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1. ABSTRACT 

Delineation of the bladder under a dynamic 

contrast enhanced (DCE)-MRI protocol requires 

robust segmentation. However, this method is 

subject to errors due to variations in the content of 

fluid within the bladder, as well as presence of air and 

similarity of signal intensity in adjacent organs. 

Introduction of the contrast media into the bladder 

also causes signal errors due to alterations in the 

shape of the bladder. To circumvent such errors, and 

to improve the accuracy, we adapted a machine 

learning paradigm that utilizes the global bladder 

shape. The ML system first uses the combination of 

low level image processing tools such as filtering, and 

mathematical morphology as preprocessing step. We 

use neural network for training the network using 

extracted features and application of trained model 

on test slices to compute the delineated bladder 

shapes. This ML-based integrated system has an 

accuracy of 90.73% and time reduction of 65.2% in 

over manual delineation and can be used in clinical 

settings for IC/BPS patient care. Finally, we apply 

Jaccard Similarity Measure which we report to have 

a mean score of 0.933 (95% Confidence Interval 

0.923, 0.944) 

2. INTRODUCTION 

Image segmentation of pelvic organ 

structures is particularly challenging due to many 

factors, including similarities in image signal contrast 

between different organs, signal alteration from off-

resonance and motion variations propagated by 

extraperitoneal or parametrial fat, and the presence 

of fluid and air in the cavities of the pelvis (1). Our 

work concerns a unique segmentation problem that 

involves segmentation of all images in a dynamic 

time series (temporal information) of images under 

contrast injection (2). The clinical procedure includes 

the insertion of a catheter and infusion of a contrast 

agent via this catheter that causes the bladder to 

gradually distend, which must be tracked (2). The 

application of interest for this project concerns the 

development of a clinical protocol for imaging 

interstitial cystitis/bladder pain syndrome (IC/BPS) 

(3). This protocol includes evaluation of the 

permeability of the bladder wall (2). We have applied 

machine learning (ML) within our image 

segmentation methodology to improve the 

performance against the manual segmentation. This 
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work aims to reduce the amount of time that 

radiologists and technologists spend on manual 

segmentation. We hypothesize that we can improve 

the efficiency and accuracy of image segmentation 

for expanding bladders (and perhaps other organs) 

through a novel integration of ML. 

As we are interested in visualizing the soft 

tissues of the organs and the surrounding areas, and 

ultrasound and MRI are more suited for this 

application in IC/BPS evaluation, we focused on a 

review of the literature with imaging modalities that 

are better at visualizing the soft-tissue organ walls. 

Magnetic resonance imaging (MRI) may be the most 

suitable, but ultrasound (US) is also a viable non-

ionizing modality (4). Both MRI and US processing 

tools have advanced quickly. Image segmentation 

techniques are currently classified into layer-based 

and block-based segmentation methods (5, 6). The 

layer-based techniques use different object detectors 

to define shape mask depending upon depth and 

appearance of the image. Block-based segmentation 

is based on various features found in the image. The 

block-based techniques are further classified into 

region- and edge-based techniques. The region-

based techniques are based on discontinuities in the 

image, while the edge-based techniques are based 

on similarities of image features. A brief description 

of these two techniques is provided later. Many 

current texts provide a variety of image segmentation 

algorithms and tools based on these techniques (5-

7) These algorithms are not applied typically as 

singular instances, however, but are stepwise 

performed. The current methods are more likely to 

incorporate the combination of techniques into a 

segmentation pipeline in a series of steps to derive a 

final segmentation.  

In 2010, Ma et al. (8) produced a review of 

image segmentation that focused more specifically 

on organs in the pelvis. While this review was not 

comprehensive of all techniques, Ma et al. organized 

the algorithms into three broad categories for image 

segmentation within the pelvis. The classifications 

were 1) those based on clustering techniques; 2) 

those based on thresholds of distinctive image 

features, such as image intensity (followed by region 

growing methods) and/or image gradients, and; 3) 

those based on parametric deformable models.  

Clustering-based image segmentation 

methods have been particularly appealing, especially 

in inter-modality combination with MRI (9). For inter-

modality image segmentation, Bedzek provided a 

review of clustering techniques that described how 

T1-, T2-, and PD-weighted MR images can be 

organized to create a feature basis for clustering 

techniques. The Bedzek work exclusively involved 

studies of the brain. There appear to be few 

examples that apply clustering techniques outside of 

the brain. However, in 2011, Tamilselvi applied k-

means clustering to image segment the renal calculi 

(10). 

