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1. ABSTRACT 

Phosphatidylinositol-3 kinase-related kina-

ses (PIKKs) is a class of six unique serine/threonine 

kinases that are characterized as high molecular 

mass colossal proteins present in multicellular 

organisms. They predominantly regulate the 

innumerable eukaryotic cellular processes, for 

instance, cell-signaling cascades related to DNA 

damage and repair, cell growth and proliferation, cell 

cycle arrest, genome surveillance, gene expression 

and many other important yet diverse functions. A 

characteristic PIKK member comprises of an N-

terminal HEAT domain, followed by FAT domain, a 

highly conserved kinase catalytic domain, and a C-

terminal FATC domain. In this comprehensive 
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review, we reassess and discuss various established 

functions of all the six PIKK members with each 

function corroborated by their structural topology. In 

addition to the domain architecture of these atypical 

kinases, their specific inhibitors have been briefly 

deliberated. This review gives us the impression of 

the emergent importance of PIKKs, which, despite of 

their complexity, are the hub of research with respect 

to the inhibitor development. 

2. INTRODUCTION 

A human body comprises of ~1013 cells 

and these cells undergo thousands of DNA 

(deoxyribonucleic acid) damaging events leading 

to the formation of DNA lesions which can further 

hamper the genome replication and transcription 

(1). The cells have evolved themselves in an 

efficient way to generate a DNA damage response 

(DDR) which is activated on double-stranded 

break detection or any other exogenous/ 

endogenous damage followed by an intricate 

cascade of cell signaling pathways (2). In the 

1990s, a series of high molecular mass atypical 

serine/threonine kinases were discovered, cloned 

and classified as phosphatidylinositol 3-kinase 

(PI3K)-related kinase (PIKK) (3). An interesting 

fact about this family of kinase being that their 

catalytic domain resembles more to PI3-kinase 

family of phospholipid kinases than to the classical 

protein kinase (4), (5). Despite their humongous 

size, the catalytic domain of PIKK members spans 

over a few 100 amino acid residues towards the C-

terminal and contributes merely 5-10 % to the 

whole protein structure with hSMG1 (suppressor 

with morphological effect on genitalia family 

member) as an exception (6). This family of protein 

kinases is highly conserved in eukaryotes during 

evolution and few homologs are found in yeast as 

well, but there are no reports stating their 

expression in prokaryotes (7),  (8). In Homo 

sapiens, six PIKK family members have been 

identified, which includes Ataxia telangiectasia 

mutated kinase (ATM), ATM- and Rad3-related 

kinase (ATR), DNA dependent protein catalytic 

subunit (DNA-PKcs), mammalian target of 

rapamycin (mTOR), suppressor with 

morphological effect on genitalia family member 

(SMG1), and transformation-transactivation 

domain-associated protein (TRRAP). 

Over the past few years, there have been 

extensive studies on PIKK family of protein kinases 

resulting in the revelation of significant insights into 

their biological functions at the cellular level. 

Members of PIKK family participate in diverse set of 

cellular functions such as meiotic and V(D)J 

recombination, chromosome maintenance, DNA 

damage sensor and repair, cell cycle progression 

and cell cycle arrest, and their dysfunction results in 

a variety of diseases, including cancer and 

immunodeficiency neurological disorder (7), (9). On 

the structural level, all the six PIKK members share 

common features including α- helical rich HEAT 

(Huntingtin, elongation factor 3 (EF3), protein 

phosphatase 2A (PP2A), and the yeast kinase 

TOR1) domain towards N- terminal and a catalytic 

kinase domain towards C-terminal flanked by FAT 

(Frap, ATM, and TRRAP) and FATC (FAT C-

terminal) domains on each side (Figure 1) (9). The 

FAT domain and the extended C-terminal kinase 

including the PRD (PIKK- regulatory domain) and 

FATC are also documented as a single ‘FATKIN’ unit 

(10). These atypical kinases have a themed 

regulation that depends on their subcellular 

localization and requires the interaction of their 

respective partner activator proteins or DNA to form 

a protein-protein or nucleic acid-protein complex 

(11). While ATR is rapidly activated by dsDNA break 

and stalled replication forks, ATM and DNA-PKcs 

signaling cascade are triggered during ssDNA break. 

These kinases are then recruited at the site of DNA 

lesion with the help of their activator proteins like 

ATRIP (ATR interacting protein), Mre11-Rad50-Nbs1 

(MRN) and Ku70/80 for ATR, ATM, and DNA-PKcs 

respectively (12), (13), (14), (15). mTORC1 

recruitment to the perinuclear compartment is 

assisted by RAG (recombination-activating genes) 

GTPases that interact with raptor and help in the 

localization of mTORC1 complex near to its activator 

protein i.e. Rheb (16). SMG1 also interacts with 

UPF1, UPF2, and UPF3 (UPF: up-frameshift) at 

premature termination codons and exon-junction 

complexes on mRNA, thus, regulating the nonsense-

mediated mRNA (messenger ribonucleic acid) decay 

(17). TRRAP, an adaptor protein, is essential for the 

c-Myc- and E1A-mediated oncogenic transformation 

(18) (Figure 2-3). These features have attracted the 
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tremendous interest of academic and pharmaceutical 

industries especially inhibiting the PIKK family 

proteins and their signaling pathways for effective 

cancer therapy. In this review, we comprehend the 

structure of reported PIKK family of protein kinases 

and discuss the strategic perspective for the 

discovery and development of PIKK kinase inhibitors 

for cancer therapy. 

