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1. ABSTRACT 

Mammalian spermatogenesis is a complex 

but well-coordinated process in which 

spermatogonial stem cells (SSC) of the testis 

develop to form spermatozoa. During testicular 

homeostasis, the spermatogonial stem cells self-

renew to maintain the stem cell pool or differentiate 

to form a progeny of germ cells which sequentially 

transform to spermatozoa. Accumulating evidence 

from clinical data and diverse model organisms 

suggest that the fate of spermatogonial stem cells 

towards self-renewal or differentiation is governed by 

intrinsic signals within the cells and by extracellular 

signals from the SSC niche. Here, we review the past 

and the most recent developments in understanding 

the nature of spermatogonial stem cells and the 

regulation of their homeostasis in mice. We also 

review the potential clinical applications of 

spermatogonial stem cells in male infertility as well as 

in germline modification, by virtue of gene correction 

and conversion of somatic cells to biologically 

competent male germline cells. 

2. INTRODUCTION 

Men in most cases continue to be sexually 

competent until they are sixty years old, and if that 

limit be overpassed then until seventy years; and 

men have been actually known to procreate children 

at seventy years of age. 

— Aristotle 

These words by Aristotle signified that the 

continuity of fertility throughout life in men was 

noticed as early as in the 350 BC. Each day, approx. 

100 million sperms are made in each human testicle, 

and each ejaculation releases 200 million sperms. 

During his lifetime, a human male can produce 1012 

to 1013 sperms (1). Decades of research has led to 

the appreciation of the continuous nature of 

spermatogenesis as the reason for extended fertility 

in males compared to females. Mammalian 

spermatogenesis is a well-coordinated and a highly 

regulated process involving the sequential 

development of haploid spermatozoa from the diploid 

precursor germ cells in the testis. The testis is 

comprised of somatic cells, and a subset of 

undifferentiated spermatogonial cells (SSC), which 

can self-renew continuously or give rise to a progeny 

of germ cells at different stages of development until 

they mature to spermatocytes. Consequently, the 

high productivity and longevity of spermatogenesis 

relies primarily on the proliferation of SSCs. 

The self-renewal and differentiation of 

SSCs during the initial steps of spermatogenesis 

produce heterogeneous SSC subpopulations under 

the regulation of multiple intrinsic and extrinsic 

factors, with each subpopulation differing in their 

stem cell properties. The extremely low number of 

SSCs and lack of SSC-specific markers had made 

the identification, isolation and study of these cells 

challenging. However, over the years, the 

development of spermatogonial transplantation 

techniques, efficient in vitro culturing, fluorescence-

activated cell sorting (FACS), lineage tracing studies, 

single cell RNA sequencing (scRNA-seq) and 

mathematical modeling have made it possible to 
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decode the secrets of SSCs. The ease of handling 

and short reproductive lifespan makes the mouse a 

preferred animal model for reproductive biology 

studies. As a result, mouse testis is one of the well-

studied and well-understood systems for 

spermatogenesis. This chapter summarizes our 

understanding on the self-renewal and differentiation 

of mouse SSCs and the possible clinical implications 

emerging from this knowledge base. 

3. OVERVIEW OF MOUSE 

SPERMATOGENESIS 

3.1. Site of spermatogenesis 

Spermatogenesis takes place in the 

seminiferous tubules of the testis (2), which form long 

convoluted loops that pass into the mediastinum and 

join a network of tubules called the rete testis. 

The seminiferous tubules harbor the seminiferous 

epithelium which contains the somatic Sertoli 

cells supporting the male germ cells at various 

stages of development. Surrounding the 

seminiferous epithelium is a layer of basement 

membrane (basal lamina). Between the tubules is 

the interstitial space that contains blood and 

lymphatic vessels, immune cells including 

macrophages and lymphocytes and Leydig cells 

(Figure 1). The spermatozoa exit the testis via the 

rete testis and enter the efferent ductules prior to 

their passage through the epididymis where they 

undergo maturation. From the epididymis, the 

spermatozoa enter the vas deferens for ultimate 

ejaculation. 

The undifferentiated spermatogonial cells 

lie along the basal lamina at the periphery of the 

tubule interspersed between Sertoli cells. Adjacent 

Sertoli cells form specialized tight junctions that 

divide the seminiferous tubule into the basal 

compartment, in which spermatogonia reside and the 

adluminal compartment that is occupied by 

 
 

Figure 1. Schematic overview of tissue organization in mouse testis. Organization of the semi niferous epithelium shows hierarchy of 

germ cells supported by Sertoli cells and basement membrane. The primitive spermatogonia are localized next to the basement 

membrane in the basal compartment of seminiferous tubule. The basal compartment is followed b y adluminal compartment, separated 

by the blood-testis barrier (BTB), wherein the spermatocytes derived from spermatogonia, round spermatids and elongating 

spermatids reside. The lumen shows presence of mature spermatozoa. The accessory somatic cells such as Leydig cells, peritubular 

myoid cells (PTMs), lymphatic endothelial cells (LECs), macrophages and testicular endothelial cells (TECs) of the vasculatur e reside 

in the interstitial compartment. The color key depicting different cell types is used through out this article. Figure adapted with 

permission from Gauthier-Fisher et al. (225). 
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differentiating germ cells. The tight junctions also 

constitute the blood-testis barrier which is a semi-

permeable barrier that prevents immune system cells 

from infiltrating the lumen of seminiferous epithelium; 

making the testis an immune-privileged site. In the 

adluminal compartment, preleptotene 

spermatocytes, derived from spermatogonia in the 

basal compartment, undergo meiosis and 

subsequently go through successive stages of 

primary (leptotene, zygotene, pachytene and 

diplotene) and secondary spermatocytes. The end-

products of meiosis are round spermatids that 

undergo morphological changes by the process of 

spermiogenesis and give rise to elongating 

spermatozoa occupying positions closer to the 

lumen. The mature spermatozoa are ultimately 

released into the lumen of the tubule by the process 

of spermiation (Figure 1). 