Image segmentation methods based on 

image features have an important role, due to their 

common application across many organ systems. 

The main advantage of these techniques is that they 

capture statistics differently for different tissue types, 

are convenient to design, and are algorithmically 

faster to implement. The primary goal of image 

segmentation built on image features is to 

differentiate image portions based on a discontinuity 

or a similarity among the features in the image. 

Importantly, an image region can be defined by 

similarity of neighboring image values, or it can be 

described by defining the boundaries of the region. 

Thus, two popular strategies adapted for such feature 

segmentation are region-based and edge-based. In 

the pelvic image segmentation literature, Rundo 

(2016) describes a multiple seed region-growing 

method based on neighboring signal intensities that 

were used for image segmentation of uterine fibroids. 

Edge-based image feature segmentation methods 

using Sobel filtering were applied by Padmapriya to 

delineate the boundaries of the bladder (11). Sobel 

filtering is a classic form of edge detection (5). 

However, Canny filtering applies additional 

optimization terms and is considered more modern 

(12). 

While Ma referenced a third class of image 

segmentation as originating from deformable model 

methods, these methods can be classified more 

broadly under partial differential equation (PDE)-

based image processing methods (13, 14, 15). In 

deformable modeling, control points are selected and 

contours are evolved to define the boundaries of a 

region (14). The curves are evolved through 
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calculations that include PDE terms. Geometric 

properties, such as spatial derivatives, and/or 

curvature are incorporated as a mathematics 

functional that applies a calculus of variations 

formalism (16-18), These geometric properties are 

particularly suitable for the adjustment to edge 

structures and aid in the regularity of the 

curves/surfaces within the evolving contour structure 

(14, 19) or pair of contours with constraints (19,20) In 

previous work with cervical cancer, we applied 

iterative deformable models for the image 

segmentation of tumors that had spread to the uterus 

(18). More recently, Duan et al. developed a coupled 

level-set segmentation, a PDE-based method, which 

was applied to the bladder wall for non-contrast T1-

weighted images in six subjects (21). The coupled-

level set was then further refined by Han of the same 

research group, who continued to augment the 

bladder segmentation methodology by applying 

Adaptive Markov Random Fields (22). 

Building on previous experience, we have 

sought to extend an image segmentation 

methodology to incorporate ML. Our techniques are 

particularly suited to the evaluation of IC/BPS (2). As 

a matter of clinical assessment, the bladder 

urothelium is normally impermeable to urinary 

wastes, and a disruption of the permeability barrier 

allows leakage that can result in inflammation. 

Imaging acquisition during the intravesical 

administration of gadolinium diethylenetriamine-

pentacetate (GD-DTPA) has been shown to identify 

changes to bladder urothelium in IC/BPS patients vs. 

controls (2). As this research is being translated to 

clinical practice, one of the first goals of our work is 

to select features that lend themselves to an efficient 

and generalizable process by which ML can be used 

to discriminate features based on data-driven 

classification (23, 24, 25) 

The focus of this work is the proposition of 

a novel technique that propagates and modifies an 

initial control point boundary selection throughout the 

DCE-MRI perfusion series. To accomplish our 

protocol, we aimed to provide a segmentation of the 

rim of the organs in the presence of many complex 

confounders, and manage accuracy across 

numerous images. Combined with the more complex 

aspects of concurrent T1-contrast uptake, the 

distention of the wall and artifacts introduced from the 

catheter itself in the field of view make this a 

challenging problem with the unique potential to be 

aided by ML techniques. The urinary bladder 

distends and stretches to accommodate wall 

changes and adjust to many other peripheral organ 

surfaces and edges (Figure 1A). While a single 

manual segmentation was not a significant work/time 

load for our clinical team (radiologists and 

technologist), the inefficiencies introduced by 

multiple cases and the time required to perform 

multiple time series segmentations would be 

problematic. To address these challenges, we 

created a semi-automated assistive tool, and 

implemented it through a combination of supervised 

ML techniques based on edge detection and 

morphological filtering that included terms that reflect 

deformable, model-based correction features. 

3. MATERIALS AND METHODS 

Nine subjects were evaluated in a HIPAA-

compliant and IRB-approved study at the University 

of Oklahoma Health Sciences Center. Imaging was 

performed using a T1-weighted spin echo images 

acquired in the coronal direction with a TE/TR of 

10/700 ms, 320x160 matrix, FOV=36 cm, and ST=4 

mm on a 3T MRI wide-bore system. Image sets were 

obtained over 30 min at 8 different time points. 