3. DIVERSE KINASES IN PIKK PROTEIN 

FAMILY  

3.1. Mammalian target of Rapamycin 

(mTOR) 

3.1.1. Architectural framework of mTOR as 

the basis for inhibitor design 

mTOR (mammalian target of 

rapamycin), also known as FRAB (FKBP-

rapamycin associated protein) or RAFT 

(rapamycin and FKBP target ) was the first PIKK 

member to be cloned and studied in yeast (19) 

(Table 1). The discovery of mTOR is splendidly 

explained by Livi et al. in (20). mTOR is a 

mammalian serine/threonine kinase that is 

structurally and functionally conserved in all 

eukaryotes including fungi, worms, flies, plants, 

and mammals (21). It controls the cell growth in 

response to nutrients and growth factors and is 

frequently deregulated in cancer. mTOR exists as 

mTOR complex 1 (mTORC1) and mTOR complex 

2 (mTORC2), first complex being rapamycin-

sensitive whereas second complex being 

rapamycin insensitive (22). The N-terminal FAT 

domain of mTOR embraces a ‘C’-shaped 

solenoid-like structure made up of four sub-

domains rich in α-helices. It comprises of 28 α-

helices, α1 to α22 form three discontinuous 

domains (TRD1-3) and α23 to α28 form a single 

domain known as HRD that belongs to HEAT 

family. This is trailed by the kinase domain of the 

protein that adopts two-lobe architecture with a 

small N-terminal lobe (N-lobe) and a larger C-

terminal lobe (C-lobe). A cleft formed in between 

the two lobes is the binding site for the ATP. The 

N-lobe begins with kα1 helix with FRB (FKBP-

rapamycin-binding) domain followed by a β-

strand and two short helices. The C-lobe of the 

kinase domain has mLST8 (mammalian lethal 

with SEC13 protein 8) binding site known as LBE 

(Lst8-binding element) that is specific to mTOR, 

a well-ordered activation loop with kαAL insertion, 

and a kα9b insertion (residues 2425–2436) 

followed by FATC domain. An important domain 

known as a negative regulatory domain (NRD) is 

also present between residues 2430–2450, which 

on deletion activates mTOR, both in vivo and in 

vitro. The active site (Figure 4) is highly restricted 

due to the presence of FRB, LBE, and mLST8 in 

 
 

Figure 1. Domain architecture of PIKK family. 
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addition to kα9b and the 55-residue unstructured 

segment that follows the helix (part of NRD) (23). 

3.1.2. mTOR inhibitors  

3.1.2.1. Rapamycin and rapalogs- allosteric 

inhibitors 

Rapamycin is a macrocyclic antibody 

produced by Streptomyces hygroscopicus known to 

have antibiotic activity against various candida 

species (24), (25). It also exhibits an 

immunosuppressent effect to prevent kidney graft 

rejection by blocking T-cell activation. It is the first 

mTOR inhibitor (hence the name mammalian target 

of Rapamycin (mTOR)) discovered to have 

anticancer activity. It showed allosteric inhibition by 

binding to immunofilin domain of FK506-binding 

protein12 (FKBP12) and FKBP12-Rapamycin-

Binding (FRB) domain (22). 

Formation of this ternary complex inhibits 

phosphorylation S6K1 and 4E-BP1, a well-

charactarised substrate of mTORC1. As a result, it 

specifically inhibits mTORC1, but not mTORC2. 

However, the clinical use of rapamycin as an 

anticancer agent is limited because of its poor 

physicochemical properties such as stability and 

solubility. To overcome these concerns analogs of 

rapamycin, such as Temsirolimus and Everolimus 

have been identified (Figure 5) (26). Temsirolimus is 

an ester analog of rapamycin approved by US food 

and drug administration in 2007 for the treatment of 

advanced renal carcinoma. Whereas Everolimus is 

the 40-O-(2-hydroxyethyl) derivative of rapamycin 

approved for the treatment of HER2-negative breast 

cancer in combination with exemestane (27), 

advanced hormone receptor-positive (28), and for 

tuberous sclerosis complex-associated partial-onset 

seizures (29), (30), (31), (32). 

3.1.2.2. ATP competitive and irreversible 

inhibitor for mTOR 

Upon reviewing the ATP competitive 

binders for mTOR, inhibitors like Torin2, AZD8055, 

INK 128 and OSI027 have displayed promising 

anticancer activity (Figure 6)(33). Torin2 is a second-

 
 

Figure 2. PIKK family activation and interacting partners. 

 
 

Figure 3. TRRAP activation and interacting partners. 



Structural and strategic landscape of PIKK protein family and their inhibitors 

1542 © 1996-2020 
 

generation ATP (adenosine triphosphate) 

competitive mTOR inhibitor developed by Liu et al, 

that shows selective mTOR kinase inhibition with 

EC50 = 250 pmol/L (34), (35). Also, it has superior 

Table 1. PIKK structures deposited in Protein Data Bank (PDB) with the reported drugs 

PDB ID PIKK protein name Method Resolution (Å) Reported inhibitors References  

4JSV mTOR X-Ray 3.5 Torin2(34), NVP-

BEZ235(111), 

Temsirolimus(112), 

Everlimus(113), 

AZD8055(114), 

AZD2014(114), OSI-

027(115),INK 

128/MLN0128(37) 

(23) 

4JSN mTORdeltaN-mLST8 

complex 

X-Ray 3.2  (23) 

4JSP mTORdeltaN-mLST8 

complex Mg2+ complex 

X-Ray 3.3  (23) 

4JSX mTORdeltaN-mLST8 

complex 

X-Ray 3.5  (23) 

5WBY mTOR(deltaN)-mLST8-

PRAS40(beta-strand) 

complex 

X-Ray 3.1  (121) 

5ZCS mTOR complex 2 Cryo EM 4.9  (122) 

5FLC mTOR complex 1 Cryo-EM 5.9  (123) 

2GAQ FRB domain of mTOR NMR   (124) 

2NPU FRB domain of mTOR NMR   (125) 

5NP0 Closed dimer of ATM Cryo-EM 5.7 Torin2(34), Compound 

2(Cinnoline 

carboxamide)(58), 

AZ31, AZD1390 

(54) 

5NP1 Open protomer of ATM Cryo-EM 5.7  (54) 

6HKA FATC domain of ATM NMR   (126) 

5YZ0 ATR-ATRIP complex Cryo-EM 4.7 Torin2(34),VE 

821(70),VX 970(116), 

AZ20(117), 

AZD6738(118), 

NU6027(119), NVP-

BEZ235(111) 

(127) 

5LUQ DNA-PKcs  X-Ray 4.3 Torin2(34), 

NU6027(119), NVP-

BEZ235(111) 

(79) 

3KGV DNA-Pkcs X-Ray 6.6  (78) 

5Y3R DNA-PK Holoenzyme Cryo-EM 6.6  (128) 

