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1. ABSTRACT 

Aging leads to and is associated with 

aberrant function of multiple signaling pathways and 

a host of factors that maintain cellular health. Under 

normal conditions, the prolongevity, 5' AMP-activated 

protein kinase (AMPK), is dedicated to the 

homeostasis of metabolism and autophagy for 

removal of damaged cellular compartments and 

molecules. A host of sirtuin family of molecules, that 

extend life-span, regulate metabolism and repair 

DNA damage, and possess either mono-ADP-

ribosyltransferase, or deacylase activity. Another 

group of pro-longevity factors, include FOX (forkhead 

box) proteins, a family of transcription factors that 

regulate the expression of genes involved in cell 

growth, proliferation, differentiation, and longevity. 

Nicotinamide phosphoribosyltransferase 

(NAmPRTase or Nampt) catalyzes the condensation 

of nicotinamide with 5-phosphoribosyl-1-

pyrophosphate to yield nicotinamide mononucleotide 

(NMN), a requisite step for production of NAD+, which 

is known to increase longevity. Loss of Klotho, a 

transmembrane enzyme that controls the sensitivity 

of the organism to insulin and suppresses oxidative 

stress and inflammation, leads to premature aging in 

mice. Hydrogen sulfide and transsulfuration 

pathways are crucial to the long life and are required 

in protection of cells against damage. Aging also 

leads to the imbalanced activation of other pathways 

and factors including p53, insulin and IGF signaling, 

P13K/AKT, mTOR, PKA, RAS, RTK, MEK, ERK, 

MAPK, CRTC-1/CREB and NFκB. Such aberrant 

cellular functions, disturb cell metabolism, derail 
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autophagy and other housekeeping actions, inhibit 

cell division, induce inflammaging and 

immunosenecence, cause stem cell exhaustion and 

induce either senescence, apoptosis or cancer. 

2. INTRODUCTION 

Aging becomes evident in all human beings 

by loss of the ability to reproduce, and extensive 

damage and loss of function in organs, tissues, cells. 

Although, it is not argued that, the age related 

diseases, are not the cause rather are the 

consequence of aging, many have argued that, 

changes and damages that occur at the cellular level, 

play a causative role in aging. However, the current 

cell-centric hypotheses of aging merely explain, 

some but not all, hallmarks of aging in biological 

systems (1-6). Thus, the most proximal and 

fundamental causes of aging have remained as 

major conundrums in biology (7-9). Here, I 

summarize the signaling pathways and molecules 

that maintain the cellular homeostasis and health. 

However, the function of these pathways 

progressively gets corroded and such aberrant 

functions, ultimately, lead to an imbalanced signaling 

and activation of molecules that cause cells to 

senesce, and if the damage is severe, to induce 

apoptosis or initiate the processes that lead to 

tumorigenesis. 

3. SIGNALING PATHWAYS AND 

EFFECTORS OF AGING 

3.1. AMPK 

AMPK is a serine/threonine protein kinase 

and central regulator of cellular and organismal 

metabolism that resides at the heart of cellular 

functions including growth, autophagy, polarization, 

and metabolism in eukaryotes. AMPK senses energy 

requirement of cells, inhibits anabolic pathways, 

promotes catabolic pathways and induces ATP 

production. AMPK is a highly conserved energy 

sensor comprised of a catalytic α and regulatory β 

and γ subunits which are differentially expressed and 

assembled in mammalian tissues. AMPK is activated 

by allosteric regulation by the increased levels of 

AMP, ADP and NAD+ which restores and maintains 

cellular ATP (10-12). AMPK is also activated by 

upstream kinases including transforming growth 

factor-β-activated kinase 1 (TAK1) which can activate 

AMPK by phosphorylating the catalytic α subunit at 

Thr172, serine/threonine kinase 11 (LKB1), and by 

Ca2+/calmodulin-dependent protein kinase kinase β 

(CaMKKβ) (13-15). 

AMPK is activated in response to normal 

physiological signals including exercise, hormones, 

and phytochemicals as well as a host of pathological 

conditions. Activation of AMPK can be contextual, for 

example, AMPK can be activated or inhibited by 

developmental and environmental cues, or by 

adiponectin, ghrelin and leptin in a tissue specific 

manner (16-17). AMPK is de-activated by protein 

phosphatases (PP), such as PP2A, PP2Cα and 

Ppm1E (18-28). During stress, AMPK drives energy 

production by stimulation of use of glucose and fatty 

acids and reduces energy consumption by inhibiting 

protein, cholesterol and glycogen synthesis (10-11). 

AMPK also inhibits oxidative stress by 

induction of mitochondrial UCP2 which represses 

superoxide production and inflammation (23-26). 

Activation of AMPK also induces the expression of 

thioredoxin, a disulfide reductase and prevents the 

oxidation of cysteine residues in proteins. It has been 

suggested that anti-oxidative effects of AMPK is also 

mediated by activation of Nuclear factor erythroid 2-

related factor 2 (Nrf2)/SKN-1 signaling and by the 

induction of expression of anti-oxidative heme 

oxygenase-1 gene via Nrf2 signaling (27). It appears 

that AMPK acts, in concert, with Nrf2 and FoxO3a 

axis in endowing a stress resistant phenotype in long-

lived animals. 

AMPK and its orthologue in C. elegans, 

AMP-activated kinase-2 (AAK-2) control and extend 

life-span and health-span by an integrated signaling 

network that includes metabolic homeostasis, 

enhancement of stress resistance by FoxO/DAF-16, 

Nrf2/SKN-1, and Sirt1 signaling pathways, 

autophagy via the mTOR and ULK1 pathways, 

inhibition of inflammatory response by inhibition of 

NFκB signaling and is assigned to cellular 

housekeeping. Overexpression of AAK-2/AMPK has 

extended the life-span in C. elegans and D 

Melanogaster (28-32). In mice, the knockout of α1 

(AMPKα1−/−) and α2 (AMPKα2−/−) led to different 
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outcomes, and only the α2 catalytic subunit of AMPK, 

has a negative impact on the health-span. This 

subunit, which was shown to play a major role as a 

fuel sensor, leads to high plasma glucose levels, low 

plasma insulin concentrations, insulin-resistance and 

reduced glycogen synthesis in the muscle (33). 

Unfortunately, such a valuable pathway is 

eroded by aging, depriving cells from the host of 

functions that maintain their youthful state, leading to 

increased oxidative and ER stress, reducing 

autophagic removal of damaged cellular 

components, allowing for emergence of inflammation 

(inflammaging) and loss of energy homeostasis 

leading to accumulation of hyperglycemia and fat 

causing a metabolic syndrome including 

development of insulin resistance, diabetes obesity, 

and cardiovascular disease (10, 34). This loss of 

function of AMPK in aging has been tested by AICAR 

treatment and physical exercise that increased the 

activity of AMPKα2 in the muscles of young and not 

old rats (35). Consistent with this, the activation of 

AMPK induced by muscle contractions, was shown 

to be repressed in muscles of old mice (36). Similarly, 

aging impaired AMPK activation and suppressed 

insulin-stimulated glucose uptake in rat skeletal 

muscles (37). The deficiency of AMPK exacerbated 

aging-induced myocardial dysfunction (38). In mouse 

brain, although, the baseline activity of AMPK was 

higher in old animals as compared to their younger 

counterparts, cerebrovascular stroke stimulated an 

increase in AMPK activity in young mice but not in the 

old mice (27). Although the precise mechanism that 

hampers the AMPK activity in aging tissues is not 

clear, certain factors which are known to diminish this 

response, include nutritional factors, some hormones 

and inflammation that is present in aged tissues (39). 

3.2. FOXO 

The FOXO family of transcription factors 

are characterized by a conserved DNA-binding 

domain, the so-called ‘Forkhead box’, or FOX. 

Based on the sequence similarity, this family 

includes more than 100 members in humans, 

classified from FOXA to FOXS (40-43). 