Figures 1A through Figure 1H show the challenge of 

bladder shape alteration across different time series 

points in a fixed slice position. Figure 1 illustrates an 

example work-through for a single patient. A 

summary of our methodological steps follows: 1) 

generate a rapid initial segmentation of the pre-

contrast images; 2) mark key control points for each 

slice on a single time series; 3) apply Canny Edge 

Filter that was morphologically dilated/eroded to 

bound the area of search; 4) find edge values along 

vectors that are estimated normal and that pass 

through each control points, as described further in 

this document, and; 5) integrate ML with selected 

image features of Menger curvature and derivatives 

of second-order curves to automate the 

segmentation of the subsequent time points.  

One of the first steps in our image-

processing pipeline is the application of 

morphological filtering. The initial contour was 
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derived from control points that are positioned in 

an array. Initial control points were placed 

manually by the user (technician and/or 

radiologist) to mark the boundary of the first 

bladder series, and were marked sequentially from 

first to last control point in a clockwise fashion. 

Careful placement of the initial points on one of the 

dynamic series sets was useful, particularly in 

overcoming the multiple possible confounders (1) 

associated with imaging organs in the pelvis at 

time point 1 (Figure 1B). Catheter insertion 

provided an additional challenge, as the catheter 

points should not be contained within the search 

boundary. The control points create a polygonal 

region of interest (ROI) that is converted into a 

binary spatial map. This binary map represents 

whether points in the image are inside or outside 

of the region (setting them to 1 if inside and 0 if 

outside). These maps can then be morphologically 

filtered to mark in which part of the image the 

search should occur in subsequent steps of the 

image processing pipeline.  

 
 

Figure 1. A. The initial bladder position is shown before significant contrast uptake. B. Segmentation image from the first time point that will 

be propagated for to this slice. C. The control points after region growing. D. Mask for the same slice with the E. Canny edges mapped across 

the entire image. F. Masked Canny edge identifying the edge of interest when the search space is restricted to masked morphological filter 

operations (dilation and erosion) to restrict the search space for edges, as described further in the latter part of the text. G. shows the bounding 

region with control points. Orthonormal search is performed between inner to outer edge. H. shows an example of Menger Curvature values 

used in the machine learning algorithm for inclusion/exclusion of jagged points. I. shows final results. 
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This morphological filtering is a 

nonlinear-shaped image processing technique that 

involves a structuring element that operates over 

the binary spatial map. Some basic definitions that 

operate on a structuring element B are included as 

a review for the reader here. Bz is the set of points 

in which translation of B by the z units is 

considered and given by the following formula: 

𝐵𝑧 = {𝑐 | 𝑐 = 𝑏 + 𝑧 𝑓𝑜𝑟 𝑏 ∈ 𝐵} 𝑤𝑖𝑡ℎ 𝑧 ∈ 𝑅𝑁  (1) 

Another notion concerns the symmetric set 

of B, which is given by: 

𝐵𝑆 = {𝑑 | 𝑑 = −𝑏 𝑓𝑜𝑟 𝑏 ∈ 𝐵} 𝑤𝑖𝑡ℎ 𝑑 ∈ 𝑅𝑁  (2) 

To create the bounds of search, using 

morphological filtering the structuring element B is 

positioned at every location in the image, and is 

then compared with the corresponding 

neighborhood of pixels. While there are several 

morphological operations, whether the element is 

fully contained within the neighborhood is a 

concern, while other morphological filtering 

operations test whether the element simply 

intersects the neighborhood. The erosion of A by 

B is given by the following relationship, in which 

the translation of B is fully contained within the 

binary image A:  

𝐴 ⊝  𝐵 =  { 𝑧 ∈  𝑅𝑁 | 𝐵𝑧  ⊆  𝐴 } (3) 

For the application of morphological 

erosion, we selected a 5x5 disk-structuring 

element that was performed to produce an interior 

boundary ROI. For example, the dilation 

morphological operation with a structuring element 

is a technique that adds layers of pixels to the 

outer boundaries of regions in the present study. 

The dilation is obtained by:  

𝐴 ⊕  𝐵 =  { 𝑧 ∈  𝑅𝑁 | (𝐵𝑆)𝑍 ∩ 𝐴 ≠ ∅ } (4) 

In the present study, the dilation 

morphological operation was applied using a 9x9 

disk-structuring element to thicken the outer 

boundary of search. On a separate set, the erosion 

operation has the opposite effect of dilation, as it 

reduces the shape by removing layers of pixels 

from both the inner and outer boundaries of 

regions.  