3.2. Organization and timing of 

spermatogenesis 

Spermatogenesis in mammals is organized 

and timed in a manner that maximizes sperm 

production. The central aspect of this organization 

and timing is the ‘wave’ and the ‘cycle’ of 

seminiferous epithelium. The seminiferous 

epithelium is characterized by asynchronous 

repeating series of germ cell associations. As these 

cells progressively differentiate, the initial 

associations are observed again after a fixed interval 

(8.6 days in mice and 16 days in humans), as the 

individual cells have shifted to the next layer. This 

periodic change in the seminiferous epithelium is 

called the ‘seminiferous epithelial cycle’ and was first 

discovered in rat testes (3). The seminiferous 

epithelial cycle is divided into stages I through XII in 

mice. The repetitive patterning of the epithelial stages 

along the length of a seminiferous tubule is called the 

spermatogenic wave. The ‘cycle’ and the ‘wave’ of 

seminiferous epithelium represent the key for 

asynchronous germ cell differentiation, allowing the 

constant production of spermatozoa (4). Following 

the first wave of spermatogenesis, which proceeds at 

a quicker rate than the adult cycles, regular cycles of 

asynchronous sperm production begin, each lasting 

approx. 35-36 days in mice. The spatiotemporal 

coordination of the cycle relies on intrinsic signals 

from the germ cells and extrinsic signals from the 

somatic support cells. It is established that retinoic 

acid (RA) is one of the major signaling molecules 

responsible for regulating the distinctive cycle and 

wave formation that induce spermatogonial cell 

differentiation (5). 

3.3. Types of spermatogonia 

The spermatogonial cell (SPG) population 

is enormously heterogeneous with respect to 

morphology, phenotype and function. SPGs can be 

broadly classified as undifferentiated cells that 

display the stemness or the progenitor properties to 

varying extents, and differentiating cells that have 

characteristics of being committed to enter meiosis. 

The undifferentiated SPGs include A- type 

spermatogonia (Aundiff) which in the mouse are found 

as single cells (A-single, As) or as syncytia of typically 

2, 4, 8 and 16 cells interconnected by cytoplasmic 

bridges (A-paired, Apr and A-aligned, Aal4-16). While a 

minority among the population of Aundiff has stem cell 

activity and functions as SSCs, a subset of Aundiff cells 

(Aal cells) has transit-amplifying roles and functions 

as progenitors. The differentiating SPGs are cells 

that are committed to meiosis and include A1 SPG 

which undergoes sequential mitotic divisions to 

produce A2, A3, A4, Intermediate (In) and type B 

spermatogonia. The Aundiff can be distinguished 

morphologically from the differentiating SPG by the 

absence of heterochromatin in the nuclei. In-type 

spermatogonia contain a moderate amount of 

heterochromatin, whereas, B-type spermatogonia 

display clumps of heterochromatin around the 

periphery of the nuclei (6). Thus, due to numerous 

transit amplifying divisions, one mouse SSC has the 

potential to produce up to 4096 sperm cells in a single 

spermatogenic cycle (7), although this has been 

shown to be a highly overestimated calculation which 

has not considered the significant level of apoptosis 

occurring at the Aundiff stage (8–10). 

4. SPERMATOGONIAL STEM CELLS 

4.1. Origin of SSCs 

In metazoans, primordial germ cells (PGC) 

are the progenitors for both male and female 

gametes, giving rise to spermatozoa and oocytes, 

respectively. In mice, the precursors of PGCs arise 
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at about embryonic day 6 (E6) from the equipotent 

epiblast cells in response to bone morphogenetic 

protein (BMP) signals emanating from the 

extraembryonic ectoderm (BMP4 and BMP8b) and 

visceral endoderm (BMP2) (11–14). B lymphocyte-

induced maturation protein-1 (BLIMP1), PR-domain 

containing protein 14 (PRDM14) and transcription 

factor AP-2 gamma (TFAP2C) form a tripartite 

transcription factor network that facilitates mouse 

PGC specification by suppressing somatic gene 

expression of homeobox A1 (Hoxa1), homeobox B1 

(Hoxb1), LIM homeobox 1 (Lim1), even-skipped 

homeobox 1 (Evx1), fibroblast growth factor 8 (Fgf8) 

and snail family transcriptional repressor 1 (Snai11) 

genes, while initiating the germ cell transcriptional 

program and triggering genome-wide epigenetic 

reprogramming. From E7 onwards, the specified 

PGCs express the PGC-specific markers, viz., 

tissue non-specific alkaline phosphatase (TNAP), 

stage-specific embryonic antigen 1 (SSEA1) and 

developmental pluripotency associated 3 (DPPA3 

or STELLA) (11, 15–17). However, PGC 

specification in the mouse and human exhibits some 

differences. The origin of human PGCs from 

mesodermal precursors, the requirement of the 

Wingless/integrase 1 (WNT) pathway along with 

BMP signaling for development of PGCs and lack of 

PRDM14 and SRY (sex determining region Y)-box 

2 (SOX2) expression in human PGCs are the major 

contrasting differences (18, 19). PGCs proliferate 

while migrating through the hindgut and colonize the 

genital ridges (the future gonads) between E7.5 and 

E11. The proliferation and directional migration of 

PGCs are facilitated by two germ cell-soma 

signaling pathways: cKIT-STEEL (20) and stromal 

cell-derived factor 1 (SDF1)- C-X-C chemokine 

receptor type 4 (CXCR4) (21). Once in the genital 

ridges, PGCs undergo approximately five additional 

mitotic divisions from E10.5 to E14.5 with 

incomplete cytokinesis to form germline cysts. 

Around this time (E11.5), the testis development will 

be initiated by the somatic cells expressing 

FGF9/SRY/SOX9 proteins marking the Sertoli cell 

population. On the basis of the cues from these 

somatic cells, the germ cells also undergo sex 

differentiation and become developmentally 

restricted (22). The germ cells in the differentiating 

testis are now referred to as gonocytes or 

prospermatogonia. 

In the female mice, the germ cells begin to 

enter meiosis at E13.5 in response to RA signaling 

from the mesonephros. In contrast, the gonocytes fail 

to enter meiosis in the developing testis due to 

expression of CYP26B1 in the Sertoli cells, which 

catalyzes the oxidation of RA into inactive 

metabolites. Instead, the gonocytes exit the cell 

cycle, get arrested at G0, and remain quiescent from 

approximately E14.5 until postnatal day 1-2 (P1-2). 

They re-enter the cell cycle on P3 and migrate to the 

basement membrane of the seminiferous epithelium. 