Invertebrates, have only one FOXO gene (daf-16 

in the worm and dFOXO in flies) and mammals 

have four genes named FOXO1 (FKHR), FOXO3 

(FKHRL1), FOXO4 (AFX), and FOXO6 (44-45). 

The four mammalian isoforms of FOXO family 

appear to have distinct, yet, overlapping functions 

that can mask the loss of function of the individual 

FOXO factors (46). 

FOXO proteins act primarily as 

transcriptional activators that bind to the consensus 

core recognition motif, TTGTTTAC, and their activity 

is inhibited by the IIS pathway, whereas, the down-

regulation of this pathway, in response the harsh 

environmental conditions, leads to FoxO activation 

(47-52). 

FOXO members interact with many 

different pathways namely, SIRT1, AMPK, 

insulin/PI3K/Akt, c-Jun NH2-terminal kinase (JNK), 

and inhibitor of nuclear factor kappa-B kinase subunit 

beta (IKKβ) pathways. FOXO1, 3 and 4 have several 

effectors including IIS pathway and PI3K-AKT 

signaling (47, 53). Insulin or IGF-1 both trigger PI3K 

and then serine/threonine kinase, AKT, that 

phosphorylates FOXO factors at three conserved 

residues. This leads to the exit of FOXO factors from 

nuclei and their transport to the cytoplasm, an event 

that leads to a suppression of FOXO-dependent 

transcription of target genes (54-56). However, in the 

absence of Insulin or IGF-1 signaling, FOXOs are 

translocated into the nucleus and activate FOXO 

dependent gene expression. In addition to 

PI3K/PKB-AKT, other kinases, including AMPK, JNK, 

and IKKβ can also phosphorylate FoxO, establishing 

their roles as a master-switch, critical to cellular 

responses (51). The FOXO factors can undergo post-

translational modifications such as phosphorylation, 

acetylation, deacetylation, methylation, or 

ubiquitination and such changes modify their DNA 

binding and transcriptional activity (51-52). 

One of the first evidence that linked FOXO 

to longevity was shown for DAF-16 in C. elegans, an 

orthologue of mammalian FoxOs (57-58). DAF-2 

pathway, which corresponds to the mammalian 

insulin/IGF-1 signaling (IIS), down-regulates the 

activity of FoxO/DAF-16 transcription factor, both in 

mammals and C. elegans. Thus, it became clear that 

such a pathway might shorten life-span. Indeed, loss-

of-function mutations of DAF-2 pathway doubled the 

life-span of C. elegans (57-58). In flies, 
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overexpression of dFOXO has been shown to be 

sufficient to increase longevity (46). Following 

mutations in the insulin/PI3K/Akt pathway, worms 

that lack daf-16 or flies that lack dFOXO, were 

viable but did not show an increase in life-span. 

Several studies have also revealed APOE and 

FOXOs (FOXO1 and FOXO3) to be “longevity 

genes” (59-66). 

The actions of FOXOs on life-span appear 

to be rooted in their evolutionarily conserved roles in 

regulation of glucose and lipid metabolism which 

allows cells to adapt to stress such as starvation (67-

69). Low glucose (low insulin drive), low insulin 

(reduced strength of the insulin signal) and FoxO 

activation all induce a similar metabolic shift. FoxOs 

increase insulin sensitivity and induce expression of 

the insulin receptor and IRS2 (70). FOXOs appear to 

be a “master-switch” for adaptation of cells and 

organisms to food scarcity, ensuring their metabolic 

stability by opposing many of the functions of IIS 

pathway and by induction of cell cycle arrest and 

quiescence, which is reminiscent of the Dauer state 

in C. elegans (71). 

Importantly, FOXOs are critically 

responsive to the oxidative environment in cells by 

upstream regulatory pathways of FOXO or directly by 

sensing oxidation and reduction state of cysteine 

residues, the so-called cellular redox state. In 

response to this read-out, FOXOs increase the anti-

oxidant capcity of cells through enzymes that 

degrade reactive oxgyen species such as catalase, 

manganese superoxide dismutase (MnSOD) and 

GADD45 (72-77). Besides upregulation of anti-

oxidative stress capacity, FoxO activation or low 

insulin both activate Peroxisome Proliferator-

activated receptor Gamma Coactivator 1α (PPGC-

1α), a nutrient sensing system that increases 

mitochondrial biogenesis and induces a shift in 

metabolism from reliance on carbohydrate towards 

fat (78). Thus, it is clear why de-activation of this 

pathway increases the ROS in age related 

pathologies including atherosclerosis (78-79). 

FOXOs also regulate apoptosis and 

inflammation, endow cell resistance, and regulate, 

through unknown mechanisms, the protein 

maintenance, the so-called proteostasis that is 

impaired by aging (52, 56, 80-84). Whereas the 

impairment of PI-3K/AKT-PKB signaling causes 

FoxO activation, the enhanced PI-3K/AKT-PKB 

unleashes an inflammatory state by inducing NFκB 

through activation of the IKK (85). 

FOXOs affect the expression of genes 

involved in autophagy and mitophagy, and more 

specifically, FOXO1 and FOXO3 have been shown to 

activate autophagy (52). The importance of 

autophagy and mitophagy in the function of FOXOs 

is supported by studies that show that defects of 

autophagy are associated with premature aging in 

animal models (86-92). 

Ubiquitin-proteasome system, that 

removes short-lived and regulatory proteins, is also 

subject to regulation by FOXOs, a process that is 

impaired in aging and neurodegenerative disorders 

such as Parkinson's, Alzheimer's, or Huntington's 

disease (93-96). The mode of action of FOXOs on 

this system appears to be due to upregulation of 

ubiquitin ligases and by controlling the composition of 

the proteasome (97-100). AMPK-induced stimulation 

of FoxO/DAF-16, Nrf2/SKN-1, and SIRT1 signaling 

pathways all have been shown to improve cellular 

stress resistance (101). 

Similar to other cells, stem cells are also 

subject to control by FOXOs and such regulation 

appears to be significant in the ability of these factors 

to impact tissue regeneration. For example, deletion 

of Foxo3a leads to the exhaustion of hematopoietic 

stem cells as a result of their constant exit from 

quiescence, an effect that can be prevented by 

increasing the redox state by administration of N-

acetylcysteine (102). Moreover, FOXOs control the 

major stemness factors, OCT4 and SOX2 that 

maintain pluripotency of human ESCs (103). 

3.3. Sirtuins 

The life preserving effects of dietary 

restriction appears to engage the transulfuration 

pathway, H2S production, Nicotinamide adenine 

dinucleotide (NAD+), sirtuins and AMPK. Exogenous 

administration of H2S has been shown to be 

beneficial and afforded C. elegans health-promoting 

effects including stress resistance and improved 
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thermotolerance and led to a 70% increase in life 

expectancy (104). It was shown that such an effect 

required NAD+-dependent deacetylase, sir-2.1 (105). 

We showed that while the production of H2S 

decreases with senescence, the replicative 

senescence can be delayed by exogenous H2S in 

human cells in a NAMPT/SIRT1 dependent manner 

(106). Increasing the H2S to physiological levels, 

upregulated the hTERT, increased telomerase 

activity and increased population doublings (106). 

Members of the Silent information regulator 

(SIRT) 1 family of NAD+-dependent deacetylases act 

as silencers of gene expression by the deacetylation 

of histones and control ribosomal DNA 

recombination, and DNA repair, and confer 

chromosomal stability and longevity in multiple 

organisms and are essential to the beneficial effects 

inducible by dietary restriction (DR) (107-108). 

SIRT1, the best characterized mammalian sirtuin, 

deacetylates many non-histone proteins and impacts 

numerous physiologic processes, including 

apoptosis, metabolism, and stress resistance (109). 