Note that in our case, the erosion 

operation was applied with a 5x5 disk-structuring 

element. This element was smaller than the 

dilation because: 1) it is less likely that the bladder 

will shrink as contrast is being added, and 2) the 

catheter should not be included in the interior 

boundary for search. Subtracting morphologically 

the binary image of the erosion map from the 

binary image of the dilation mask provides the 

boundaries for search. In Figure 1C, the outer 

examples are provided for the outer boundary and 

inner boundary search. The difference between 

the dilated and erosion sets would be the regions 

of search. iHere the resultant set (shown in the 

shaded region in Figure 1B), R is the set operation 

of the dilated set, D with the removed eroded set, 

E as per operation. 

 (the shaded 

region in Figure 1B) 

After morphological filtering is applied 

and used to bound the area of search (Figure 1D), 

Canny filter edge points can be constrained by the 

binary mask R. For each control point, a direction 

search is applied along an approximation of the 

normal direction of the surface (Figure 1F). This 

was calculated at each control point by taking the 

two neighboring control points considered to be 

circularly adjacent and calculating an approximate 

normal that passes through the center control point 

(Figure 1G). The searches are performed along 

this normal for that control point at the start and 

end of the morphological boundary. Note, to find 

these boundary edge points, we applied a line 

optimization technique that is used in 

multidimensional optimization methods.  

We calculated the bounding points by using 

a golden ratio bracketing search (24). This is 

performed by geometrically expanding the search 

along the direction vector until a subsequent 

bounding region is outside of the region of interest. 

For bracketing, once a point is located outside of the 

region, a third point is found using the golden ratio. 
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Then, comparisons are performed between the 

smaller interval of three points in which one point 

is in the set and the other is out of the set (24). 

These bracketing proceeds until the movement 

ratio converges to a single pixel step, thus marking 

the boundary. Along the normal vector for that 

particular boundary and from the interior edge 

(along the erosion edge) to the exterior edge is 

calculated and retained into an array noting the 

locations of Canny Edge points. The number of 

edge points that lie along the vector and the 

locations are stored within an enumerated data 

structure for use by the ML algorithm.  

To encapsulate the shape features of 

curves into the ML model, we incorporated several 

features. The main features are based on Menger 

Curvature (MC) and the Dot Product Angle (DPA), 

which incorporate three adjacent contour points to 

generate metrics that describe the shape that 

would reflect the internal energy of the curve when 

there is more local bending and/or jaggedness. A 

pictorial of these metrics is shown in Figure 2. The 

general formula for the curvature is a way to 

evaluate curvature when given three points in a 

plane, and was named after the late 

mathematician Karl Menger (26). The curvature 

evaluation (at point x0) is given by the following 

formula: 

𝐶(𝑋0) =
4𝐴

 ‖𝑥0−𝑥−1‖ ‖𝑥+1−𝑥0‖ ‖𝑥+1−𝑥−1‖
 (5) 

A second feature metric is used to calculate 

the central angle (at x0) through the dot product of 

the two adjacent vectors (x0,x-1) and (x0,x+1). Note 

that the resultant angle is normalized between -90 

and 90 degrees.  

𝑎𝑥0
= 𝑐𝑜𝑠−1(

(𝑥0 , 𝑥−1)→ ∘ (𝑥0 , 𝑥+1)→

 ‖𝑥0−𝑥−1‖ ‖𝑥0−𝑥+1‖ 
) (6) 

To create two additional metrics, we added 

numerical differentials and applied these operations 

to neighboring point values. For example, we 

selected the maximum first-order difference of the 

curvature (MDC) between local Menger curvature 

(eq. 5) at the current point (at x0) with the curvature 

of its neighbors. This results in the third feature: 

𝑀𝐷𝐶𝑥0
= 𝑚𝑎𝑥 {|𝐶(𝑋0) − 𝐶(𝑋−1)|, |𝐶(𝑋0)

− 𝐶(𝑋1)|}                               (7)  

For the fourth feature, we applied the 

second-order numerical differential estimate of the 

angle (SOA) as another feature measure that was 

derived using the angle estimation as calculated in 

 
 

Figure 2. Illustration of two additional ML features used to improve the segmentation: Menger Curvature and second-order dot-product, which 

produces an estimate of the second-order change in the angle discretely.  
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eq. 6 above: 

𝑆𝑂𝐴𝑥0 
= [𝑎𝑥0

−
1

2
(𝑎𝑥−1

+ 𝑎𝑥+1
)] (8) 

These numerical derivatives are a 

simplified, data-driven way to reflect the shape 

properties of the contours used to segment the 

surface. Such features were incorporated in the 

ML algorithm to reflect the shape and curve 

parameters and reflect the internal energy of the 

surface, such as the bends in the curve. 