5W1R DNA-Pkcs Cryo-EM 4.4  (80) 

5OJS SAGA and NuA4 

coactivator subunit 

Tra1 

(TRRAP homologue in 

Saccharomyces 

cerevisiae) 

Cryo-EM 3.7  (98) 

4ZRD SMG1 mutant F278N X-Ray 2.3 Compound 1 

(Pyramidine 

derivative)(110) 

(129) 
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pharmacokinetic profile in comparison with other 

mTOR inhibitors. In addition, Torin2 also exhibits 

potent biochemical and cellular activity against ATM 

(EC50 = 28 nmol/L) and ATR (EC50 = 35 nmol/L) 

kinases with respect to radiotherapy in Hela and 

HCT116 (Human colorectal carcinoma cell line) cell 

lines (34). The preferential selectivity of Torin2 

towards the mTOR kinase and its structural 

elucidation studies have been demonstrated by 

Haijuan Yan et al (23). According to the reports, the 

tricyclic benzonaphthyridinone ring binds to the 

adenine site of ATP and forms a hydrogen bond with 

the ‘hinge’ between the N- and C-lobes. In addition, 

benzonaphthyridinone ring stacks more effectively 

with the indole group of Trp2239 from the hinge than 

the ATP and absence of Trp2239 in canonical protein 

kinase makes Torin2 contribute towards ∼800-fold 

specificity for mTOR over PI3K. Further, structure 

interpretation also reveals that the trifluoromethyl 

group of Torin2 packs between Ile2163, Pro2169 and 

Leu2185 residues of N-lobe helping in the 

stabilization of Torin2 – mTOR complex. Strangely, 

the amino group of Torin2 extends to the ‘inner 

hydrophobic pocket’, an area at the back of the cleft, 

but fails to show any interaction with the amino acid 

residues. 

Due to its inability to form three predicted 

hydrogen bonds with Asp2195, Asp2357 and 

Tyr2225, provides an opportunity to develop next-

generation Torin2 analogs to mimic these 

interactions. In our recent study, we have developed 

a series of Torin2 analogs for mTOR/ATR kinase 

inhibition According to the studies, compound-1, a 

 
 

Figure 4 Cartoon representation for X-ray crystal structure (at resolution of 3.5 Å) of mTORΔN-mLST8-ATPγS-Mg with color-coded domains 

(adapted with permission from PDB ID: 4JSX . 
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piperazine analog, exhibited more selectivity towards 

mTOR kinase (EC50 = 50 nM in HCT 116) in presence 

of ATR kinase (EC50 = 250 nM in HCT 116). Further, 

the docking studies of one of the piperazine analogs 

(1) into the mTOR kinase structure revealed that the 

amino group of piperazine ring is able to extend 

further into the inner hydrophobic pocket and form 

hydrogen bonding in the inner region (Figure 7) and 

contributes to the selectivity of compound-1 towards 

mTOR. 

INK128 (Sapanisertib) is a 1H-

pyrazolo[3,4-d]pyrimidine derivative developed by 

Interllikine. It is an ATP competitive inhibitor of 

mTOR and has a potent inhibitory activity against 

both mTORC1/mTORC2 (IC50 =1 nM). It has 

successfully inhibited colorectal cancer cell growth 

and survival, induced both apoptotic and non-

apoptotic cancer cell death (37) and thus, has 

entered into clinical trials for the treatment of 

colorectal cancer. It is also in phase I/II clinical 

trials for the breast cancer, endometrial cancer, 

glioblastoma, neuroendocrine tumors, ovarian 

cancer, thyroid cancer, and urogenital cancer (38), 

(33).OSI027 (39) and AZD8055 (40) are the other 

examples of potent and selective ATP -competitive 

inhibitors of mTOR with IC50 values of 22 nmol/L 

and IC50 of 0.8 nmol/L respectively. OSI027 is in 

phase I clinical trials against advanced solid 

malignancy (41), (39). On the other hand AZD8055 

is a morpholino substituted of pyrido[2,3-

d]pyrimidin-7-yl derivative discovered by 

AstraZeneca. It has completed phase I trials for 

Adults With Recurrent Gliomas (NCT01316809), 

advanced tumors (NCT00731263 ), and entered 

into phase II clinical trials. 

Wortmannin is a fungal metabolite 

produced by Penicillium wortmanni that acts against 

phosphatidylinositol 3-kinase (PI3K) (Figure 6). It is 

an irreversible inhibitor which binds covalently to the 

kinase (Lys residue) with the help of an electrophilic 

C-21 position on the furan ring (42). It is also known 

to inhibit mTOR kinase activity with IC50 = 0.2µM. 

However, the use of Wortmannin as a drug is limited 

because of poor solubility in a biological system. 

PX866 is a Wortmannin derivative developed by Ihle 

NT et al. (43)with improved stability and less toxicity 

in comparison to the parent compound. However, 

PX866 lost its potency against mTOR. 

 
 

Figure 5. Rapalogs as mTOR inhibitors. 
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3.2. Ataxia-telangiectasia mutated (ATM) 

3.2.1. Domain organization and active-site 

facet of ATM  

Replicating mammalian cell is constantly 

under exogenous and endogenous stress to 

duplicate and inherit the genetic material without any 

flaw, which subsequently affects the integrity of the 

genome. In order to overcome this adverse effect and 

maintain the genomic stability, eukaryotic cells 

developed a highly organized and coordinated 

network of cellular events called DNA damage and 

response (DDR) where they identify, and repair the 

DNA lesions by transiently halting the cell cycle 

events (44), (45). Ataxia-telangiectasia mutated 

(ATM); a 350-kDa apical protein kinase is one of the 

members of the PIKK family involved in the DDR 

pathway. Lesions in DNA structures induced by DNA 

damage agents or DNA replication stress activate 

DDR signaling pathway. DNA double-strand breaks: 

DSB (ionizing radiation) activates ATM, which can 

phosphorylate BRCA1 (Breast Cancer gene 1), and 

Chk2 kinase leading to activation of p53 followed by 

G1/S arrest or apoptosis (46). The Mre11-Rad50-

Nbs1 (MRN) complex chiefly regulates the 

localization of ATM kinase to DSB (47). Studies have 

shown that MRN is one of the first factor sensed and 

recruited to DSBs (48). The unwinding of DNA ends 

by MRN complex stimulates the activity of 

dimeric/oligomeric ATM kinase ATM kinase was 

discovered in ataxia-telangiectasia (AT) patients, 

characterized by dilated blood vessels and 

progressive neurological decline. AT result in gait 

abnormality and lack of involuntary movement. AT 

patients are hypersensitive to IR radiation and are 

defective in DSB repair as well as the G1/S, intra-S, 

and G2/M checkpoints. The defective checkpoints in 

AT cells are mainly due to lacking ATM kinase (49). 