The subset of gonocytes that express neurogenin 3 

(NGN3) transforms to form the founding SSC 

population in mice between P3-6. Those gonocytes 

which lack NGN3 expression directly differentiate into 

progenitor spermatogonia that undergo further 

differentiation, initiating the first wave of 

spermatogenesis at approximately P3 (23, 24). Thus, 

the first wave of spermatogenesis occurs without the 

contribution of SSC activity. Intriguingly, a recent 

study using scRNA-seq analysis revealed the 

presence of cell populations with characteristics of 

PGCs (referred to as PGC-like cells, PGCLCs) and 

SSCs (referred to as prespermatogonia, PreSPG) in 

human neonatal (day 2 and Day 7) testis (25). The 

authors hypothesized a model in which human fetal 

PGCs differentiate into PGCLCs and, subsequently, 

PreSPGs, both of which populate the human testes 

at birth. These neonatal germ cells are replaced by 

SSCs during the first year of the male child. 

4.2. Kinetics of SSC cell division 

It is unanimously accepted that SSCs are 

contained within the Aundiff pool. However, which cells 

among the Aundiff contribute to the SSC pool is an area 

of debate till date. As cells were traditionally regarded 

as the actual stem cells, whereas Apr and Aal were 

thought to represent transit-amplifying progenitors 

(26). However, with the advent of improved 

experimental tools and molecular markers, it became 

apparent that stem cell potential may not be limited 

to As cells alone and may extend to Apr and Aal cells 

also and that the developmental hierarchy of Aundiff 

cells is more complex than originally anticipated. This 

resulted in the proposal of three different models to 

explain the true identity of SSCs, viz., the As model, 

the revised As model and the fragmentation model, 

which are described in the following paragraphs. 
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4.2.1. As model 

In 1971, Huckins and Oakberg proposed 

the As model of spermatogonia multiplication, 

which was endorsed by most researchers in the 

field and was held for over 40 years (8, 9, 27, 28). 

This proliferation scheme was developed by 

studying whole-mounts of seminiferous tubules 

instead of sections, which enables one to observe 

the topographical arrangement of the 

spermatogonia on the tubule basal lamina. 

According to this model, only the As spermatogonia 

are the SSCs. SSCs divide and their daughter cells 

either migrate away from each other and become 

two new SSCs or they stay together (Apr), 

constituting the first step along the differentiation 

pathway (differentiation-committed progenitors). 

Subsequently, the pairs can proliferate further to 

form Aal cells (Figure 2A). Thus, according to this 

model, there are two types of SSCs: reserve SSCs 

that function only in response to injury and active 

SSCs that divide slowly on a regular basis to 

maintain homeostasis. 

 
 

Figure 2. Kinetics of SSC division in adult mouse testis. A) According to Asingle (As) model, the self-renewal (curved arrow) capacity is 

restricted only to As cells of the undifferentiated A type (Aundiff) spermatogonial cell (SPG) population that divide (solid arrows) into two 

daughter cells interconnected by cytoplasmic bridges called Apaired (Apr) cells which subsequently divide to form longer syncytia of 4, 

8 and 16 cells termed as Aaligned 4, 8, 16 (Aal4, 8, 16). The Aal cells finally differentiate (solid block arrow) into differentiating SPGs including 

A1, A2, A3, A4, Intermediate (In) and B type SPGs. Thus, the As cells constitute the SSC pool. B) In the revised As model the population 

of As SPGs is heterogeneous. The SSC activity resides in a subpopulation of A s cells that express high levels of ID4 (termed as 

ID4Bright cells). In Aundiff cells (As and Apr) that are produced subsequently, ID4 levels drop (ID4Dim) and these cells exhibit a decreasing 

chance of self-renewal and subsequently form clones of Aal. The ID4Bright cells with the highest chance of self-renewal have been 

called SSCultimate and ID4Dim cells with limited self-renewal capacity are called SSCtransitory (with respect to the transit to progenitor 

state). The SSCtransitory cells divide and give rise to ID4 - differentiation-primed progenitor SPGs. Reversion of cell fate (dashed arrow) 

from SSCtransitory to SSCultimate state is possible but from a progenitor to stem state is strictly not possible under any conditions. C) The 

fragmentation or dynamic SSC model proposes that GFRA1+ Aundiff cells continuously interconvert between equipotent single cell and 

short syncytial states via fragmentation (dashed red arrow). GFRA1+ Aundiff also give rise to NGN3+ progenitor cells that undergo 

differentiation priming. Under steady-state conditions NGN3+ Aundiff do not typically revert back to the self-renewing state but in 

regenerative conditions NGN3+ progenitor cells  may revert to the SSC state (dashed curved arrows). The color key depicting different 

cell types is used throughout this article. 
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4.2.2. Revised As model 

The number of As cells in the adult mouse 

testis is estimated to be approximately 35,000 (29). 

However, following the transplantation of an 

unselected total donor testis cell population in 

recipient testes, the number of regenerated 

spermatogenic colonies was only 3000. (30). As this 

was less than 10% of the expected value, it implied 

that not all As are stem cells. Studies by Oatley et al. 

and others, using transplantation and lineage tracing 

experiments, concluded that SSC activity is almost 

exclusively contained within a fraction of As cells 

marked by expression of transcription factor known 

as inhibitor of DNA binding 4 (ID4), supporting a 

“revised” As model in which stem cell activity is said 

to be limited to a subset of As (termed as SSCultimate) 

while remaining As, Apr and Aal cells are transiting into 

a differentiation-committed state (31–36). This model 

is also termed the ‘hierarchical As model’, as it 

suggests the existence of SSC hierarchy. 

Furthermore, this model proposes that the cells 

expressing high levels of ID4 (termed as ID4Bright 

population) has the greatest capacity of self-renewal 

and that the capacity for self-renewal decreases as 

ID4 expression among As cells regresses from bright 

via intermediate to dim (SSCtransitory) (35). This model 

also supports that some plasticity may exist for Aundiff 

at the early phase of transition from SSCultimate to 

SSCtransitory population which is at the progenitor state 

(Figure 2B). However, recent reports analyzing Id4 

expression by scRNA-seq, immunostaining and 

reporter assays have shown that Id4 expression is 

substantially more widespread within the Aundiff cells 

than previously described, indicating that Id4 

expression may not be limited to SSCs (37–40). Id4 

expression in Aundiff cell fractions with the highest 

SSC capacity has also been disputed (40), further 

questioning the validity of this model. 