There are experimental evidence that have 

implicated the Sir2 homologs in mammals (SIRT1–

SIRT7) as mediators of key effects of caloric 

restriction (CR) during aging (110-111). SIRT1, 

SIRT6, and SIRT7 show sub-nuclear localization; 

SIRT2 is predominantly cytoplasmic; whereas 

SIRT3, SIRT4, and SIRT5 appear to reside in the 

mitochondria (112). Mammalian SIRT1 is closely 

related to Sirt2 which is required in yeast to maintain 

a silent chromatin state of the ribosomal RNA genes 

and telomeres. The Sirt2 expression diminishes with 

replicative aging allowing transcription and 

recombination of rRNA genes which are known to 

cause toxicity and to limit replicative life-span in yeast 

cells (113-114). SIRT1 is an evolutionarily conserved 

deacetylase that targets histones and several 

transcription factors, and is known to act as an 

energy sensor, that is responsive to AMP and NAD+, 

increases the intracellular concentration of NAD+ by 

increasing Nampt (115-117). The downstream target 

of SIRT1 include PGC-1α, FoxO1 and FoxO3. SIRT1 

deacetylates and subsequently increases the activity 

of LKB1 kinase, an upstream activator of AMPK 

(118). SIRT1 is stress responsive, and localizes at 

DNA damage sites such as DNA breaks to repair the 

damage. Following damage, the trans-localization of 

SIRT1, from basal target genes, allows expression of 

a number of genes whose expression is known to 

increase with age (119). Thus, continuous damage 

and environmental stress, vacate normal chromatin 

occupancy of DNA by SIRT1 and trigger sequential 

and progressive changes in chromatin state over 

time, including accumulation of chromosome breaks, 

mutations, and loss of the youthful gene expression 

patterns. SIRT1 signaling appears to underlie some 

of the effects of CR such as stress resistance (120). 

Besides SIRT1, the chromatin-associated 

sirtuin, SIRT6, targets chromatin by transcription 

factors, maintains telomeres and replicative activity 

and is required for longevity. SIRT6-deficient mice, 

although are small and appear relatively normal after 

birth, exhibit premature aging and show sudden 

drops in serum glucose and IGF-1 levels, defects in 

bone mineral density which are reminiscent of 

osteoporosis, curved spine (kyphosis), loss of 

subcutaneous fat, lymphocyte depletion, and severe 

metabolic defects (121-124). SIRT6 directly interacts 

with NFκB subunit, RelA, and is recruited by RelA to 

promoters of genes. This leads to deacetylation of 

H3K9Ac, a key event that promotes removal of RelA 

and abolishes further NFκB signaling (122). SIRT6 

inhibits the expression of several NFκB dependent 

genes by modulating their chromatin structures 

whereas its depletion leads to a premature aging 

phenotype in keratinocytes (122-123). In SIRT6 

deficient cells, hyperacetylation of H3K9 at the 

promoters of the target genes, increases RELA 

promoter occupancy, and enhances NFκB-

dependent modulation of gene expression and leads 

to cellular senescence and apoptosis. However, such 

a deficiency, has not been associated with telomeric 

dysfunction (124). Haplo-insufficiency of RelA has 

been shown to decrease the early lethality and 

degenerative syndrome of Sirt6-deficient mice (122). 

Thus, SIRT6 is thought to lie at the crossroad of 

aging, rejuvenation, and epigenetics (125). 

3.4. NAMPT 

In Saccharomyces cerevisiae, the PNC1 

gene is part of the NAD salvage pathway, that 

encodes a nicotinamidase that depletes cellular 

nicotinamide by converting NAM to nicotinic acid 

(vitamin B3). PNC1 gene is thought to be a master 
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“longevity regulatory gene” that translates a variety of 

environmental stresses into life-span extension by 

activating the sirtuin family of longevity deacetylases 

(126). Overexpression of PNC1 increases Sir2-

mediated silencing and leads to about 50% increase 

in the replicative life-span in this yeast (127-128). A 

decrease in glucose concentration, from 2% to 0.5% 

is sufficient to increase PNC1 levels by ~4-fold. 

Interestingly, PNC1 levels are also increased by 

more than 4-fold in response to low amino acids, heat 

stress, and osmotic stress, conditions that are known 

to extend the life-span in yeast (128). Thus, it is 

thought that CR induces life extension in yeast 

through activation of PNC1 and Sir2 (126). It has 

been proposed that Nicotinamide 

phosphoribosyltransferase (Nampt), also known as 

Pre-B-cell colony-enhancing factor (PBEF) or Visfatin 

is the functional equivalent of PNC1 gene in 

mammals (126, 129-132). Based on the homology 

between Nampt and the nadV gene of Haemophilus 

ducreyi, Rongvaux et al. proposed and then 

confirmed that Nampt acts as a nicotinamide 

phosphoribosyltransferase (NaMPRTase) (130). 

Nampt is inducible by nutrient deficiency and stress, 

regenerates NAD+, controls sirtuins, and supports 

response to damage and increases life-span (132-

133). 

Nampt is the rate limiting enzyme that 

salvages NAD+ from nicotinamide (126, 129-132). 

Replicative senescence leads to the decreased 

expression and activity of NAMPT in smooth muscle 

cells in culture. Loss of NAMPT and synthesis of 

adequate supply of NAD+ occur with aging, and this 

in turn, reduces SIRT1 activity, leading to cellular 

senescence (134). Artificial inhibition of NAMPT by 

its inhibitor, FK866, leads to premature senescence 

whereas forced induction of Nampt, suppresses age 

dependent increase in p53 expression, increases the 

rate of p53 degradation, raises the activity of SIRT1, 

delays senescence and increases life-span in these 

cells, an effect that can be inhibited by the dominant 

negative form of SIRT1 (135). 

3.5. Klotho and FGFs 

Klotho gene, is named after the spinner, 

one of the three goddesses, Klotho, Lachesis, and 

Atropos that according to the Greek mythology, 

control the life-span of every mortals who, 

respectively, spin, measure, and cut the thread of life 

(136). klotho gene is comprised of 5 exons, giving 

rise to a single-pass transmembrane protein with a 

short 10-amino acid-long intracellular domain, that is 

highly expressed in the brain, kidney, parathyroid and 

pituitary glands. The ectodomain of Klotho protein, 

released in a soluble form (sKlotho) to the blood, 

cerebrospinal fluid and urine, exerts functions that 

are distinct from the transmembrane protein (137). 

sKlotho regulates the activity of ion channels and 

growth factor receptors including insulin/IGF-1 

receptors. In 1997, the klotho gene, was identified to 

be mutated in the klotho mice, that show pre-mature 

aging and age related pathology, characterized by 

hypogonadism, ectopic calcification, impaired bone 

mineralization, premature thymic involution, skin 

atrophy, pulmonary emphysema, neuro-

degeneration, hearing loss, higher levels of serum 

phosphorus, calcium, and active vitamin D (1,25-

dihydroxyvitamin D3) and lower levels of serum 

glucose, and an extremely shortened life-span (136-

137). Mice homozygous for the mutated klotho allele 

(KL−/− mice) although initially appear to be normal for 

3 to 4 weeks, they start to show premature aging as 

evidenced by multiple age-related disorders including 

skin and muscle atrophy, osteoporosis, 

arteriosclerosis, and pulmonary emphysema, and die 

prematurely around two months of age (136, 138-

139). While, a defect in Klotho gene expression in 

mice, leads to degeneration of age sensitive 

processes, the aging phenotypes can be reversed by 

inhibiting insulin and IGF1 signaling, suggesting, that 

Klotho-mediated inhibition of insulin and IGF1 

signaling, contributes to its anti-aging properties 

(139). 

The evidence in humans supports the 

action of Klotho as an aging suppressor since single-

nucleotide polymorphisms in the human KLOTHO 

gene have been show to be associated with altered 

life-span, altered risk for coronary artery disease, 

osteoporosis and stroke (140-147). On the other 

hand, the overexpression of Klotho extends life-span 

(139). Mice that carried the EFmKL46 or EFmKL48 

transgenic alleles of Klotho that were fed ad libitum, 

although did not show a substantial difference in 

growth from wild-type mice nor changes in blood 

glucose levels, had higher blood levels of insulin, 
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likely due to insulin resistance, and lived substantially 

longer than their wild counterparts and generated 

fewer offsprings than wild-type breeding pairs (139). 