ATM is orthologous to Saccharomyces cerevisiae 

Tel1 (telomere maintenance 1) (50), a protein 

involved in controlling telomere length, DNA repair, 

and cell-cycle checkpoint control. ATM also 

phosphorylates the S139 in the C-terminal tail of 

histone variant H2AX in response to DSBs, resulting 

in discrete γ-H2AX foci at the DNA damage sites (51). 

H2AX phosphorylation is a general cellular response 

to processes involving DSB intermediates. In a most 

recent study, ATM inhibition is reported to suppress 

Epithelial-to-Mesenchymal transition (EMT) and 

metastasis in cisplatin resistant lung cancer cells by 

direct downregulation of JAK (Janus kinases)/STAT3 

(signal transducer and activator of transcription 

proteins)/PD-L1(programmed death-ligand 1) 

signaling cascade (52). 

In 2016, Xuejuan wang et al., carried out 

the structural analysis of homodimeric ATM/Tel1 

using cryoelectron microscopy (Cryo EM) (52). The 

N-terminal of all PIKK family mainly composed of 

HEAT repeats forming a super-helix or solenoid. 

However, the N-terminal helical solenoid in cryo-EM 

of ATM/Tel1 has displayed a winding tertiary 

structure with two arms and segmented them as C-

pincer and N-spiral. The C-pincer of the N-terminal 

helical solenoid is connected to the FAT domain of 

the ATM/Tel1 kinase and N-spiral of the N-terminal 

helical solenoid is positioned away from the dimer 

interface of ATM. Further, these two segments 

interact with FAT and kinase domain of ATM/Tel1. In 

which, one tip of the C-pincer binds to TRD2 region 

of the FAT domain, and another tip binds to the C-

 
 

Figure 6. List of mTOR inhibitors. 
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lobe of kinase domain as well as TRD1 region of the 

FAT domain. Whereas, the N-spiral connect to 

another region within the TRD2 domain. Hence, the 

entire catalytic core of ATM/Tel1 appears to be tightly 

combined to the N-terminal helical solenoids. 

Besides, in the dimer structure of ATM/Tel1 a rod-

shaped protrusion leaned on the LST8-binding 

element (LBE)-like insertion in the C-lobe of the 

kinase domain has been observed and named as 

LBE interacting Domain (LID). In the dimeric state 

LID of monomer interact with LBE of another 

monomer and blocks the putative binding of ATM 

regulators to LBE. It is assumed that the LID could 

play a crucial role in the inhibition of ATM/Tel1 kinase 

activity in the presence of ATM regulators. 

In another study, Domagoj et al., reported 

the cryo-EM structure of purified human ATM dimer 

at a resolution of 5.7 Å (54). Their structural work 

highlights the open and closed ATM dimer. Open 

dimer has a limited intermolecular interface and 

compatible with substrate binding, suggesting that 

the open dimer might be a more active form of ATM. 

Whereas, closed dimer has a large intermolecular 

interface, in which PRD binds as pseudo-substrate 

and block the closed dimer. The transition between 

open to closed dimers are mainly regulated by the 

compact arrangement of FAT C-terminal (FATC), 

LST8-binding element (LBE), activation loop, and 

PIKK regulatory domain (PRD; helices kα9b, kα9c, 

and kα9d) . Further in the ATM dimer the FAT domain 

wrapped around the kinase domain with polar 

interaction involving Glu1959-Arg2849, Arg2486-

Glu2950, and Gln2522-Gln2730. These residues are 

highly conserved in ATM and mutation of R2849P 

was observed in the patient associated with A-T 

disease, suggesting that these interactions are 

important for stabilization of ATM. 

3.2.2. Quinolines as ATM inhibitors 

NVP-BEZ235 is an imidazoquinoline 

derivative that has potent inhibitory activity against 

ATM and DNA-PKcs, both of these kinases being 

activated in response to IR radiation induced DNA 

damage (55). NVP-BEZ235 inhibits the 

phosphorylation of ATM and DNA-PKcs targets, 

thereby, blocking both nonhomologous end-joining 

and homologous recombination DNA repair 

pathways resulting in significant attenuation of DSB 

repair. In 2017, NVP-BEZ235 completed phase I 

study in patients with Advanced Solid Malignancies 

Enriched by patients with Advanced Breast Cancer 

and entered into phase II study (56). 

3-Quinoline carboxamide derivatives are 

the potent, selective and orally active ATM kinase 

inhibitors developed by Astra Zeneca (57). They 

have reported the crystal structure of 3QH (IC50 = 

0.049 µM) with PI3Kγ, a known homology of ATM 

(PDB Id :5G55). In the crystal structure, the quinoline 

nitrogen forms the hydrogen bonding with Val882 

residue present in the backbone of ATP binding site 

(Figure 8). Additional hydrogen bond interaction 

between the cyano group and Tyr867 helps in further 

stabilization of the complex. This investigation gave 

the opportunity to perform SAR (structure-activity 

relationship) studies of compound-3 on ATM kinase 

activity and led to the discovery of compound-4 with 

excellent ATM kinase selectivity (IC50= 0.033 µM) 

and better rodent oral ADME (absorption, 

distribution, metabolism, excretion) properties. 