4.2.3. Fragmentation model 

Yoshida et al performed a series of lineage 

tracing and live imaging experiments to monitor 

SPGs in transgenic reporter mice models (41–43). 

They analyzed the expression of glial cell line derived 

neurotrophic factor (GDNF) receptor alpha 1 

(GFRA1), which marks early As and Apr SPGs that do 

not yet express a differentiation marker and the 

expression of the differentiation marker NGN3, which 

marks As, Apr and Aal SPGs that may have taken a 

first step towards differentiation. Under the steady 

state, the SSC pool comprising of all GFRA1 

expressing Aundiff transition into GFRA1-/NGN3+ cells, 

which are assumed to be the progenitor cells with 

increased differentiation propensity (Figure 2C). 

Notably, in a direct contradiction to traditional schools 

of thought that depicted the progenitors were 

irreversibly committed to a differentiating fate, it was 

reported that, under regenerative conditions in the 

testis (during restoration of spermatogenesis after 

transplantation into an infertile recipient testis or 

during regeneration after tissue injury), the NGN3+ 

progenitor population can also experience 

fragmentation, with single progenitor spermatogonia 

breaking off from chains and reverting to a GFRA1+ 

state to re-join the self-renewing pool (42, 44). Thus, 

the fragmentation model proposes that As cells 

almost always divide into Apr and that the Aundiff 

syncytia (Apr and Aal) can fragment into singles and 

pairs to replenish the self-renewing SSC pool (43). 

Due to the dynamic nature of Aundiff proposed here, 

this model is also referred to as the ‘dynamic SSC 

model’ (45). Currently, evidences for these 

phenomena are based primarily on observations of 

fragmentation using live imaging of testes in mice that 

are maintained in a stress condition of long-term 

anesthesia and computer generated biophysical 

models. Further, qualms also exist regarding the 

specificity of GFRA1 and NGN3 as markers for the 

SSC and progenitor populations respectively. 

However, the lack of functional evidence for self-

renewal capacity in the fragmented cells and for the 

mechanisms regulating the fragmentation of Aundiff 

syncytia compels further investigation into this 

proposed model. 

It can be argued that the differences 

between the revised As model and the 

fragmentation model are rather insignificant under 

steady state conditions as they primarily differ in 

the proposed mechanism for maintenance of the 

As population, i.e., by complete cytokinesis vs 

syncytial fragmentation respectively. Both models 

claim that the SSC capacity is restricted to As and 

Apr cells in contrast to only As cells as proposed by 

the As model. In conclusion, the Aundiff population 

displays in-built heterogeneity and has their 

propensity for alteration or reversion of gene 

expression profiles in response to different 

requirements within the niche. 
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4.3. Markers of SSCs 

Mice have 2-3 × 104 SSCs in the testis, 

which comprise only 0.02%-0.03% of the total germ 

cell population (29). Therefore, the identification of 

the phenotype of SSCs is critical for the functional 

investigation of SSCs at the single-cell level. Several 

methods to enrich SSCs from testes have been 

developed, including differential plating, density-

gradient centrifugation, experimental surgical 

cryptorchidism, and antibody-based selection 

methods such as FACS and magnetic-activated cell 

sorting (MACS). An approach using FACS/ MACS 

together with a functional transplantation assay was 

widely used to isolate SSCs (46, 47). Currently, with 

the advent of fluorescence tagged proteins, cell 

lineage-tracing experiments are being used to study 

SSCs. 

Flow cytometry-based transplantation 

experiments showed that the stem cell activity was 

concentrated in fractions of mouse SPGs with 

surface antigenic profile as follows - alpha 6-integrin 

(ITGA6)+, beta 1 integrin (ITGB1)+, thymus cell 

antigen 1 (THY1)+, CD9+, GFRA1+, epithelial cell 

adhesion molecule (EPCAM)+, CD24+, E-cadherin 

(CDH1)+, melanoma cell adhesion molecule 

(MCAM)+, KIT− and major histocompatibility complex 

class I (MHC-I)− (46, 48–51). However, considering 

the dynamic nature of SSC hierarchy and the SPG 

heterogeneity, it is ambiguous to delineate a 

universal array of markers for SSCs. 

Hence, it is important to note that the gene 

expression profiles of As, Apr, and Aal spermatogonia 

are different (39, 42), as represented in Figure 3. The 

expression of promyelocytic leukemia zinc finger 

(PLZF or ZBTB16) and CDH1 is relatively constant in 

the As, Apr, and Aal spermatogonia, and has been 

used to identify all Aundiff (49, 52). Gfra1, Id4, Bmi1, 

Pax7, Nanos2, Lhx1, Bcl6b, Etv5, T (Brachyury), 

Sall4 are shown to be preferentially expressed in As 

cells whereas Pou5f1 (Oct4), Ngn3, Lin28a, Sohlh1, 

Sox3 and Rarg are expressed by Aal progenitor cells 

(34, 39, 43, 53). Later studies have shown that SSC 

activity is evident in progenitor Aal cells (43, 54). 

Subsequently, it was also found that the state and 

function of Aundiff is context-dependent. Thus, there 

are different interconvertible subsets of Aundiff cells 

that contribute to SSC activity during steady state 

adult spermatogenesis, postnatal testicular 

development and under tissue regenerative 

conditions (discussed in detail in section 5.5). Hence, 

it is important to consider the expression profiles of 

these functionally distinct subsets of Aundiff when 

delineating SSC activity. 

5. SPERMATOGONIAL STEM CELL NICHE 

The microenvironment surrounding the 

stem cells is called the stem cell niche, which 

provides juxtacrine and paracrine factors that 

maintain stem cell competence and decide the fate of 

the stem cell towards self-renewal or differentiation. 

The interaction of testicular “niche” cells with SSCs 

occurs via both cellular contact and soluble signaling. 

Cellular components of the niche include Sertoli cells 

and germ cells of the tubules, peritubular cells 

(peritubular myoid cells and peritubular 

macrophages) and interstitial cells (Leydig cells, 

interstitial macrophages and vasculature). 

