostate biology, hormone regulation, stemness, 

tumour aggressiveness and taxane responsiveness, 

was performed using RT-qPCR on isolated CTC 

samples from peripheral blood of patients and 

healthy volunteers (50). White blood cell background 

was removed by CD45 normalisation of the data. A 

correlation between expression of the 17-gene panel 

with OS of patients was reported. 

RT-qPCR technology has also been shown 

to be suitable for single cell analysis. Sieuwerts and 

co-workers were able to quantify RNA in as little as 

one cell using a 94 gene assay, which comprised 

genes having high expression in breast cancer cells 

and low in white blood cells (67). They also 

incorporated genes in their assay that were known to 

have high transcription levels in the background cells, 

but later they reduced the number of genes in their 

assay to only those that had higher expression in 

breast cancer cells and either no or low expression in 

leukocytes, since high levels of contamination were 

observed in the CTC-enriched blood fractions. 

4.2. RNA-ISH 

Another technique used to study gene 

expression profiles is RNA-in situ hybridisation (RNA-

ISH) (68). This technique, not widely used for CTC 

detection to date, allows observation of RNA 

localised in intact cells using tagged nucleic acid 

probes. This means RNA expression of single CTCs 

and individual clusters can be observed without 

denaturing the cells, and since RNA-ISH does not 

require antibodies it potentially provides an 

opportunity to measure transcripts for which there is 

no antibody or are not translated (e.g. miRs, long 

non-coding RNA). Furthermore, the capacity to 

combine RNA transcript measurement with visual 

observations of morphology and/or protein 

localisation by immunocytochemistry is powerful. In a 

breast cancer study conducted by Yu et al., cells that 

had more mesenchymal gene expression appeared 

more elongated than those with high expression of 

epithelial genes (40). 

RNA-ISH can also be used without 

enrichment, which means it reduces the number of 

steps involved and the chances of losing CTCs 

during processing. CTCscope, a method relying on 

RNA-ISH, can be used for CTC detection without 

using a prior enrichment step with sensitivity up to a 

single RNA molecule (69). The presence of white 

blood cells in the sample does not obstruct the results 

due to high sensitivity of the assay. The CTCscope 

assay comprises of epithelial markers including CK8, 

CK18, CK19, epidermal growth factor receptor 

(EGFR) and EpCAM, as well as mesenchymal 

markers including N-cadherin, fibronectin and 

TWIST1. Interestingly, vimentin, a strong EMT 

marker, was removed from their panel since several 

blood cell types express it. Some strong epithelial 

markers (cytokeratin 5 and 6) were also removed 

owing to the same issue. CTC detection by 

CTCscope and CellSearch™ both predicted 

progression-free survival (PFS) in patient blood 

samples in this study. On the downside, it was shown 

that CTCscope only detected RNA from CTCs that 

were live at time of assessment, therefore CTC 

numbers detected by this method were less than 

those detected by CellSearch™ (69). 

Similar to CTCscope, Yu et al used a dual-

colorimetric RNA-ISH assay coding approach to 

observe the extent of EMP in cells, using a single 

fluorescent marker for a pool of probes targeting 7 

epithelial-associated genes (EpCAM, CDH1 and 5 

keratins) and a different fluorescent marker for the 3 

selected mesenchymal-associated genes (FN1, 

SERPINE1 and CDH2) (40). An association between 

enrichment of mesenchymal transcripts in CTCs and 

breast cancer progression was reported (40). Similar 

results with distinct EMT populations were observed 

in CTCs and CTC clusters in metastatic breast 
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cancer samples cultured by Khoo et al (70). Since 

this technique allows observation of intact cells, it has 

also allowed detection of native, undisturbed CTC 

clusters expressing EMT regulator genes. A 

correlation was observed between disease 

progression and CTC number as well as EMT status 

of CTCs in a 5 patient cohort comparing pre- and 

post-treatment samples. More CTCs were observed 

when the patient was not responding to therapy 

compared to those obtained when therapy was 

effective. Interestingly, the number of mesenchymal 

CTCs identified was also greater than epithelial ones 

in this study (40). An association was also observed 

between mesenchymal marker expression and CTC 

clusters. 

4.3. RNAseq 

Since CTCs are so rare in abundance, 

platforms that have the sensitivity to sequence 

samples with low quantity or single cells are of great 

interest. RNAseq is a robust and accurate technique 

used to study global RNA expression levels in CTCs. 

It is a very comprehensive method since a large 

number of genes can be analysed simultaneously. 

Unlike RNA-ISH this process requires cell lysis, so 

RNA localisation to specific cells cannot be observed. 