Recently, AstraZeneca has identified 

cinnoline 3-carboxamide derivatives as selective 

ATM inhibitor with IC50 values 0.0028 µM (compound 

21) (58). When compared to quinoline 3-

carboxamide derivatives, compound 21 showed 

improved physicochemical properties and 

pharmacokinetic properties. Further, when 

administered with irinotecan, compound 21 showed 

 
 

Figure 7. Binding pose of Torin2 with mTOR. Protein structure is 

highlighted in blue colour and interacting residues are represented 

as tube model (orange colour). Inhibitor is displayed as tube model 

(magenta colour). 
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excellent tumor regression in the SW620 colorectal 

tumor xenograft model and superior inhibition to only 

irinotecan treated tumor xenograft model. Currently, 

compound 21 has enetered into preclinical trials for 

the treatment of colorectal cancer (Figure 9). 

3.3. Ataxia-telangiectasia mutated- and 

Rad3-related (ATR) 

3.3.1. ATR-A key sensor to DNA damage 

repair and stalled replication forks 

Ataxia-telangiectasia mutated- and Rad3-

related (ATR) is the important controller for 

checkpoint response to damaged DNA and 

incomplete replication through stalled replication 

forks (59). ATR is a 2644 amino acid residue long 

protein with a molecular weight of 300 kDa that is 

structurally and functionally quite similar to ATM (60). 

ATR activation is associated with UV (ultraviolet) light 

irradiation and replication fork stalling. When DNA 

damaging agents cause the DNA polymerase to stall 

during the replication and helicases continues to 

unwind the DNA, leading to the generation of a 

stretch of single-strand DNA (ssDNA). The ssDNA is 

recognized by replication protein A (RPA) and 

recruits the ATRIP/ATR complex (61). ATR-

interacting protein (ATRIP) having a molecular 

weight of 85 kDa binds to the N-terminus of ATR. 

Further, ssDNA-RPA complex stimulates the loading 

of RAD9–HUS1–RAD1 (9–1–1) heterotrimer onto the 

DNA ends (62). Consecutively, the 9-1-1 complex 

recruits TopBp1 to activate ATR (63). Activated ATR 

phosphorylates the Ser317 and Ser345 on Chk1 

kinase leading to S and G2 arrest (60), (64). Further 

ATR also phosphorylates replication factor C 

complex, RPA, and RPA2, the MCM (mini 

chromosomal maintenance) 2-7 complex, and 

BRCA1 (59), (65). The phosphorylation of these 

substrates is important for inhibition of replication, 

recovery of replication and activation of NHEJ (non-

homologous end joining) and HR (homologous 

recombination) DNA repair pathway (66). 

Recently, Qinhui Rao et al. solved the cryo-

EM structure of the human ATR-ATRIP complex at 

4.7Å resolution and constructed an atom model of the 

C-terminal catalytic core of ATR (residues 1 521-2 

644) at 3.9 Å using homology model of mTOR crystal 

structure (Figure 10) (67). Similar to other PIKK 

family, ATR consist of N-terminal α-solenoid consist 

HEAT repeats, a FAT (FRAP, ATM, TRRAP) domain, 

a kinase domain (KD), and a C-terminal short 

segment referred to as FATC. The N-terminal 

segment (1-1636 amino acids) of ATR has two HEAT 

repeats, the N-HEAT and M-HEAT. N-HEAT consists 

of HEAT 1 – HEAT 26 repeats, in which HEAT1- 16 

form a right-handed super-helical α-solenoid, 

whereas HEAT 17 to HEAT 26 repeats attain 

extended conformation, and the last HEAT-26 repeat 

of the N-HEAT binds directly to the FAT domain. On 

the other hand, the M-HEAT has 12 α-helices 

arranged together to adopt C-shaped conformation 

and binds to the FAT and the KD domains. Followed 

by HEAT repeats there are two tetratricopeptide 

repeats TPR1 and TPR2, present in the FAT domain. 

Similar to other PIKK kinases ATR kinase domain 

has two lobes, N-lobe, and the C-lobe. N-lobe consist 

of six-stranded anti-parallel β-sheet (kβ1-kβ6) 

 
 

Figure 8. Zoomed image showing the binding pose of 3QH with 

ATM. Protein structure is highlighted in blue colour and interacting 

residues are represented as tube model (orange colour). Inhibitor is 

displayed as tube model (magenta colour). 
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stabilized by the helix Kα1 and the C-lobe consist of 

eleven α-helices (kα2-kα12). The N-lobe of ATR has 

a unique insert (residues 2270-2290) connecting 

strands kβ1 and kβ2. A similar insert was also noticed 

in ATM kinase with weak sequence homology, 

suggesting distinct inter-domain interactions. The key 

catalytic residues in the ATR kinase domain are 

highly conserved with respect to mTOR. Residues 

K2327 and D2330 in ATR helps in ATP binding, 

whereas residues N2480 and D2494 stabilize Mg2+ 

for catalysis. Residue D2475 and H2477 needed for 

activating the hydroxyl group of ATR substrates, and 

 
 

Figure 9. Optimisation of quinoline derivatives for ATM inhibition. 

 
 

Figure 10. Cryo-EM structure (at resolution 4.7 Å) of ATR kinase represented as cartoon with color-coded domain (adapted with permission 

from PDB ID: 5YZ0). 



Structural and strategic landscape of PIKK protein family and their inhibitors 

1549 © 1996-2020 
 

electrostatic stabilization of the transition state. 

Mutations of above-mentioned residues led to the 

reduced kinase activity of ATR in the ATR-ATRIP 

complex, suggesting their significant role in catalysis. 

3.3.2. Pyrazine amine derivatives as 

selective ATR inhibitors 

It has been proposed that targeting the 

kinase domain of ATR with small molecules, ATP 

competitive inhibitors could potentiate the effect of 

radio and chemotherapy for various human cancers. 

VX-970 was one such ATR kinase inhibitor currently 

in early-phase clinical trials for the treatment of solid 

tumors (68), (69). VX-970 is a potent and selective 

inhibitor of ATR developed by vertex 

pharmaceuticals. VX-970 inhibited ATR kinase 

activity with IC50 of 19 nM in HT29 cells and 

sensitizes various types of tumor cell lines and 

cancer Docking of VX-970 into the cryo-EM structure 

of ATR kinase displayed that pyrazine ring occupies 

the adenine of ATP, Oxazole ring extended close to 

the ribose pocket of ATP, and the sulfonyl group 

occupies the γ-phosphate group of ATP, thereby 

preventing the competitive binding of ATP to the ATR 

kinase catalytic site (67). 