 
 

Figure 3. A schematic showing the expression pattern of markers 

that define different subsets of spermatogonial cells (SPGs). The 

transcription factor ID4 is an Asingle (As) specific marker. The 

membrane receptors GFRA1 and RET bind the ligand GDNF, which 

is crucial for stem cell self-renewal. GFRA1 marks undifferentiated 

A type SPGs (Aundiff) including As and Apaired (Apr) which exhibit SSC 

activity (marked in dark green) whereas RET expression is found 

across the Aundiff cells population (As, Apr, Aal). PLZF and POU5F1 

are transcription factors expressed by SSCs and Aundiff. The 

progenitor (marked in light green) Aundiff cells (Apr and Aal) which arise 

on retinoic acid (RA) stimulation are marked by the expression of 

LIN28, RARG, SOX3 and NGN3. The progenitor cells under the 

influence of RA differentiate into differentiating SPGs (A1-A2-A3-A4-

Intermediate (In)-B). The differentiating SPGs (marked in light blue) 

are characterized by the expression of SOHLH1/2, c-KIT, CCND1 

and STRA8, which will induce them to enter meiosis and give rise to 

primary spermatocytes. The color key depicting different cell types 

is used throughout this article. 
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In the basal compartment, Aundiff cells 

localize preferentially to the basement membrane in 

areas adjacent to the vasculature network of 

arterioles and venules that accompany the interstitial 

cells, including Leydig cells (43, 55, 56). Kitadate et 

al. recently demonstrated that the self-renewal and 

proliferation of SSCs are favored at areas of high 

fibroblast growth factor (FGF) concentration, lying in 

close proximity to the vasculature and interstitium. 

However, Aundiff cells do not cluster to a restricted 

domain, but intermingle and migrate between 

differentiating spermatogonia and immotile Sertoli 

cells (43). Since the SSC localization is not restricted 

to any specialized area in the niche, it is designated 

as an ‘open’ or ‘facultative’ niche, contrary to the 

canonical ‘closed’ or ‘definitive’ niche observed in 

other stem cell systems (57–59). Although research 

is still ongoing to decode the complex mechanism of 

the coexistence of a heterogeneous SSC pool and an 

open niche, it is well established that germ cell-niche 

interaction determines the density and the fate of 

SSCs. 

5.1. Cellular components of SSC niche 

5.1.1. Sertoli cells 

Sertoli cells are arguably the most 

important component of the SSC niche. In addition to 

producing a number of factors essential for SSC 

maintenance such as GDNF, they also physically 

support, nurture and protect the SSCs (60). 

Intriguingly, Sertoli cells that have already terminated 

their cell cycle before puberty expand their plasma 

membrane to an extreme degree and simultaneously 

‘hold’ germ cells of all four stages (spermatogonia, 

spermatocytes, round spermatids and elongating 

spermatids) at different areas of their plasma 

membrane. Lack of a report describing a germ-cell-

only tubular phenotype implies that SSCs and more 

advanced germ cells cannot exist without Sertoli cells 

in vivo. 

5.1.2. Peritubular myoid cells 

Seminiferous tubules are encased by 

contractile smooth muscle cells called peritubular 

myoid cells (PMCs). Besides providing structural 

support and propelling the flow of luminal fluid 

towards the rete testis, PMCs also secrete paracrine 

factors important for SSCs, including GDNF, 

leukemia inhibitory factor (LIF) and CC-chemokine 

monocyte chemoattractant protein-1 (MCP-1) (61–

63). 

5.1.3. Testicular macrophages 

The role of testicular macrophages 

(peritubular and interstitial macrophages) within the 

SSC niche is not well-understood, although some 

reports have led to the speculation that they 

potentially influence SSCs proliferation and 

differentiation either directly via colony stimulating 

factor 1 (CSF1) and RA synthesis or indirectly by 

influencing testosterone synthesis in Leydig cells 

through the production of 25- hydroxycholesterol, an 

intermediate compound within the testosterone 

biosynthetic pathway (64, 65). However, these claims 

have not been functionally validated. 

5.1.4. Leydig Cells 

Leydig cells, upon luteinizing hormone (LH) 

stimulation via LH receptors (LHR), regulate the 

expression levels of steroidogenic enzymes, such as 

17-beta hydroxysteroid dehydrogenase, in order to 

increase the production of testosterone. While 

testosterone is strictly indispensable for 

spermatogenesis, it also regulates the expression of 

thousands of genes in different somatic cell 

populations in the testis under normal conditions. 

One of the targets of testosterone is the Sertoli cell-

controlled attachment mechanisms (66, 67). Besides 

testosterone, Leydig cells also produce factors that 

directly target SSCs such as insulin-like growth factor 

1 (IGF1) and CSF1. 

5.1.5. Vasculature 

Vasculature cells (testicular endothelial 

cells or TECs) are rich sources of several cytokines 

and growth factors such as vascular endothelial 

growth factor A (VEGFA) that are required for SSC 

maintenance and localization. It has been proposed 

that ID4+ SPGs (As cells) are mainly localized at the 

avascular sections of the tubule whereas the NGN3+ 

progenitor SPG cells, derived from As cells, relocate 

to vascular areas to fulfill their new requirements for 

different levels of oxygen, metabolites, and various 

growth factors (33, 56, 64). 

Vasculature associated lymphatic 

endothelial cells (LECs) are found at the border of 
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seminiferous tubules and testicular interstitium, and 

cover the surface of the lymphatic space. LECs 

located in proximity to vasculature express a number 

of FGFs (FGF4, 5, and 8), that are shown to regulate 

the density of GFRA1+ Aundiff (40). 

5.2. Signaling pathways of SSC niche 

The vital soluble niche factors include 

GDNF, FGF, RA, follicle stimulating hormone (FSH), 

testosterone, CSF1, WNT and NOTCH. These 

somatic cell-derived factors govern multiple signaling 

pathways in SSCs and the resulting germ cell-soma 

communications are the paramount forces governing 

SSC self-renewal and differentiation. 

5.2.1. GDNF signaling 

While Sertoli cells have been considered as 

the primary source of GDNF during steady state 

spermatogenesis, TECs and PMCs are also found to 

be GDNF producers. GDNF is a well-defined prime 

factor that is required for promoting SSC renewal and 

maintenance, both in vitro and in vivo (68, 69). GDNF 

belongs to the transforming growth factor beta 

superfamily molecules and binds to 

glycosylphosphatidylinositol (GPI)-anchored GFRA1, 

triggering signaling via the transmembrane receptor 

tyrosine kinase called REarranged during 

Transfection (RET), which does not directly bind to 

GDNF. 