Male and not female transgenic mice showed 

significant reduction in insulin and IGF1 tolerance 

tests. Moreover, while Klotho peptide did not inhibit 

the binding of (125I)insulin or (125I)IGF1, it suppressed 

ligand-stimulated autophosphorylation of insulin and 

IGF1 receptors in a dose-dependent manner, leading 

to inhibition of intracellular insulin and IGF1 signaling 

(139). Also, it was shown that inhibition of insulin and 

IGF1 signaling can rescue KL−/− induced phenotypes 

from age-related pathologies, namely, ectopic 

calcification, hypogonadism, skin atrophy, pulmonary 

emphysema, and arteriosclerosis (139). 

Fibroblast growth factors (FGF), namely 

FGF19, FGF21, and FGF23, act in an endocrine 

fashion and regulate energy and homeostasis of 

bile acids, glucose, lipid, phosphate, and vitamin D 

and all require presence of Klotho in target tissues 

(146). Transmembrane Klotho is an obligate co-

receptor for FGF23, a bone-derived hormone that 

forces secretion of phosphate into urine. In mice, 

Klotho deficiency leads to reduced klotho levels, 

hypotrophy of cells in the anterior pituitary gland 

that secrete GH, and decreased activity of 

GH/IGF-1 axis and premature aging. Mice, that 

lack FGF23, retain phosphate and also show a 

premature-aging syndrome, showing a link 

between phosphate metabolism and aging. The 

aging induced phenotype by Klotho is related to 

ability of klotho to regulate GH, since Ames dwarf 

and Snell dwarf mice that lack GH live much longer 

than their normal siblings, and exhibit delayed 

aging. Targeted disruption of the GH receptor/GH-

binding protein gene (GHR-KO mice), the so-

called "Laron dwarf mice," are GH resistant and 

live much longer than their normal counterparts. 

These mice exhibit increased hepatic sensitivity to 

insulin, reduced insulin, reduced plasma glucose, 

lowered hepatic synthesis of IGF-1. They also 

generate a reduced level of ROS and exhibit an 

increased resistance to oxidative stress leading to 

improved antioxidant defense mechanisms, and 

reduced oxidative damage (147). These long-lived 

dwarf mice share many phenotypic characteristics 

that are inducible by CR. 

β-Klotho protein is also predominantly 

expressed in the liver, pancreas and adipose tissues 

where FGF21 regulates metabolic functions by 

activating AMPK-SIRT1 signaling and adaptive 

responses to CR (148). FGF21 signals through 

classic FGF receptors, which act as tyrosine kinases, 

more preferably, the FGFR1c/β-Klotho complex. 

FGF21 is strongly induced in the liver by prolonged 

fasting and plays a key role in eliciting and 

coordinating the adaptive starvation response 

including enhancing insulin sensitivity, decreasing 

triglyceride concentrations, stimulating hepatic 

gluconeogenesis, fatty acid oxidation, and 

ketogenesis and weight loss (148). 

3.6. Hydrogen sulfide and transsulfuration 

pathways 

The trans-sulfuration and its upstream and 

downstream pathways are critically important in an 

array of diverse metabolic functions requisite to 

organismal homeostasis. This involves active 

transfer of thiol and methyl groups in a large number 

of biochemical processes that are vital to normal 

function of DNA, RNA and proteins in mammalian 

cells. The ancestral trans-sulfuration metabolic 

pathway in bacteria exists as a forward pathway that 

transfers thiol groups from cysteine to homocysteine 

to a reverse pathway which exists only in mammalian 

cells and involves the transfer of the thiol group from 

homocysteine back to cysteine. The essential amino 

acid, methionine, is activated, in an ATP-dependent 

manner, by methionine adenosyltransferase, to form 

S-adenosylmethionine (SAM). SAM donates a 

methyl group by methyltransferase, to yield S-

adenosylhomocysteine (SAH), followed by formation 

of homocysteine (149-150). The homocysteine can 

either be re-methylated back to methionine using a 

methyl group donated by methyl tetrahydrofolate 

(MTHF), or is converted to cysteine via trans-

sulfuration pathway and generates cystathionine by 

conjugating it with serine. This pathway is also crucial 

to the conversion of cysteine to major cellular 

antioxidant species, which include GSH, 

glutaredoxins, thioredoxins, taurine, and 

peroxiredoxins as well as hydrogen sulfide (H2S) 

which is vital to life due to its antioxidant, anti-

inflammatory and other cyto-protective properties. 
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Due to its paramount importance, H2S is 

formed by at least three enzymatic reactions as well 

as by chemical means (151). While or cystathionine 

β-synthase (CBS) generates H2S and serine as a by-

product, cystathionine-γ-lyase (CGL, also known as 

cystathionase, CTH, or CSE), by using cysteine as 

the substrate, generates H2S and produces pyruvate, 

and NH3 as by-products of this reaction (152-154). 

The activity of CBS is enhanced by binding to the 

carboxy-terminus of SAM and glutathionylation of 

Cys346, while it is suppressed by nitric oxide (NO) and 

carbon monoxide (CO) that bind to a heme group at 

its amino-terminus (153-154). A third enzyme, 3-

mercaptopyruvate sulfurtransferase (3MPST or 

3MST) produces H2S by an enzymatic action 

involving cysteine aminotransferase (CAT), and by 

virtue of using D-amino-acid oxidase (DAO), 

generates H2S from D-cysteine in presence of 

thioredoxin (153-154). 

Glutathionylated CBS increases the 

production of cysteine and H2S, which, in turn, 

promotes the production of other antioxidant species. 

For example, glutathione, a major antioxidant and 

reducing agent is produced in mitochondria by the 

metabolism of H2S by sulfide quinone 

oxidoreductase (SQR). Metabolism of H2S is also 

important to the formation of poly-sulfides that act as 

major cellular reservoirs for H2S. Hydrogen sulfide 

(H2S) exists in free form (20%), and dissociates 

readily in water and produces H+, a large (80%) 

amount of HS−, and trace amounts of S2− (153-154). 

H2S-derived sulfur sulfhydrates the reactive cysteine 

residues of target proteins and enzymes and 

changes their activity. Together, H2S and other 

antioxidants as well as sulfane sulfur protect cells 

against diverse forms of injuries (155). For example, 

oxidative stress is a positive regulator of the trans-

sulfuration pathway and it activates CBS, promotes 

conversion of methionine to cysteine and increases 

synthesis of GSH which protects cells by oxidation, 

by generating glutathione persulfide (GSSH or 

GSS−). Cys346 of CBS can also be oxidized to a 

sulfenic acid which then reacts with glutathione. 

H2S exhibits a classical U-shaped dose 

response with negative impact at supra and sub-

physiological levels and positive effect at 

physiological doses ranging from protection from 

ischemia-reperfusion injury to life-span extension 

(153-156). Exposure to a high concentration of H2S 

leads to eye and olfactory irritation, neurotoxicity, 

inhibition of electron transport chain (ETC), 

respiratory distress, headache, edema and death 

(157). Dysregulated endogenous H2S metabolism 

results in a range of pathologies from inflammation to 

β cell dysfunction and diabetes. Reduced levels of 

H2S are associated with negative consequences. For 

example, mice with genetic defects in endogenous 

H2S generating enzymes, CGL, or CBS have been 

shown to be susceptible to hypertension, 

neurodegenerative disorders, and vascular 

complications associated with diabetes and 

osteoporosis (158-161). There are additional 

evidence that supports the protective effect of H2S in 

organ systems and age induced pathologies 

including a hypoxia-resistant reduced metabolic rate 

leading to suspended animation resembling torpor, 

reducing blood pressure by its action in causing 

vasodilation, protection against ischemia-reperfusion 

injury, improving glucose tolerance and insulin 

sensitivity, delaying cognitive decline in animal 

models of Alzheimer’s disease, and increasing 

longevity in yeast, worms, and mammalian cells (106, 

162-169). The generation of ROS is increased in 

knockouts of MPST-1, a major enzyme that drives the 

production of hydrogen sulfide in C. elegans. This 

deficit in the short lived animals could be overcome 

by the administration of H2S donor, GY4137, which 

resulted in an extended life-span (170). This 

treatment also delayed the onset of detrimental 

impact of senescence as assessed by pharyngeal 

contraction and defecation (170). 