3.4. DNA dependent protein kinase catalytic 

subunit (DNA-PKcs) 

3.4.1. Structural dynamics of DNA-PKcs  

DNA-PKcs is a 470-kDa enormous protein 

kinase in PIKK family. The holoenzyme comprises of 

a DNA dependent protein kinase catalytic subunit 

(DNA-PKcs) and an autoimmune antigen 

heterodimer Ku70/Ku80 playing an important role in 

double-stranded break repair through non-

homologous end joining (NHEJ) (71). In the NHEJ 

pathway, DNA-PKcs is known to phosphorylate its 

physiological substrates, preferably at SQ/TQ 

consensus sequences, including Ku70, Ku80, 

XRCC4 (X-ray repair cross-complementing protein 

4), XLF (XRCC4-like factor), Artemis and PNKP 

(Polynucleotide Kinase 3'-Phosphatase) with few 

exceptions like SAF-A (scaffold attachment factor A) 

/hnRNP-U (heterogeneous nuclear ribonucleoprotein 

U), a non-NHEJ protein (72), (73), (74). It also 

exhibits autophosphorylation at multiple SQ/TQ 

(T2609, S2612, T2638 and T2647) as well as non-

SQ/TQ sites (S2624, S3205) in vitro. DNA-PKcs 

interaction with protein phosphatase 6 (PP6) 

specifically through PP6R1 (protein phosphatase 6, 

regulatory subunit 1) subunit is required for its 

activation after DNA damage, also, siRNA(small 

interfering RNA) mediated depletion studies and 

inhibition studies of DNA-PKcs with inhibitor NU7441 

highlights on the role of the protein in mitosis (75). In 

addition to the well-established functions, DNA-PKcs 

are also known to play important roles in 

transcription, in viral infections especially in HIV 

(Human Immunodeficiency Virus)-induced cell death 

in CD4+ T cells and in proteasome-mediated 

destruction in Herpes Simplex Virus-infected cells. 

DNA-PKcs is required for telomere capping and it 

also phosphorylates Golgi protein GOLPH3 (Golgi 

Phosphoprotein 3) resulting in Golgi fragmentation 

and dispersal in cytoplasm (76), (77). 

DNA-PKcs structure is reported both 

through single-crystal X-ray diffraction as well as 

through cryo-EM (Figure 11). According to the crystal 

structure solved at a resolution of 4.3 Å, it is 

fractionated in three major parts a core, body and a 

tail. The ‘core’ region is a compact structure 

comprising of FAT domain, a kinase domain and 

FATC domain broadly labeled as Core DNA-PKcs. 

The ‘body’ is formulated of N-terminal α solenoids 

and ‘tail’ has KU70/80-DNA complex. The catalytic 

domain in DNA-PKcs is homologous to the kinase 

domain of the PI3Kγ of the classical PI3-kinases. 

While by the cryo-EM description of the protein 

structure, the comparative study was performed on 

Michigan Cancer Foundation-7 (MCF-7) cell line 

(siRNA knockdown of DNA-PKcs), MO59-J cells 

(lacks DNA-PKcs expression) and MO59-K cells 

(normal DNA-PK activity) which inferred that out of all 

the selective inhibitors, N-terminal region of the 

protein, subdivided into ‘arm’ and ‘bridge’, is L-

shaped, followed by HEAT repeats forming a cradle-

like structure. The cradle is connected to the C-

terminal head region (FAT, FRB, KD, FATC) via 

‘bridge’ (as mentioned earlier). As per the cryoEM 

model (4.4 Å) of DNA-PK and previous reports 

pertaining to the NMR model of Ku80, extra electron 

density towards the N-terminal ‘arm’ region hint 

towards the probable binding site of Ku80. In 

addition, there are two perpendicular apertures in the 

structure, first aperture formed due to the circular 

cradle and the second aperture formed by the arm 
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and the bottom part of the circular cradle. Ku bound 

DNA is assumed to pass through these apertures 

during the DNA repair process (78), (79), (80). 

3.4.2. Inhibitors against DNA-PKcs 

There are several small molecule inhibitors 

identified with respect to their DNA-PKcs inhibition 

ability like wortmannin (IC50: 0.10 µM), SU11752 

(IC50: 0.13±0.028 µM), LY294002 (Ki: 6 µM). While 

wortmannin is a non-competitive irreversible inhibitor, 

SU11752 and LY294002 act as competitive inhibitors 

for DNA-PKcs (81), (82). A NU7026 is 50 folds more 

selective towards DNA-PKcs than other PIKK 

members with an IC50 of 0.23 µM (83). The effect of 

drug exposure on the relatively radiosensitive CH1 

human ovarian carcinoma cell line was also 

examined which exhibited that at least 4h exposure 

at 10???μM NU7026 is necessary with 24h exposure 

producing an even greater effect (84). However, the 

clearance rate of NU7026 was observed to be quiet 

fast due to monohydroxylation that occurs on 

position-2 of the morpholino group resulting in the 

opening of the ring (85). Hollick et al. also predicted 

that a 6-arylpyran-4-one or 6-arylthiopyran-4-one 

template, bearing the essential 2-morpholin-4-yl 

group, would offer more opportunities for introducing 

structural diversity in the aromatic region, while 

retaining the core pharmacophore elements common 

to NU7026 (86) (Figure 12). Similarly, the derivatives 

based on NU7026 scaffold show considerable 

interaction with Lys 3749, Arg3733, Leu 3802, 

Tyr3824 and Asp3937 forming hydrogen bond 

linkage (86). 