Similar to the initial steps for RT-qPCR, RNA is 

converted into cDNA in the first step of the 

experiment. Next, cDNA is fragmented to form a 

cDNA library which is sequenced using any of the 

available sequencing platforms. A pre-amplification 

step, typically comprising of 12-18 cycles, is also 

sometimes used before sequencing the cDNA to 

enhance the detection capabilities of the sequencing 

system (71). 

RNAseq can either be performed on 

individual CTCs (single cell RNAseq) or on a total 

CTC population assay to give an average overall 

gene expression of the cells. Single cell RNAseq has 

been able to verify the hypothesised molecular 

diversity of CTCs and identify subpopulations of 

CTCs with varying gene expression even from the 

same patients at the same time point (59). RNA-Seq 

of CTCs has been widely used and has proven useful 

in extracting large amounts of data from single cells 

(63, 72), including the identification of signalling 

pathways involved in EMT (40). Single cell RNAseq 

of melanoma CTCs was able to uncover single 

nucleotide polymorphisms (SNPs) and mutations, 

such as a SNP in TYR gene, which can play a pivotal 

role in targeted therapy. Downregulation of genes 

that play a key role in evading immune surveillance, 

including TRPM1 and five HLA genes, was also 

observed along with increased proliferation and 

invasive potential due to loss of CDH1 (71). RNAseq 

has also been used to supplement whole genome 

sequencing to provide a comprehensive examination 

of the genetic / gene expression profiles of CTCs 

(73). However, it also suffers from amplification bias 

and has reduced sensitivity towards low transcript 

levels (74). Since CTC populations are 

heterogeneous in nature, pooled expression profiles 

can mask the heterogeneity of these cells resulting in 

an averaged overall expression pattern that might not 

be representative of significant components of the 

cell population. This approach obscures the 

identification of rare cells with distinct gene 

expression that might have special properties (e.g. 

EMP, survival, apoptosis, and invasive/metastatic 

abilities). 

In summary of the above-mentioned 

detection techniques, molecular investigation of 

CTCs has the ability to provide us with a wealth of 

information. Improvements in isolation technologies 

and detection methods have enabled a more 

comprehensive analysis however, the field still 

remains open to further developments (16) (Table 3). 

CTCs are highly heterogeneous in nature making 

their characterisation complicated. In a study 

conducted on CTCs isolated from 108 prostate 

cancer patients using CellCollector® and analysed 

using RT-qPCR, 70.5% of the patient samples 

expressed at least one of the 14 genes in their assay, 

with vimentin being the most common (42). In the 

same study, while only 7.4% of the patients’ blood 

samples expressed EMT markers (vimentin and/or 

TWIST1) prior to commencing therapy, 63% of 

patient samples expressed EMT markers post-

therapy, and CTC epithelial marker expression 

drastically decreased after initiation of therapy (from 

48.1% to 7.4% of patient samples). Certain EMT-

related genes, including WNT5A, have been 

observed to be more commonly expressed in CTCs 

isolated from men with castration-resistant prostate 

cancer compared to castration-sensitive cancer (75). 
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Identifying these gene expression patterns in the 

beginning of a new treatment regimen might be 

useful in therapy selection and in flagging the 

emergence of therapy resistance at an earlier stage 

(64). 

5. CTC-RNA SIGNATURES 

It is envisaged that digital molecular CTC 

signatures can be established for cancer patients 

based on gene transcript levels of CTCs, and that 

these can be used for monitoring cancer progression 

and treatment response. Whilst it is attractive to 

develop a universal scoring methodology that can be 

applied to all types of cancers, due to high variation 

between organs it is likely that this would have to be 

customised to the tumour type. Currently, CTC-RNA 

signatures have been proposed for melanoma, breast, 

liver and prostate cancers (54-57). The CTC 

signatures are comprised of a panel of genes that are 

virtually not expressed in hematopoietic cells, and are 

either organ-specific or tumour-specific. Based on an 

assigned threshold, the numerical CTC scores can 

predict high or low disease burden. Upon serial 

monitoring, an increase or decrease in CTC score 

correlates with treatment response based on previous 

CTC number observations for the individual patient 

(40). However, sensitivity of assays to detect CTCs 

against a high background of other cell types is still a 

major obstruction in effective disease monitoring. 

In a prospective treatment cohort of 

hepatocellular carcinoma (HCC) patients, 56% of 

patients that had not yet started treatment had 

positive CTC scores as compared to only 28% of 

those that had already commenced therapy. The 

false positive rate in the control cohort was 7.6%. 