3.7. p53 

The p53 is a transcription factor with potent 

tumor suppressor properties that is known to regulate 

a large number of genes with effects on stress, 

metabolism, cell cycle, apoptosis, senescence and 

autophagy (171-178). p53 regulates mitochondrial 

energy metabolism and mitochondrial biogenesis 

(179). p53 also controls the mitochondrial integrity by 

inducing Mieap, a protein which removes oxidized 

proteins from mitochondria (180). 

p53 is a potent inducer of antioxidant 

defense proteins and decreases aging-associated 
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oxidative stress (181). Different stresses trigger the 

phosphorylation of Ser-20 at the trans-activation 

domain of p53 protein (182). Unfortunately, the 

transcriptional activity of p53, p53-dependent 

apoptosis and efficiency of p53 in response to cellular 

stress, are significantly impaired by aging (183). The 

reduced p53 functional activity during aging has been 

attributed to decreased autophagy, and increase in 

oxidative stress, antagonistic effect of NFκB on p53 

function and NFκB induced enhancement of the 

inflammatory responses (85, 174, 184-186). 

In response to energy deficiency, AMPK 

activates p53 by phosphorylating it at Ser-15 causing 

cell cycle arrest (187). On the other hand, enforced 

expression of AMPKα2 increases the transcription 

of p53 gene and enhances its phosphorylation at 

Ser-46 leading to apoptotic cell death (188). Thus, 

activation of p53 comes at a cost since cells with 

active p53 undergo either cellular senescence or 

apoptosis (189). 

By virtue of reducing development of 

cancer, p53 is considered to be an aging suppressor 

and aids in the extension of the life-span (190-192). 

The p53-deficient mice do not lend themselves to 

examine the role of p53 in aging since they die early 

from malignancy. However, two strains of mice that 

express full-length p53 along with the C-terminal 

fragment of p53 have shown premature aging (192). 

On the other hand, a null mutation in p66Shc, that is 

associated with an impairment of p53 and p21 stress 

response showed, a 30% increase in life-span (193). 

The activation of Arf/p53 pathway, likely by increased 

expression of antioxidant genes, delayed the aging 

process and reduced age-related damages in mice 

(194). 

It is thought that some of the effects of p53 

on organismal aging are mediated by autophagy 

(195-196). Cytoplasmic p53 represses autophagy 

whereas nuclear p53 has the opposite effect and 

stimulates the transcription of DNA-damage 

regulated autophagy modulator 1 (DRAM1) and 

Sestrin 2 proteins (186). It has become clear that 

while increased autophagy extends the life-span, its 

repression can lead to the accumulation of damaged 

molecules with an adverse effect on health-span and 

life-span (186, 197-198). p53 participates in 

autophagy by activation of mTOR and production of 

ROS (199-200). 

Some of the effects of p53 on aging might 

be directed at IIS and mTOR pathways, known to 

induce aging or through MDM2, a major component 

of IIS and PKB/AKT kinase pathway (201). However, 

transgenic mice with an elevated p53 activity that 

exhibit high levels of circulating IGF-1 and tissue-

activated IIS, have been shown to be both short- and 

long-lived (192, 202). 

3.8. Growth hormone, insulin and insulin 

growth factor (IGF) 

The evolutionarily conserved and ancient 

insulin and insulin-like growth factor (IGF) signaling 

(IIS) controls longevity and plays a major role in the 

growth, differentiation and metabolism, in response 

to changing environmental conditions and nutrient 

availability. Mutations that limit the extent of 

insulin/IGF-1 signaling dramatically increase life-

span in C. elegans, Drosophila melanogaster and in 

several mouse models. After being hatched, C. 

elegans undergoes four successive juvenile (larval) 

stages before they mature to an adult hermaphrodite 

worm (203). During food scarcity, crowding and high 

temperature, the larvae of C. elegans exit the cycle 

of growth and development at the third larval stage, 

postpone reproduction and form the so called dauer 

larva which, under laboratory conditions, can survive 

up to eight times longer than normal (204). Daf 

mutants are often long-lived and exhibit dauer-like 

features, such as enhanced resistance to stress 

and/or changes in the metabolism of carbohydrates, 

lipids and amino acids. Cloning and sequencing of 

the daf mutants identified genes that exhibited a 

strong homology to components of the mammalian 

insulin and insulin-like growth factor (IGF) signal 

transduction cascade (IIS) (57-58, 150, 205). In C. 

elegans, in response to food or the sensory 

perception of food, insulin signaling leads to the 

secretion of multiple, insulin-like peptides that bind to 

a common single insulin/IGF-1 like tyrosine kinase 

receptor (DAF-2). Whereas reduction of function 

mutations in daf-18 phospatase, a homologue of the 

mammalian phosphatase and tensin homolog, 

PTEN, abolished the life-span extensions of daf-2 

and age-1 mutants, the reduction-of-function 
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mutations in daf-2, and the kinase components of the 

IIS pathway down-regulated IIS cascade in C. 

elegans and these animals remained active and 

youthful much longer than normal and their life-span 

was increased in by more than twofold (206). 

Although the core of the insulin/IGF-1 

signaling pathway is conserved in invertebrates to 

mammals, the mammalian IIS signaling has greatly 

increased in its complexity in the latter species (207). 

This increased complexity has made it difficult to 

separate the roles of growth hormone (GH), insulin, 

and IGF-1 in longevity. Yet, genetic and metabolic 

characteristics that are associated with a healthy life-

span suggest that the IIS pathway is involved in 

setting the mammalian longevity. Reduced GH, 

insulin and IGF-1 signaling due to various mutations 

have been associated with long-lived phenotypes in 

mice (206). FIRKO mice, that lack the insulin receptor 

in adipose tissues, are also long lived and show 

reduction in fat depots and reduced age related loss 

of insulin sensitivity (208). Reduced IGF-1 signaling, 

due to mutation of its receptor, led to increased 

resistance to oxidative stress and long lived 

phenotypes in Igf1r+/− females, but not males (209). 

Whereas, mutation in Klotho, shortened life-span in 

mice, its overexpression, which inhibits IIS pathway, 

extended their life-span (136, 139). 

GH which is released by the anterior 

pituitary gland controls mammalian growth and 

regulates the biosynthesis and release of IGF-1 by 

the liver and peripheral tissues. Four dwarf mouse 

models Prop1df/df , Pit1dw/dw, GHRHRlit/lit and 

GHR−/− that exhibited reduced IGF-1 production, 

reduced circulating levels of insulin and glucose and 

enhanced insulin sensitivity, were are long-lived 

(210-213). Longest life-extension has been seen in 

mouse mutants, the so-called GH deficient 

hypopituitary dwarfs and the GH resistant 

GHR−/− dwarfs, that show defective GH/IGF-1 and/or 

insulin. Enhancement of insulin sensitivity and 

reduced insulin levels appear to be the primary 

reasons for the longevity phenotype of these mice as 

well as in wild type mice that are subjected to caloric 

restriction (214). 

In humans, it has been difficult to show the 

relationship of the GH/insulin/IGF-1 signaling to the 

longevity due to the complexity of these pathways. It 

can be speculated that low glucose, low insulin and 

preserved insulin sensitivity may represent key 

metabolic features of a human longevity phenotype. 