3.5. Transformation/transcription domain-

associated protein (TRRAP) 

3.5.1. TRRAP: An exceptional PIKK family 

member deficient in kinase activity  

Transformation/transcription domain-

associated protein (TRRAP) is a 430 kDa adaptor 

protein encoded by TRRAP gene that acts as an 

essential cofactor for c-Myc and E1A/E2F oncogenic 

transcription factor pathways (18), (88). TRRAP is a 

highly conserved protein and the C-terminal of this 

protein shares homology with phosphatidylinositol 3-

kinase (PI-3 kinase) family. However, unlike other 

members of the PIKK family, the key residues 

responsible for the kinase activity and required for the 

binding of ATP are missing in the sequence (89). It 

 
 

Figure 11. Cartoon representation for Cryo-EM structure (at resolution 4.4 Å) of DNA-PKcs kinase with color-coded domains (adapted with 

permission from PDB ID: 5W1R). 
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forms a stable component of MRN (MRE11, RAD50, 

and NBS1 ) complex where TRRAP-MRN complex are 

assumed to have a role at the DSB repair sites that 

promotes repair fidelity (90). TRRAP containing HAT 

complexes are known to participate in DNA repair by 

histone acetylation by chromatin remodeling (91). It is 

also reported to be an essential requirement along with 

TIP60 (Tat interactive protein) for the transcriptional 

activation of histone gene where they are recruited to 

histone gene promoters at the G1/S-phase boundary by 

NPAT (nuclear protein of the ATM locus). NPAT has a 

novel DLFD motif that is the interaction locus for TRRAP 

(92). The TRRAP forms a complex with hGCN5 

(Histone acetyltransferase GCN5) that is reported to 

interact with the functionally important MbII (Myc 

homology box II) N- terminal domain of c-Myc which 

further modifies nucleosomal packaging at specific 

chromosomal targets (93). Also, it is a component of the 

TATA-binding protein (TBP)-free TAFII-containing 

complex (TFTC) and a common subunit of TIP60 and 

PCAF (P300/CBP-associated factor) complex that 

forms a connection between Myc/Max and/or E2F/DP 

(dimerization partner) and the basic transcriptional 

machinery and is assumed to modulate acetylation of 

nucleosomal histones by stimulating catalytic activity 

(94), (95). TRRAP, like other PIKK family of proteins, 

shows interaction with p53 tumor suppressor protein. 

The p53 protein employs TRRAP/HAT (histone 

acetyltransferases) complex to mdm2 (Mouse double 

minute 2 homolog) promoter resulting in increased 

histone acetylation (96). This protein also plays an 

important and distinctive role in regulating cell cycle 

progression where it affects embryonic development 

and cell proliferation. The cells with disrupted Trrap (the 

murine homolog of TRRAP), cease to undergo G2/M 

arrest even after unattached chromosome or spindle 

disruption (97). 

There are several homologues of TRRAP in 

various other species like Trrap in Mus musculus, 

Tra1 (Transcription-associated protein 1) in 

Saccharomyces cerevisiae, trr-1 in Caenorhabditis 

elegans, and Nipped-A in Drosophila melanogaster 

however the structural report for only Tra1 is 

elucidated using cryo-electron microscopy at a 

resolution of 3.7 Å. As described in the reports, the 

Tra1 has a similar arrangement as in mTOR and ATM 

but it shows a striking similarity to human DNA-PKcs, 

especially with respect to their ‘diamond ring’ like 

topology. The Tra1 has three well-defined structural 

units namely N-terminal unit (1-824 amino acids), a 

circular cradle (825- 2630 amino acids), and C-

terminal unit (2631- 3744 amino acids). Starting from 

the N-terminal, there are 49 HEAT repeats and 15 

TPR (tetratricopeptide) repeats. This region forms 

two α-solenoids that forms 80% of the total mass of 

Tra1. Also, this is the domain that displays maximum 

variation when compared to DNA-PKcs. This is 

followed by the FAT domain which is similar to PIKK 

family members. The FRB domain that lies on the N-

Terminal of kinase domain also shows conformation 

variation. Unlike DNA-PKcs and mTOR, FRB moves 

away from the N-lobe and directly packs against the 

enclosing the Tra1 active site. This is followed by 

kinase domain (KD) that has two lobes spanning 

~500 amino acid residues and FATC domain. It also 

has a pseudokinase domain comprising of 17 

residues that are reported to stabilize the active site. 

While going by the diamond ring analogy, 

as reported, the entire protein can be sectioned into 

three parts; ring (HEAT domain), setting (FAT and 

FRB) and center stone (KD and FATC). Further, the 

ring part/ HEAT domain can be subdivided into three 

parts finger, clasp, and ring. The first α-solenoid 

 
 

Figure 12. ATP-competitive DNA-PKcs inhibitors. 
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starting from the ‘finger’ spans from H1 to H16 and is 

equivalent to the spiral region of mTOR/ATM and 

arm/bridge region of DNA-PKcs. After H16, the loop 

region traverses over along with the two-stranded β 

sheet. The second and the largest α-solenoid follow 

this from H17-H49 that closes the ring with a diameter 

of 125 Å. In addition, the FAT, FRB, KD and FATC 

regions form the head of the ring where the FAT 

domain has 15 TPR repeats (TPR1 – TPR 15). The 

kinase domain fold is very similar to the fold in DNA-

PKcs and mTOR but interestingly the residues 

required for the binding of ATP/Mg and responsible 

for the kinase activity are not conserved in Tra1, 

rather it has an extra 18 residue insertion (98), (99). 

3.6. Human Suppressor with morphological 

effect on genitalia family member (hSMG1) 

3.6.1. hSMG1: The mRNA surveillance 

protein 

The other significant member of the PIKK 

protein family is hSMG1. Similar to other PIKKs, it 

is a huge protein with 3661 amino acid residues 

and has a molecular weight of 410 kDa. It 

participates in nonsense-mediated mRNA decay 

surveillance mechanism by interacting with the 

highly conserved mRNA surveillance complex that 

includes hUPF1/ SMG2, hUPF2, and hUPF3. 