The loss of GDNF signals from Sertoli cells 

or peritubular myoid cells in vivo results in the loss of 

undifferentiated germ cells, whereas overexpression 

leads to an expansion of the undifferentiated SSCs 

and the development of tumors (61, 68). Similarly, the 

absence of GDNF receptors (GFRA1 and RET) 

triggers rapid depletion of SSCs resulting in a Sertoli-

cell-only phenotype (68, 70). Moreover, culturing of 

mouse SSCs in vitro requires GDNF (71, 72). These 

results suggested that GDNF is a bona fide self-

renewal factor for SSCs. Furthermore, the 

expression of GFRA1 within the Aundiff cells is 

reduced as the syncytial length is increased. While 

approximately 90% of As spermatogonia express 

GFRA1, approx. 75% of Apr, approx. 40% of Aal4, and 

approx. 15% of Aal8 spermatogonia are positive for 

GFRA1. Aal16 spermatogonia lack GFRA1 expression 

altogether (41, 45). In addition, the expression level 

of GFRA1 per cell is typically lower in aligned 

syncytia than single cells or pairs (73). 

Sharma and Braun reported that GDNF is 

expressed cyclically in Sertoli cells and its level is at 

its highest during the stages when SSC self-renew 

(X-IV). They proposed that GDNF acts to promote 

self-renewal not by regulating SSC proliferation, but 

by inhibiting SSCs from differentiating into transit 

amplifying Aundiff SPGs by using LIN28-null As cells in 

their study (74). Additionally, the stage specific cyclic 

nature of GDNF availability is also associated with 

chemotactic migration of undifferentiated SPGs (75). 

Target genes of GDNF in Aundiff spermnatogonia 

include Nanos2, Etv5, Lhx1, T(Brachyury), Mycn, 

Bcl6b, Id4 and Ccna (76–81). Other paracrine factors 

involved in SSC maintenance in synergy with GDNF 

include FGF2, different forms of VEGFA and C-X-C 

motif chemokine 12 (CXCL12) (72, 81, 82). 

5.2.2. FGF signaling 

Fibroblast growth factors (FGF) belong to a 

large family of over 15 FGF members that activate 

receptor complexes including FGFR1, FGFR2, 

FGFR3, and FGFR4. FGF2 together with GDNF is 

crucial for proliferation of prospermatogonia and SSC 

in vitro (39, 69, 83). GDNF-independent action of 

FGF2 on SSC self-renewal has also been reported 

using transplantation assay and in vitro culturing (84). 

Intriguingly, SPGs cultured in presence of FGF2 have 

morphology, doubling time, and SSC activity distinct 

from those of SPGs cultured in presence of GDNF. 

FGF2 promotes survival and proliferation of SSCs 

through signaling pathways which are distinct from 

those involving GDNF. Nevertheless, studies in mice 

have confirmed that both GDNF levels and SSC 

numbers increase in FGF2-depleted testis, thereby, 

implying that a balance between FGF2 and GDNF 

influences SSC self-renewal (84).Though FGF2 has 

been considered as a self-renewal promoting factor, 

it has also been reported to induce expression of RA 

receptor gamma (RARG) in SPGs marking them as 

differentiation-primed or differentiating SPGs (85). 

Moreover, FGF2 also regulates the availability of RA 

by suppressing the expression of RA-degrading 

enzyme Cyp26b1 (86). Further research is needed to 

better understand the role of GDNF/FGF2 ratio or 

FGF2 alone in SSC fate determination. It has been 

reported that FGF5, FGF4, and FGF8 are expressed 
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in LECs covering the outer surface of the tubules 

near the interstitium. Although the expression of 

FGF5 persists throughout the seminiferous epithelial 

cycle, its spatial availability is heterogeneous with 

more proximity to the interstitium. Interestingly, the 

distribution of Aundiff spermatozoa shows spatial 

correlation with FGF5 expression (40). It is proposed 

that the fate of SSCs may be determined by the 

competition among the SSC population for a limited 

supply of FGFs whose availability on the basement 

membrane is inversely proportional to the distance 

from the source and the number of Aundiff 

spermatogonia (40). However, further investigation is 

required to decipher the roles of different FGF ligands 

in determining the fate of SSCs. 

5.2.3. FSH Signaling 

Follicle Stimulating hormone (FSH) is a 

gonadotropin hormone synthesized by the anterior 

pituitary that acts via its cognate G-protein coupled 

receptor, FSH receptor (FSHR). During the perinatal 

period, FSH induces Sertoli cell proliferation and 

establishes the final Sertoli cell number. Later in 

development, FSH stimulates the transcriptional and 

metabolic activities of the Sertoli cell, which 

contributes to the hormonal and nutritional 

environment necessary for germ cell survival and 

development (87–89). FSH has been shown to 

stimulate GDNF expression in Sertoli cells and to 

increase the proliferation of undifferentiated SPGs in 

vivo (90). FSHR knockout male mice are fertile but 

display small testes and partial spermatogenic 

failure, with defects in sperm viability and motility 

(91). These data suggest that FSH plays a role in 

maintaining quantitatively normal spermatogenesis, 

but may not be absolutely required for fertility in male 

rodents. Interestingly, men with FSH deficiency or 

inactivating mutation in FSHR are infertile signifying 

a species specific prominence of FSH in 

spermatogenesis (92, 93). 

5.2.4. WNT signaling 

Wnt genes encode WNT ligands, which are 

cysteine-rich, glycosylated and lipid-modified 

secreted proteins that engage Frizzled (Fzd) receptor 

family members to transduce signals into target cells. 

In many cases, the “canonical” WNT pathway, 

mediated by beta-catenin, acts to maintain the stem 

cell pool by inhibiting their differentiation (94). On the 

contrary, in mouse spermatogenesis, both in vitro 

culture and in vivo transplantation based studies 

suggest that Wnt/beta-catenin signaling (activated by 

WNT3a) stimulates the proliferation of differentiating 

progenitors (95, 96). Tokue et al. further 

demonstrated that transition from stem (GFRA1+) to 

progenitor (NGN3+) state is driven by WNT6 which is 

prominently expressed by the Sertoli cells (97). 

Moreover, they identified SHISA6, a cell-autonomous 

WNT inhibitor, expressed by a subset of GFRA1+ 

Aundiff spermatogonia. It is proposed that SHISA6 

might play a role in the maintenance of the GFRA1+ 

pool by reducing the Wnt/beta-catenin signaling 

strength in the SHISA6+ Aundiff cells and preventing 

premature entry into the differentiation-primed state. 