Defects in insulin signaling has led to insulin 

resistance and diabetes and defects in GH/IGF-1 

caused defects in growth and an increased risk of 

cardiovascular disease (207, 213). Yet, there are 

telltale signs that GH/insulin/IGF-1 signaling plays a 

role in human aging. For example, there are several 

common polymorphisms in IIS genes that were 

associated with longevity and in Italian centenarians, 

genotype combinations at IGF-IR and PI3KCB 

genes, were associated with lower free IGF-I plasma 

levels (207, 214-216). Centenarians of Ashkenazi 

Jewish heritage that showed overrepresentation of 

heterozygous mutations in the IGF-1R gene had a 

small stature and elevated levels of serum IGF-1 

(207, 214-216). 

3.9. P13/AKT 

Phosphatidylinositol 3-kinase (PI3K), along 

with AKT serine/threonine protein kinase and mTOR 

which is downstream of the insulin/PI3K pathway, are 

all involved in conveying the metabolic and mitogenic 

signals. P13Ks are a set of evolutionarily conserved 

and multi-faceted enzymes in flies to mammals that 

generate 3′ phosphoinositides from 

phosphatidylinositol in response to growth factors 

that together with mTOR appear to play a role in 

aging and life-span (217). The most common form, 

PI3K IA, is a functional heterodimer comprised of one 

catalytic and one regulatory unit, encoded by p85α, 

p85β, and p55γ genes (218-220). Adapter proteins, 

such as insulin receptor substrate proteins (IRS1-4), 

by binding to the tyrosine residues, activate PI3K and 

AKT, which regulate downstream targets including 

GSK3β and mTOR (221-222). 

Activated PI3K phosphorylates and 

activates and localizes its down-stream mediator, 

AKT, to the plasma membrane (222). AKT, in turn, 

can activate a number of other factors and pathways 

including FOXO, and mTOR (222-223). Activation of 

AKT is essential to the PI3K-dependent regulatory 

pathways that participate in cellular response to 

oxidative stress whereas inactivation of DJ-1, a 

Drosophila homologue, impairs phosphatidylinositol 



Singlaing pathways and modulators in aging 

60 © 1996-2021 
 

3-kinase/Akt signaling and response to oxidative 

stress (224-225). The pharmacological inhibition of 

PI3K, or induced expression of dominant-negative 

AKT induces cell death during oxidative stress (226-

228). High cholesterol intake which impairs insulin 

signaling, increases serine phosphorylation of IRS1, 

PI3K and AKT activities, and increases oxidative 

stress (229). 

Mutations in some genes that regulate 

P13K have been shown to extend life-span. For 

example, in C. elegans, the mutation in the catalytic 

sub-unit homologue of mammalian P13K, Age-1 or 

loss of CHICO, a Drosophila insulin receptor 

substrate protein, have led to increased life-span 

(230-232). Reducing the activation of the 

PI3K/AKT/mTOR pathway significantly increases the 

longevity in mice as well (233). Common variants of 

both FOXO3A and AKT1 were associated with longer 

life-span in three independent Caucasian cohorts 

(233-234). Residing down-stream from P13K/AKT, 

the activity of mTOR appears to be low in centenarian 

individuals (235). Thus, longevity seems to be 

intimately linked to the reduced activity of the 

IIS/PI3K/AKT/mTOR pathways, suggesting that 

these signaling pathways are important targets for 

pharmacological manipulation for extension of life 

(236). 

3.10. mTOR 

mTOR is a 289-kDa serine-threonine 

kinase that senses cellular nutrient levels. mTOR 

integrates both intracellular and extracellular 

signals and serves as a central hub for cell 

metabolism, growth, proliferation and survival 

(237). De-regulated mTOR has been described in 

diverse age related diseases such as type 2 

diabetes (238-240). Moreover, there is by now, 

substantial evidence that mTOR is a negative 

regulator of life-span. In Drosophila melanogaster, 

life extension can be achieved by the 

overexpression of TOR suppressors, dTsc1 of 

dTsc2, or expression of dominant-negative forms 

of dTOR or dS6K 38. By using genetic 

manipulation, it was shown that depletion of TOR 

( let-363) or RAPTOR (mTORC1 protein 

member; daf-15) by RNA interference (RNAi) in C. 

elegans or deletion of SCH9, a S6K homologue in 

Saccharomyces cerevisiae, extends life-span in 

both models (241-243). 

The central role of mTOR along with insulin 

and insulin growth factor 1 (IGF-1) in regulating life-

span is attributable to the actions of these signaling 

networks as a sensor of nutrients. Such pathways 

including insulin, IGF-1, P13L/AKT, RAS, RAF, MEK, 

and ERK, all converge on mTOR, making it central to 

regulation of amino acid availability, mitochondrial 

metabolism and biogenesis, rate of protein synthesis 

and proteostasis, lipid synthesis and energy 

utilization and homeostasis, cellular senescence, 

unfolded protein response, autophagy, and 

proteosomal degradation (244). mTOR is now 

considered to be essential in delaying the 

development of age related pathologies and in the life 

extension by strategies such as calorie restriction 

(238). One of the prime examples that nutrition has a 

significant impact on aging has been shown by 

introducing calorie restriction of the diet without 

causing malnutrition in animals. Such measures have 

been able to extend life-span and health-span in 

rodents to monkeys (245-249). Food scarcity drives 

the larvae of C. elegans to enter a dauer stage that 

remain metabolically in-active for months until the 

environmental conditions become hospitable to life. 

Thus, halting metabolism effectively increases life-

span of animals in dauer stage for months (250). 

Obtaining such metabolic arrest also allows the 

seeds and spores of bacteria and fungi to gain 

considerable extension of life for at least 2000 years 

when preserved in amber and for millions of years in 

high salt (251-252). 

3.11. PKA 

The multi-unit holoenzyme, Protein 

Kinase A (PKA), has four regulatory sub-units 

(RIα, RIβ, RIIα, RIIβ) and three catalytic sub-units 

(Cα, Cβ, Cγ) that show a varied tissue distribution 

and cellular expression (253-254). In mammals, 

nutrients are sensed by a G-protein (GEF) that 

activates adenylyl cylase (AC) (255). AC produces 

cAMP, which binds to the regulatory subunits of 

the PKA, releasing the catalytic subunits which 

either interact with other signaling proteins, or 

enter the nucleus and activate gene transcription. 

Activated PKA phosphorylates serine and 
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threonine residues and mediates the signal 

transduction of G-protein-coupled receptors (255). 

The regulation of oxidative stress, 

mitochondrial function, and cell survival appear to 

require the joint participation of AMPK and PKA 

signaling (256). The regulation of mitochondrial 

function and oxidative stress by the mitochondrial-

directed scaffold of PKA, requires dual-specificity A-

kinase anchoring protein 1 (D-AKAP1)(256). The 

actions of AMPK and PKA are down-regulated in age 

related pathologies including diabetes, 

cardiovascular diseases and ischemia and the 

protective effect of type II regulatory subunit of PKA 

(PKA/RIIβ) as well as D-AKAP1 diminishes by their 

reduced mRNA levels in adipocytes and 

subcutaneous adipose tissues by obesity (257-258). 

On the other hand, reducing total caloric intake to 20–

40% of normal intake which leads to life-span 

extension, has been attributed to involve down-

regulating effect on mTOR-S6 kinase 

pathway, insulin and insulin-like signaling (IIS) as 

well as its effect on Ras/cAMP/PKA/Rim15/Msn2/4 

and the Tor/Sch9/Rim15/Gis1 pathways (259-262). It 

is noteworthy that the anti-aging effect caused by the 

in-activation of both pathways is much more potent 

than that caused by CR alone (263-264). In yeast, CR 

and peroxiredoxin promote longevity and H2O2-

resistance through redox-modification of PKA (265). 

BMH1 14-3-3 protein, which extends chronological 

life-span in Saccharomyces cerevisiae, appears to 

act by activating the stress response and by virtue of 

genetically interacting with CR and conserved 

nutrient-sensing TOR- and PKA-signaling pathways 

(266). 