SMG1 is reported to phosphorylate the C-terminal 

of hUPF1 at SQ motifs forms an SMG1C complex 

in combination with SMG8 and SMG9 during the 

phosphorylation process. The SMG1C facilitates 

the NMD (nonsense-mediated mRNA decay) 

initiation by recruiting UPF1 and UPF2 in close 

proximity, thus improving their accessibility to the 

kinase domain (101). At the same time, the 

mutated SMG-1 with loss of function mutation in 

catalytic domain ceases to display commendable 

phosphotransferase activity, hence, confirming its 

role as a kinase (102). There is evidence that 

supports the fact that UPF1 phosphorylation by 

SMG1 is not a direct phenomenon, rather it is 

triggered independently by UPF2 or UPF3b in 

addition to the other members of SURF i.e. SMG-

1-Upf1-eRF1-eRF3 complex and its association 

with exon junction complex (EJC) (103), (17). In 

addition to this, the hSMG1 activity is reported to 

be inhibited by wortmannin, a known inhibitor for 

mTOR. However, despite the presence of the FRB 

domain, the hSMG1 is not sensitive to rapamycin 

(104). It is reported to be activated during 

genotoxic stress and is functionally relatable to 

ATM kinase. Also, it is stimulated by exposure to 

UV or IR radiation (105). Other than its central role 

in NMD, hSMG1 also participates in protection 

against TNFα (Tumor Necrosis Factor-alpha) 

induced cell death by providing stability to FLIPL 

(FLICE-like inhibitory protein, long form) protein 

and diminishing the impact of caspase-8/10 

dependent apoptotic cascade (106). 

The molecular architecture of hSMG1 is 

similar to other six members of the PIKK family of 

kinases with a conserved kinase domain that 

participates in autophosphorylation as well as 

substrate phosphorylation. As described through 

cryo-EM studies, the hSMG1 structure comprises of 

a dense ‘globular head’ and a ‘thinner arm’. The 

globular head corresponds to the C-terminal FAT, 

FRB, KD and FATC domains that form a cleft for ATP 

binding, when compared to mTOR structure. 

Whereas, the thinner bent arm corresponds to the N-

terminal region populated with HEAT repeats similar 

to DNA- PKcs (101). The super-helical HEAT repeats 

in hSMG1 are comparatively shorter when compared 

to other PIKK members (107), (108). In addition to 

the signature domains of PIKK family, hSMG1 has an 

additional insertion of ~1200 residues between the 

catalytic domain and FATC domain that is absent in 

other family members like mTOR, ATM, ATR, DNA-

PKcs or TRRAP. This C-terminal insertion has 

predominant α helices and it functions as the scaffold 

to engage the substrate in close vicinity to the kinase 

domain On comparing the structure of SMG1 with 

SMG1C, it is evident that the HEAT repeats in the 

arm region rotate on interaction with the SMG8-

SMG9 proteins (101). 

Owing to its important role in genome 

surveillance non-sense mediated mRNA decay, 

hSMG1 is predicated as an important target for 

cancer therapy. 

3.6.2. Pyramidine amine deriviatives as 

selective hSMG inhibitors 

In 2012, Ariamala Gopalsamy et al. (110), 

investigated the pyrimidine derivatives as hSMG1 

kinase inhibitors. In their study, they have identified 

https://www.sciencedirect.com/science/article/pii/S0960894X12011183?via%3Dihub#!
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compound-5 as potent hSMG1 inhibitor with IC50 = 

0.45µM. Docking of compound-5 into the PI3K, a 

homology of hSMG1 has revealed that compound-5 

attained a ‘U’ shaped conformation. The nitrogen 

atom of the pyrimidine ring is required for hydrogen 

bonding with Val 882 located in the hinge region of 

ATP binding pocket (Figure 13). 

Further, the complex is stabilized by 

multiple hydrogen bonding interaction between the 

amino group of pyrimidines amine scaffold and 

carbonyl oxygen amide group with Val 882 and Lys 

833. Surprisingly, the p-sulphonamide ring did not 

make any interaction with active residues in 

hSMG1. In addition, compound-5 showed certain 

off-target reactivity towards CDK1 (cyclin 

dependent kinase 1) and mTOR kinase. Further 

optimization of compound-5 led to identification of 

compound-6 with excellent hSMG1 selectivity (IC50 

=0.003µM) (Figure 14). Changing the sulfonamide 

substitution from para to meta position has led to 

the formation of hydrogen bonding interaction with 

the backbones of Gly884 and Ala885(110). This 

additional hydrogen bonding could be reasoned for 

excellent selectivity of compound-6 towards 

hSMG1 in presence of other kinases. These key 

residues in the hSMG-1 binding site can be 

explored to improve kinome selectivity of other 

chemical scaffolds targeting hSMG1. 

4. CONCLUSION 

For the last two decades, there has been 

extensive research on the PIKK family of the 

kinase in understanding their diverse role in 

various signaling pathways. Several biological 

aspects of PIKK family members have been 

revealed and gave valuable insights with respect 

to biochemical, cellular and their mechanistic 

function. This review contributes as an overview of 

six PIKK family members with particular emphasis 

on the domain architecture, activators, themed 

localization, phosphorylation of downstream 

substrates, and their roles in signaling pathways 

that trigger cancer cell proliferation and survival. 

Six human PIKK family of kinases have been 

identified till date, which includes Ataxia 

telangiectasia mutated kinase (ATM), ATM- and 

Rad3-related kinase (ATR), DNA dependent 

protein catalytic subunit (DNA-PKcs), mammalian 

target of rapamycin (mTOR), and suppressor with 

morphological effect on genitalia family member 

(SMG1) and transformation/transactivation 

associated protein (TRRAP). All these kinases 

exhibit structural similarities with PI3K with respect 

to the mechanisms of regulating kinase activity. 

5. FUTURE PERSPECTIVES 

The insights in the architectural and 

functional aspects of these kinases have unveiled 

numerous portentous questions for future. Despite 

exhausting research on the varied cellular aspects 

of the PIKK family of kinases, the studies 

elucidating the structure of these atypical kinases 

is meager. This can be attributed to the fact that 

due to their enormous sizes, the expression and 

purification of these complexes to a concentration 

sufficient for X-ray crystallographic studies is 

apparently a challenging assignment. Their 

organizational inflexibility hampers the structure 

elucidation studies. In addition to this, their 

tendency to interact with protein and DNA 

macromolecules further adds to the intricacy in 

their characterization. Although drug discovery is 

at its technologically and genomically advanced 

era referred to as ‘precision medicine’(120), yet 

structure-based drug design can help researchers 

to synthesize inhibitors with minimized cross-

 
 

Figure 13. Binding pose of 0VU with hSMG. Protein structure is 

highlighted in blue colour and interacting residues are represented 

as tube model (orange colour). Inhibitor is displayed as tube model 

(magenta colour). 
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reactivity, hence, it needs more thoughtfulness 

and specific approach for the divulgence. 
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