Interestingly, the availability of GDNF and 

WNT6 (a WNT family member that is abundantly 

expressed by Sertoli cells) during the seminiferous 

epithelial cycle differs, suggesting that they have 

distinct windows of action (96, 97). Androgen-

regulated Sertoli cell gene WNT5A (an activator of 

beta-catenin-independent pathway) has also been 

implicated in control of SSC self-renewal, but the 

available data indicates that WNT5A is an Aundiff 

mitogen (98). Whether it supports adoption of either 

the stem or progenitor state is unclear. 

5.2.5. Retinoic acid signaling 

Genetic and molecular studies have 

elegantly proven that RA signaling is important for 

SPG differentiation, meiotic initiation, spermatid 

elongation, and sperm release (99, 100). Vitamin A 

(retinol) undergoes two oxidation steps to form RA 

which activates the RA receptors (RARA and/or 

RARG) and is then quickly (RA half-life in mouse 

testis is 1.3 hr) oxidized to inactive metabolites by two 

P450 enzymes (CYP26A1 and CYP26B1). During 

the first wave of spermatogenesis, RA is produced by 

Sertoli cells and is required for spermatogonia 

differentiation (101). In subsequent spermatogenic 

cycles, meiotic and post-meiotic germ cells become 

the major source of RA (101, 102). The lack of RA or 

vitamin A resulted in an accumulation of Aundiff 

spermatogonia, resulting from an inhibition of 

differentiation of Aundiff spermatogonia to A1 

spermatogonia. On the other hand, administration of 

exogenous vitamin A released this inhibition in 

vitamin A-deficient mice (103). Similarly, RARG is 
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predominantly expressed by differentiation primed 

NGN3+ SPGs (85) and inactivation of Rarg in 

spermatogonia impairs the Aal to A1 transition in the 

course of some of the seminiferous epithelium cycles 

(104). Additionally, RA has also been found to 

downregulate GDNF expression in Sertoli cells 

(resulting in the expression of differentiation-

supporting factors, such as Bmp4 and stem cell factor 

(Scf)) and antagonize the effect of GDNF in Aundiff 

(105–107). The periodic, pulsatile and stage-specific 

nature of RA synthesis is the prime regulator of 

asynchronous seminiferous epithelial cycle (108). 

Despite the extensive research on the role of RA in 

spermatogenesis, information on the molecular 

targets and interacting partners of retinoic acid 

receptors at various stages of germ cell development 

is still scarce. 

5.2.6. NOTCH signaling 

The NOTCH proteins (NOTCH 1-4) are 

large cell-surface receptors that are activated by 

membrane bound ligands on neighboring cells such 

as JAGGED (JAG1 and JAG2) and DELTA-like 

(DLL1, DLL3 and DLL4). Upon activation of the 

canonical pathway, the NOTCH intracellular domain 

(NICD) is cleaved and translocated to the nucleus, 

where it associates with and consequently activates 

a DNA-binding protein called recombining binding 

protein suppressor of hairless (RBPJ). The Hes/Hey 

family of transcriptional repressors are targets of 

RBPJ (109). NOTCH receptors (NOTCH 1-4) and 

NOTCH ligands (JAG1, JAG2 and DLL1) are 

reported to be expressed by spermatogonia 

whereas, NOTCH2, JAG1 and DLL1 are expressed 

by Sertoli cells as well (110). Gain-of-function mouse 

model that constitutively activates NOTCH1 signaling 

only in Sertoli cells led to a complete loss of germ 

cells around birth due to premature differentiation of 

gonocytes in fetal testis (111). Further investigations 

described a downregulation of Gdnf and Cyp26b1 

which are niche factors required for maintaining 

undifferentiated state of germ cells. A contrasting 

phenotype was observed in Rbpj-conditional 

knockout mice where NOTCH signaling was 

disrupted with significant increase in SSCs and 

overall germ cell numbers (112). The data so far is 

suggestive of a role of NOTCH signaling as a 

negative regulator of germ cell proliferation and 

promoter of differentiation. However, other studies 

reported that NOTCH blockage in germ and Sertoli 

cells had no effect on spermatogenesis and that 

NOTCH signaling is dispensable for mouse 

spermatogenesis (113). 

5.2.7. Chemokine signaling 

CXCL12, also known as SDF-1, is one of 

the chemokines produced by the Sertoli cells. It acts 

via its cognate receptor, known as C-X-C motif 

chemokine receptor 4 (CXCR4), a seven-

transmembrane protein which signals via G-proteins, 

leading to MAPK activation. CXCR4 is expressed by 

PGCs, gonocytes and Aundiff SPGs. In the fetal testis, 

CXCL12/CXCR4 signaling facilitates the later stages 

of PGC migration into the genital ridge and is required 

for gonocyte survival (114). In the adult testis, 

CXCL12/CXCR4 signaling is crucial for proper 

homing of SSCs to their cognate niche. Evidence 

also suggests that CXCR4 expression is stimulated 

by GDNF in Aundiff and that CXCL12/CXCR4 signaling 

may promote the self-renewing state and prevent 

transition from Aundiff to progenitor state in vitro (81). 

6. REGULATION OF SSC FATE IN MOUSE 

SSC NICHE 

For healthy spermatogenesis to occur, it is 

important to maintain the number and function of 

SSCs during steady state and also in response to 

environmental and genetic insults. Frequent self-

renewal of SSCs can lead to the over-accumulation, 

leading to defects in spermatogenesis. Conversely, 

SSCs get “exhausted” if there is insufficient SSC self-

renewal, resulting in progressive germ cell loss. 

Hence, it is critical to achieve an appropriate balance 

of self-renewal and differentiation in the life cycle of 

SSCs by the niche factors. The life cycle of SSCs in 

the mouse testis can be described in three stages: 1) 

maintenance of self-renewing state 2) differentiation 

priming and 3) differentiation commitment. Each 

stage is governed by a specific network of niche 

factors (Table 1). 