In eukaryotic cells, intracellular pH is 

significant to protein folding, enzyme activity, vesicle 

trafficking, and organellar function and integrity as 

well as aging. For this reason, the pH is exquisitely 

and dynamically regulated in tissues and cells by 

multiple mechanisms such as the plasma membrane 

H+-ATPase, Pma1 and the vacuolar V-ATPase. Both 

PKA and the TORC1-Sch9 axis regulate the proton 

pumping activity of the V-ATPase and possibly Pma1 

and, in turn, the proton pump acts as a second 

messenger for availability of glucose by the V-

ATPase to PKA and TORC1-Sch9 (267). The 

replicative and chronological aging in yeast appear to 

require three kinases: Sch9, PKA and TOR (268). 

The stress response proteins, namely transcription 

factors Msn2 and Msn4, that lead to increased 

longevity, are associated with decreased activity of 

either Sch9, PKA, or TOR (268). 

The impact of Sir2 on DR-mediated 

extension of life also depends on cAMP-PKA and 

casein kinase 2 (CK2) signaling in yeast (269). Sir2 

partially represses the transcription of life-span-

associated genes, such as PMA1 (encoding an H+-

ATPase) and many ribosomal genes, an effect that is 

inhibited by active cAMP-PKA and CK2 signaling 

(269). 

Mutations that decrease the activity of the 

Ras/Cyr1/PKA pathway extend longevity and 

increase stress resistance by activating transcription 

factors Msn2/Msn4 and the mitochondrial antioxidant 

enzyme superoxide dismutase (Sod2) (270). 

Additional evidence for the involvement of PKA in 

aging has been shown in male and not female mice 

that lack the regulatory RIIβ subunit (271). These 

mice have extended life-span, show reduced insulin 

resistance, and protection against age related 

pathologies including cardiac dysfunction and 

hypertrophy, weight gain, and enlargement of liver. 

These positive impacts of PKA inhibition appear to 

involve AMPK, and β-adrenergic pathway (271). 

Since PKA is part of the signaling cascade 

that regulates metabolism and aging processes and 

for this reason is an ideal target in anti-aging 

strategies. Hydralazine, a FDA-approved drug used 

for the treatment of high blood pressure and heart 

failure, has recently been shown to increase the life-

span in C. elegans in high glucose or stress 

conditions. These actions of hydralazine appear to 

involve activation and improved mitochondrial 

function and metabolic homeostasis via the 

SIRT1/SIRT5 axis and the NRF2/SKN-1 pathway 

and by targeting, binding and stabilizing the catalytic 

sub-unit of PKA (272). Similarly, the life extension by 

lithocholic acid (LCA) in yeast appears to involve the 

cAMP/protein kinase A (cAMP/PKA) as well as 

adaptable target of rapamycin (TOR) and signaling 

pathways that are under the stringent control of 

calorie usage (273). LCA extends the life-span by a 

housekeeping longevity assurance program that is 



Singlaing pathways and modulators in aging 

62 © 1996-2021 
 

not purely governed by the adaptable pro-aging TOR 

and cAMP/PKA pathways. Rather, LCA modulates 

longevity by reduced lipid-induced necrosis and 

mitochondrial induced apoptosis, by altering 

oxidation-reduction processes in mitochondria, 

enhancing stability of nuclear and mitochondrial DNA 

and promoting resistance to oxidative and thermal 

stress (273). 

3.12. RAS, RTK, MEK, ERK, and MAPK 

RAS genes, which encode small 21 kDa 

(p21) GTPase proteins, were originally identified as 

viral genes that account for the highly oncogenic 

properties of RNA tumor viruses and which appear at 

a high frequency in a large number of human cancers 

and are risk factors for age related disorders such as 

cancer, diabetes, as well as cardiovascular and 

neurodegenerative diseases (274-278). Ras protein 

family in mammals include N-RAS, H-RAS, K-RAS4A 

and K-RAS4B. Ras encompasses a large 

superfamily of proteins that are involved in signal 

transduction, conveying signals from surface bound 

receptor tyrosine kinases (RTKs) in response to 

cytokines, growth factors and hormones and which 

integrates with RTK, MEK, ERK, and MAPK 

pathways (279). Ras proteins are binary molecular 

switches, that cycle through an in-active GDP-bound 

and active GTP-bound states. The cytoplasmic tail of 

the activated RTKs recruit the Grb2 adaptor protein 

which binds to the Ras-GEF, SOS, and this, in turn, 

localizes Ras to the activated RTK-bound complex. 

Significant structural changes in switch regions of I 

and II components of Ras that exists in an active 

GTP-bound conformation, forms a GTP-dependent 

interface. In this conformation, Ras binds 

downstream effector molecules including Raf, which 

initiates a phosphorylation cascade via MEK and the 

extracellular signal-regulated kinase (ERK)/mitogen-

activated protein kinase (MAPK). Activated ERK 

phosphorylates multiple cytoplasmic and cytoskeletal 

proteins, including MAPK-activated protein kinases 

and ribosomal S6 kinase (280-281). Finally, ERK 

activated by Ras signaling translocates to the 

nucleus, phosphorylating and activating several 

transcription factors including members of the E-

twenty-six (ETS) transcription factor family (282). 

Ras proteins are involved in cell division and 

differentiation to metabolism, senescence and 

apoptosis (283). In yeast, the Ras proteins are part of 

the nutrient signaling pathway that includes cyclic 

AMP (cAMP) and protein kinase A (PKA) (284). Ras 

proteins are regulated by the activities of guanine 

nucleotide exchange factors (GEFs) that catalyze the 

replacement of GDP by GTP and GTPase activating 

proteins (GAPs) that increase the rate of GTP 

hydrolysis (285-286). 

Given their broad actions, it is not 

surprising that Ras proteins are directly or in-directly 

involved in aging and in replicative life-span in 

different species from fungi, flies, and worms to 

mammals. For example, two Ras homologues, 

RAS1 and RAS2 in Saccharomyces cerevisiae 

influence both replicative and chronological life-

span and deletion of RAS1 has been shown to 

extend the replicative life-span whereas deletion of 

RAS2 extends chronological life-span (284, 287-

288). Such life-extension by deletion of Ras has 

been attributed to their effects by endowing stress 

resistance by Sch9 in yeast and by Msn2/Msn4 and 

Sod2m which are activated in response to RAS-

cAMP-PKA signaling, in Saccharomyces cerevisiae 

(241, 281, 289-290). Both MSN2 and MSN4 are 

considered to be the link between calorie restriction 

and sirtuin-mediated life-span extension in 

Saccharomyces cerevisiae (291). Genetic inhibition 

of either Ras or ERK has been shown to extend the 

life-span in Drosophila melanogaster (292). 

Expression of an activated form of AOP, a 

transcriptional repressor that is inhibited by Ras 

activation, also has led to extension of life-span in 

this fly (293). Similarly, Trametinib, an inhibitor of 

the upstream kinase, MEK which also inhibits ERK, 

extended life-span in Drosophila (292). Similarly, in 

C. elegans, Ras Let-60 protein has been shown to 

modulate the effects of insulin/IGF-1 in aging (294). 

Mice that were deficient for RasGrf1, which acts 

downstream of insulin and IGF-1 receptors, were 

long-lived, and showed increased SIRT1 

expression, lower circulating IGF-1 levels and 

resistance against oxidative stress, and 

development of cancer (295-296). However, since 

RasGrf1 also has an affinity for other ligands, 

including Rac, Rho, it is not clear that the longevity 

induced by RasGrf1 deficiency is merely through 

specific inhibition of Ras (277, 278, 297). The 

genetic variants of HRAS1 and APOE, which 
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interact synergistically, are associated with 

extended health-span and life-span in humans 

(298-299). Costello syndrome, that arises in 

humans due to mutations in HRAS , is characterized 

by a short stature, failure to thrive, and oftentimes is 

associated with premature aging (300). Finally, 

HGPS that is associated with progeria and 

shortened life has been shown to be associated with 

up-regulation of mTOR, IGF1R, IP3, and ERK, 

showing that HRAS and activity of its downstream 

effector, ERK, are involved in human aging (301). 