This assay also had the capacity to distinguish liver 

cancer patients from numerous other cancers at an 

88% positive rate with 50% sensitivity. This proof of 

principle study demonstrated the utility of CTC scores 

in follow-up studies. A post-surgery decrease in CTC 

score was observed in the two patients following their 

operation. Similarly, another patient had a decrease 

in CTC score following immunotherapy that was 

associated with a reduction in tumour size as 

measured by computed tomography scan, and which 

further reduced after tumour radioembolisation. 

These tantalising case reports require follow up in 

larger cohorts in which CTC score is monitored in 

conjunction with therapeutic responses. A caveat for 

this approach is that clinical utility is restricted to 

patients with an initial positive CTC score. In this 

study, almost half the patients had a negative CTC 

score and thus would require a method that has 

higher sensitivity if such an approach were to be 

widely implemented (57). 

A similar approach was used in a pilot study 

involving prostate cancer patients (56) . The majority 

(92%) of metastatic prostate cancer patients had a 

positive CTC score. However, due to the stringent 

threshold required to robustly discriminate CTCs 

from blood cells, none of the patients with localised 

cancer had a positive score even though low levels 

of signal were observed for a few genes. 

Interestingly, increased CTC scores in follow-up 

studies for this patient cohort correlated well with 

poor OS. On the contrary, neither CTC score nor 

prostate specific antigen (PSA)-positive CTC signal 

correlated with serum levels of the gold standard 

biomarker protein PSA. 

Table 3. Pros and Cons of RNA-based CTC detection methods  

Method Pros Cons 

RNA-ISH Intact cells used, individual cell assessment, can observe 

CTC clusters, prior CTC enrichment not required 

Only detects cells live at fixation, non-specific binding, 

number of genes detected restricted because of 

dependency on fluorescent channels  

RT-PCR High sensitivity, high specificity, simultaneous investigation 

of multiple targets, easy workflow, low cost  

Illegitimate detection of signal from blood cells, only 

population analysis, requires CTC enrichment and lysis  

RNAseq Largest number of genes investigated simultaneously, 

high sensitivity, low technical variability, single cell RNA 

assessment possible  

Highly sensitive to degraded RNA, requires computational 

analyses and bioinformatic workflows, requires CTC 

enrichment and lysis  

CTC, circulating tumour cell; RNA-in situ hybridisation; RNAseq, RNA sequencing; RT-qPCR, reverse transcriptase-quantitative 

polymerase chain reaction. 
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CTC scoring in melanoma patients also 

suggests potential for clinical utility (55). A 19 gene 

assay was applied for which 86.7% of the enriched 

patient blood samples had signal for at least one 

gene. The baseline CTC score (high or low) was 

observed to have no correlation with clinical 

characteristics, PFS, OS, or time to next systemic 

therapy. However, change in CTC score over time 

was clinically significant, as patients with an increase 

in CTC score had poorer PFS as compared to those 

with reduction in CTC score over the course of 

therapy. 

The ability of a prognostic marker to discern 

treatment outcomes at early stages of cancer is of 

greatest priority however the relatively low 

abundance of CTCs at this stage, especially in 

localised cancers, poses a hindrance to efficient early 

detection. CTC scoring in early stage localised breast 

cancers has been of low utility, despite having strong 

predictive value for stage IV metastatic patients (54). 

At 100% sensitivity, the specificity of the assay to 

detect CTCs was 19% for stage I, 36% for stage II, 

58% for stage III and 67% for stage IV patient 

samples. Stage IV patients also showed a correlation 

between change in CTC score over the course of 

therapy and treatment outcome. 

CTC scores are proposed to have the 

ability to discern whether patients will respond to 

treatment and may have clinical utility once further 

validated in larger, independent cohorts. Numerical 

CTC scoring has the potential to make a valuable 

contribution in the context of personalised medicine. 

6. CONCLUDING REMARKS 

In summary, RNA-based analysis of CTCs 

is feasible and can uncover the underlying 

heterogeneity of these cells and mechanisms that 

might be involved in tumour cell dissemination. 

However, currently no gold-standard method is 

available and RNA studies remain challenging due to 

low RNA yield and quality despite various 

improvements in detection techniques. Cell necrosis 

and RNA degradation greatly hamper accurate 

computational analysis (76). Since most cancer 

related deaths are attributed to metastasis, it is 

critical to conduct studies that can elucidate the 

heterogeneity of CTCs and their originating tumours 

to be able to understand why certain cells are able to 

escape the primary deposit and form metastases, 

while others are not. In an era of many new treatment 

regimens being available there is a growing need to 

be able to identify at an early stage which treatment 

might be most suitable for an individual. CTC 

measurements can contribute to personalised 

medicine, provided precise and early detection is 

feasible and cost-effective. 
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