M is used to evaluate the best index of 

edge values that lie along the normal direction 

between the eroded and dilated regions at each 

control point. Incorporated features that capture 

shape characteristics include local Menger 

curvature (MDC) and changes in angle values 

(SOA). ML was applied using the machine learning 

toolbox with Matlab (Natick, MA) with a neural 

network design. ML parameters included the use 

of 70%, 15%, and 15% of the points that 

corresponded to percentages used for training, 

 
 

Figure 3. Illustration of the second patient with intermediate steps (the first patient was shown in Figure 1).  
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validation, and test sets, respectively. Such 

conventional parameters for percentages are used 

frequently for machine learning algorithms, but we 

also tried several other closely related 

percentages without significant changes to the 

results. For example, to verify that ten hidden 

nodes were sufficient, we doubled the number of 

hidden layer elements to twenty nodes, and 

observed little change in accuracy. 

Finally, we use the Jaccard index, which 

is used to compare the similarity of data sets to 

provide a similar area of overlap between expert and 

algorithm-determined structures. The index is 

defined as the size of the intersection divided by the 

size of the union of the sample sets: 

  (9) 

Where, 

 

The Jaccard coefficient measures similarity 

between expert delineated (set A) and ML-algorithm 

(set B) created boundaries with the maximum 

 
 

Figure 4. Illustration of the third patient with intermediate steps. 
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possible value of J=1.00 for an exact match. 

4. RESULTS  

The accuracy of our method was 

determined by comparing positions and closest 

edges between the technologist-/radiologist-

specified edge points. All intermediate steps are 

shown for the remaining eight patients are shown 

in Figure 3 through Figure 10. The results from the 

machine learning produced 6400 control points to 

be evaluated (in a subset across all dynamic series 

and patient sets in our evaluation). As previously 

stated, there are complex challenges associated 

with segmenting organs in the abdomen and pelvis 

(Figure 1B). With the application of ML, accuracies 

for the training set=90.0% validation set= 91.6%, 

and test set=90.73% were improved. This 

corresponded to cross-validation error of the 

training set=2.93, validation set=8.22, and testing 

set=8.254, in which lower numbers are considered 

better. The ML procedure took 52 epochs to 

achieve convergence, which occurred in ~28 

seconds across all our data points.  

In Figure 11, we illustrate the results of 

the Receiver Operating Curves (ROC) for both 

the training and validation sets. Note that as the 

ROC curves shift upwards, these shapes for our 

ROC curves appear to indicate adequate 

 
 

Figure 5. Illustration of the fourth patient with intermediate steps. 



ML for DCE-MRI segmentation of expanding bladder 

1755 © 1996-2020 
 

performance across classes. The training, 

validation, test and overall confusion matrix are 

shown in Figure 12. Figure 13 illustrates all ROI 

data for all patients on a single figure. Figure 14 

illustrates zoomed images of the ground truth and 

ML segmented ROIs for these patients. The red 

arrow is the computer-generated result, while the 

white arrow is the expert-generated 

result.Additionally, we were interested in whether 

the technique achieved an overall 65.2% time 

reduction over manual segmentation alone, as 

the technologist/radiologist may do some fine-

tuning. However, when using the ML method, 

80.0% of slices had moderate to substantially 

strong placement along the boundary (high levels 

of agreement with the radiologist delineation were 

in the top 37.4% of this group, without large 

corrections). To validate the results, we applied 

the Jaccard Similarity Measure, which we report 

to have a mean score of 0.933 (95% Confidence 

Interval 0.923, 0.944) with the highest possible 

value for complete agreement of 1.00 for that 

measure as shown as a distribution in Figure 15.  

5. DISCUSSION 

For the evaluation of organ permeability, 

we were particularly interested in examining 

 
 

Figure 6. Illustration of the fifth patient with intermediate steps. 
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parenchymal functional changes. This required 

detailed segmentation to assess the bladder rim. 