3.13. CRTC-1/CREB 

CREB and its co-activators, cAMP-

response element binding protein (CREB)-regulated 

transcription co-activators (CRTC)s, have emerged 

as sensors of hormonal and metabolic signals, 

energy homeostasis, and endoplasmic reticulum 

(ER) mediated stress (302-303). In mammals, 

CRTCs are co-activators of CREB-mediated gene 

expression (303). More importantly, after their 

activation, CREB and CRTCs are involved in 

mediating the effects of feeding as well as fasting 

signals on the expression of metabolic programs in 

insulin-sensitive tissues. Besides CRTC, many 

kinases, e.g. protein kinase A (PKA), 

Ca2+/calmodulin-dependent protein kinases II/IV and 

p90 ribosomal S6 kinase, p90RSK, activate CREB-

mediated gene transcription (303-304). It is notable 

that among these, the inhibition of PKA signaling, has 

been shown to enhance health-span while other 

studies have shown a link between the activation of 

calcineurin through dysregulation of Ca2+ and 

accelerated aging whereas calcineurin deficiency 

which increases autophagy, extends the life-span 

in C. elegans by altering the expression of bec-1 

and atg-7 (263, 305-308). 

To increase the transcription of target 

genes, the in-active, phosphorylated cytoplasmic 

CRTC gets activated by dephosphorylation by 

protein phosphatases such as calcineurin, and 

following this activation, migrates to the nucleus 

where it binds to CREB factors (309). The nuclear 

translocation of CRTC-1 is blocked by 

phosphorylation by AAK-2/AMPK, an effect that is 

associated with increase in life-span in C. elegans 

showing that factors that inhibit the CRTC-induced 

CREB activation pathway are involved in the 

regulation of aging (303). 

The CREB co-activator, TORC2, has been 

found to regulate fasting glucose metabolism, to 

stimulate the gluconeogenic program along with the 

forkhead factor FOXO1 and to endow stress 

resistance in Drosophila (310-311). TORC2 

activation appears to underlie the effect of starvation 

in Drosophila (311). Moreover, the life-span 

extension in C. elegans is mediated by the CRTC-1 

and CREB through AMPK and catecholamine by 

reprogramming the mitochondrial and metabolic 

signals (303, 312). 

CRTCs modulate organismal aging in C. 

elegans and appear to be involved in age-related 

diseases in humans. CRTCs have been implicated in 

neurodegenerative diseases and their deregulation 

appears to increase the risk of age related 

pathologies including Alzheimer’s disease, and 

Huntington’s disease (313-316). Activation of the 

CRH-1/CREB axis by CMK-1/CaMKI in the AFD 

thermosensory neurons appears to regulate the life-

span in C. elegans at warm temperatures (317). 

3.14. NFκB 

Nuclear factor kappa-light-chain-enhancer 

of activated B cells (NFκB) is required for adaptive 

changes in gene expression and tissue homeostasis 

(318). NFκB is responsive to oxidative stress, DNA 

damage, immune activation and growth regulatory 

signals, and controls cell proliferation, innate and 

adaptive immunity, inflammation, and apoptosis. 

Interestingly, NFKB1 gene in humans resides within 

a genetic locus on chromosome four that is 

associated with human longevity (319). 

NFκB appears to be important in aging 

processes that are associated with inflammation 

during aging, the so-called inflammaging. 

Inflammatory response is initiated by activation of 

NFκB in macrophages which aggravates much of 

age related metabolic disturbances (320). Several 

age-related metabolic disorders, e.g. obesity, type 2 

diabetes and atherosclerosis have been shown to 

lead to chronic inflammation due to increased NFκB 

signaling, a process that can be effectively 
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suppressed by AMPK leading to FoxO signaling and 

AMPK activators including some non-steroidal anti-

inflammatory drugs, e.g. aspirin and flufenamic acid 

(26, 321-322). DNA-binding activity of NFκB 

complexes are significantly increased with aging 

leading to an increase in levels of p52 and p65 

components of NFκB complex in several tissues of 

mice and rats (323-325). NFκB actively interacts with 

several regulators of aging. For example, FoxO 

factors, FoxO3a and FoxO4 are effective inhibitors of 

NFκB signaling and can prevent immune responses 

(326-327). FOXO3a, a homolog of the longevity gene 

DAF-16 in C. elegans, which is also strongly 

associated with human longevity, represses NFκB 

nuclear translocation and transcriptional activity (326, 

328). SIRT1, that deactivates NFκB by binding and 

deacetylating the p65 RELA, is known to underlie the 

life extension by calorie restriction (329). 

The NFκB signaling is also subject to 

regulation by Nrf2 which reduces inflammatory 

response and conversely, the p65 component of 

NFκB complex binds to the Kelch-like ECH-

associated protein 1 (Keap1) protein, and inhibits 

Nrf2 signaling. This, in turn, leads to increased 

localization of Keap1 into the nuclei and 

consequently reduces the binding of Nrf2 to its target 

sites (330). Decrease or deficiency in Nrf2 signaling 

during aging increases the inflammatory 

phenotype (331). Paradoxically, in vitro sustained 

pharmacological activation of Nrf2 in fibroblasts 

promotes the deposition of a matrix rich in 

plasminogen activator inhibitor-1 (PAI-1) that induces 

senescence (332). The in vivo sustained 

pharmacological activation of Nrf2 in fibroblasts 

promotes wound healing but also induces tumors in 

the skin. However, it can not be ruled out that such 

effects might be due to off-target effects of the drug. 

An emerging concept is that aging is not a 

passive process, rather, age dependent disorders 

require active maintenance. Although it is not clear 

why NFκB gets activated during aging, diverse lines 

of studies show that NFκB appears to enforce and is 

required for the persistence of the global 

transcriptional program and tissue phenotypes that 

are hallmarks of aging. The analysis by using 

microarray of cis-regulatory motifs across nine tissue 

types in humans and mice revealed fourteen motifs 

that predict age dependent gene expression. Among 

these, the role of NFκB was tested by its inducible 

blockade in the epidermis of aged mice. The results 

were consistent with the idea that continuous 

activation of NFκB, which controls cell cycle exit and 

gene expression, is required for the maintenance of 

tissue specific aging and that blockade of NFκB 

reverses the age related gene expression signature, 

leads to resumption of cell proliferation and reduces 

senescence (333). In support of adverse effects of 

NFκB in aging, there are also in vitro studies that 

show that NFκB regulates cellular senescence (334-

337). Activation of NFκB can lead to age related 

complications ranging from insulin resistance, to 

muscle atrophy and amyloid-beta toxicity (338-340). 

Therefore, it follows that although aging results from 

a lifetime of sequential accumulation of damage that 

lead to senescence and halt the proliferation and 

cellular functions, such changes are reversible by 

inhibition of NFκB that maintains the aging 

phenotype. The effect of NFκB is likely not mediated 

through a small number of genes, rather, expression 

of many target genes must be controlled to impart a 

youthful phenotype. This has been shown for DAF-

16 that targets hundreds of genes and extends life-

span in C. elegans. Mere inhibition of single genes, 

that are controlled by DAF-16, had a significantly less 

effect, as compared to the RNA interference induced 

inhibition of a wide range of genes that participate in 

stress response and metabolism (55).   

4. CONCLUSIONS 

We have witnessed a great advance in our 

understanding of aging, the signaling pathways that 

are implicated and the downstream effectors that are 

required for cellular homeostasis. However, our 

knowledge regarding the main and proximal cause of 

cellular alterations that lead to the age related decline 

in cellular functions and the real cause of aging have, 

thus far, eluded us. It is greatly hoped, that we can 

prolong a healthy life-span, reduce the age related 

pathologies that place a significant economic burden 

on our societies, and to devise strategies to reverse 

aging. 
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