We have demonstrated that our proposed image 

segmentation method was a fundamental 

component to attempt to overcome the complexity 

due to location and inter-abdominal motion, and 

to manage the numerous time series images 

needed to advance our image segmentation tool 

that permits more of the data features to drive and 

adapt the algorithm. The challenges of dealing 

with abdominal organs that change size with the 

introduction of diluted contrast agents by catheter 

can be formidable. As the procedure to evaluate 

IC/BPS is relatively new, specialized image 

segmentation tools are required; we have 

provided a prototype to perform this analysis. 

Simplification of the algorithm into more natural 

features may be beneficial, as more data are 

acquired. 

Image segmentation of the bladder is 

complex and can rely on many facets and 

processing steps. In each step, specifically tuned 

pipelines for each segmentation evaluation exist. 

Feng et al. (27) demonstrated a comparison of 

several forms of image segmentation methods, 

including a feature-based and PDE level set built 

into a vendor system for radiation therapy. 

 
 

Figure 7. Illustration of the sixth patient with intermediate steps. 
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However, these segmentation methods are 

application-specific and vendors have not yet 

integrated ML techniques into their algorithms, 

which could possibly adapt with datasets and 

changes in environment or improvements to 

acquisition technology. With the specific interest 

to incorporate more unsupervised learning 

applications of deep learning to the bladder, there 

has been some success with computed 

tomography (CT) (28). CT may offer the benefits 

of more image regularity and speed of 

acquisition. However, in our case, CT is 

particularly undesirable due to ionizing radiation 

dose and low-to-poor contrast of the wall 

boundary that is the functional target of our 

evaluation (29, 30). Due to its ability to image soft 

tissues and evaluate permeability of the bladder 

(2, 31), MRI has been our choice for the target 

evaluation of IC/BPS and would have its own 

tuned strategies for evaluation that we have 

sought to evaluate in this work.  

ML is a particularly suitable technique 

for evaluating this problem, since dynamic 

images from multiple time series can be used to 

inform each segmentation step when similar 

adjacent data could be used (for training). 

Similarly, control points from one part of the time 

series can inform the neighboring time points 

using ML techniques. Despite the complex 

segmentation problems in the pelvis, the 

radiologist team was pleased with our 

 
 

Figure 8. Illustration of the seventh patient with intermediate steps. 
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advancement in the image segmentation. We 

were able to manually segment one series within 

the time series from what appeared to be an 

untenable number of images, and adjust 

boundaries to a more manageable number by a 

factor that lowered segmentation time to 34.8% of 

the total. A high level of agreement of 0.933 was 

achieved on the Jaccard similarity measure. The 

data for this project is for monitoring functional 

characteristics of a dynamically changing bladder 

wall and is a unique data set but has a limitation 

in the size of the data. However, we illustrate that 

the potential to improve the speed and objectivity 

of the evaluation. Finally, the method applies an 

AI technique that in the future can both be semi-

automated as well as to adapt from potentially 

newly acquired data. 

6. CONCLUSIONS 

In summary, we have applied an 

integrated pipeline using ML, morphological 

 
 

Figure 9. Illustration of the ninth patient with intermediate steps. 
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filtering and edge detection, and now provide a 

new opportunity for the evaluation of the bladder 

rim to assess permeability. We sought a method 

that requires selecting a modest number of 

control points on the pre-contrasted images, from 

which we employed ML-based segmentation to 

compensate for the swelling size of the bladder at 

the rest of the time points. As shown, this newly 

integrated ML method has been helpful for organ 

wall assessment. This work illustrates that ML 

can be integrated into particularly challenging 

problems to create efficiencies that may make 

future applications, such as clinical applications 

for IC/BPS, easier to implement. One of the goals 

was to improve the time needed to analyze these 

images. We demonstrated an overall reduction in 

time (by 65.2%) with our pipeline. Thus, the 

algorithm we applied achieved a level of 

efficiency for instances in which we have 

introduced contrast agent into the bladder and 

seek to image segment the bladder organ over 

serial time courses. 

7. ACKNOWLEDGMENTS 

Funding for this work was obtained from 

National Institutes of Health (NIH), National 

Institute of Diabetes and Digestive and Kidney  

 
 

Figure 10. Illustration of the tenth patient with intermediate steps. 
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Figure 11. Training and validation ROC. 

 

 
 

Figure 12. Confusion matrices for the results comparing automated segmentation to the points selected by the expert.  
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Figure 13. Results for all 9 patients. The red arrow is the computer-generated result, while the white arrow is the expert-generated result. 

 

 

 

Figure 14. Zoomed-in regions of segmentation for all 9 patients. 
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