6.1. Maintenance of self-renewing state 

The property of self-renewal encompasses 

cell proliferation, cell survival and the proportion of 

self-renewing cell divisions relative to differentiating 

cell divisions. GDNF is the key factor for maintenance 
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of self-renewal of GFRA1+ SSCs. GDNF acts 

through two different signaling pathways to induce 

target genes that promote SSC self-renewal - the 

phosphatidylinositol 3-kinase (PI3K)/Ak strain 

thymoma (AKT)-dependent pathway (115) and the 

Src family kinase (SFK) pathway (78). The well-

studied GDNF-inducible self-renewal genes 

include Ets-variant gene-5 (Etv5), Bcl6b, and 

Lhx1, Pou3f1 (Oct6), Brachyury (T) and Id4, as 

reviewed by Song and Wilkinson (116). Id4 

promotes the undifferentiated cell state by its 

ability to inhibit basic helix-loop-helix transcription 

factors, most of which promote differentiation. 

Moreover, ID4 is unique in being the only protein 

known to be expressed in As and not Apr or Aal 

SPGs (31). There are many GDNF-independent 

and SSC-derived factors such as PLZF, FOXO1, 

GILZ and TAF4B that also contribute to regulate 

the self-renewal state of SSC (Figure 4). 

Promyelocyctic leukemia zinc finger 

(PLZF), also known as ZBTB16 or ZFP145, is a 

transcriptional repressor that binds to DNA via its 

Kruppel-type zinc finger domains and recruits histone 

deacetylases (HDACs) via its POZ domain. It is 

expressed throughout the Aundiff population and 

therefore is widely used as a marker for Aundiff SPGs 

(117). Accordingly, loss of functional PLZF results in 

progressive loss of germ cells and infertility (118). In 

mouse SSCs, PLZF has been suggested to work in 

at least three different ways to ensure SSC 

maintenance - firstly, by modulating the activity of 

Sal-like protein 4 (SALL4), whose action is 

associated with spermatogonia differentiation; 

secondly, by directly and indirectly (via Foxo1 and 

Etv5) repressing differentiation genes (including c-

Kit) and stimulating stemness genes of the 

spermatogonia (many of which are also GDNF 

targets) and thirdly, by indirectly opposing the 

Table 1. Summary of SSC niche derived factors required for mouse SSC maintenance or differentiation.  

Factor Testicular expression Function Reference 

GDNF Sertoli cells, TEC, PTM Self-renewal of SSC (68, 69, 206) 

FGF2 Sertoli cells, Leydig cells, germ cells Expansion and induction of differentiation in Aundiff (39, 69, 83, 86) 

FGF4/5/8 LECs Regulates SSCs and their niche (40) 

WNT6 Sertoli cells and 

Interstitial cells 

WNT ligand, promotes entry of SSC into 

differentiation-primed progenitor state 

(96, 97) 

RA Sertoli cells, spermatocytes Differentiation of SSCs into differentiating 

spermatogonia and spermatocytes 

(5, 99, 101) 

GFRA1 Self-renewing Aundiff
 (As, Apr) Forms GDNF receptor, SSC self-renewal. (68, 70) 

SHISA6 A subset of GFRA1+ Aundiff WNT inhibitor prevents premature entry of SSCs 

into the differentiation-primed state. 

(97) 

RARG Differentiation-primed progenitor Aundiff 

(majorly Aal) 

Promotes differentiation of Aundiff cells into 

differentiating spermatogonia 

(85, 104) 

PLZF Aundiff (As, Apr, Aal), early differentiating 

spermatogonia 

Promotes SSC self-renewal (106, 118, 120, 121) 

POU5F1 Aundiff (As, Apr, Aal) Proliferation and maintenance of SSCs  (125, 126) 

NANOS2 GFRA1+ Aundiff Prevents premature entry of SSCs into the 

differentiation state  

(53, 80, 128) 

ID4 GFRA1+ Aundiff, differentiating spermatogonia Promotes SSC self-renewal (35) 

NGN3 Differentiation-primed progenitor Aundiff (majorly 

Aal and few As and Apr) 

Sensitizes progenitor Aundiff to retinoic acid 

signaling and mark their entry into differentiation 

state. 

(42, 43, 85) 

STRA8 Differentiating spermatogonia Induces the entry of differentiating spermatogonia 

into meiosis  

(5, 149, 151) 

KIT Differentiating spermatogonia Initiates entry of differentiating spermatogonia into 

meiosis 

(85, 150) 
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differentiation-promoting mTORC1 pathway through 

the upregulation of mTORC1 inhibitor DDIT4 (119–

122). The activation of DDIT4 transcription by PLZF 

is likely to be important for SSC maintenance since 

the repression of mTORC1 signaling by DDIT4 is also 

necessary for maximal expression of both 

components of the GDNF receptor, viz., GFRA1 and 

c-RET in SSCs. Together, these data support a 

model in which PLZF operates in a molecular circuit 

that amplifies the responsiveness to GDNF signals 

as a means to maintain SSCs. 

Forkhead box protein O1 (FOXO1) is a 

member of the forkhead transcription factor family 

that has a variety of functions, including regulation of 

glucose metabolism, insulin signaling, control of 

cellular growth and stem cell homeostasis. FOXO1 is 

highly expressed in SSCs and germ cell specific 

knock-out of FOXO1 results in spermatogonia arrest. 

FOXO1 plays a role in SSC maintenance by directly 

or indirectly upregulating SSC self-renewal genes 

including Lhx1, c-Ret, Egr2 and Tex19. In addition, 

FOXO1 regulates stem cell marker genes Gata2 and 

Dppa4 (123). In contrast to its role in GDNF induced 

response, PI3K/AKT pathway has a “pro-

differentiation” role in gonocytes, wherein it prevents 

cytoplasmic FOXO1 from entering the nuclei of 

gonocytes and activates a cell proliferation program 

precociously. Hence, the precise role of FOXO1 

activity in SSCs needs further investigations. 

TATA-box binding protein associated factor 

4b (TAF4B) is a gonad-specific subunit of 

transcription initiation factor TFIID, which is a 

component of RNA polymerase II pre-initiation 

complex. Mice null for Taf4b exhibit a unique 

testicular phenotype that includes normal fertility at 

early ages followed by a complete loss of fertility by 

 
 

Figure 4. Molecular mechanism regulating SSC fate in adult mouse testis. The SSC niche is contributed by different juxtacrine and paracrine 

factors secreted by the somatic cells and germ cells respectively. Paracrine factors such as GDNF, FGF, CSF1, IGF1 and CXCL12 derived 

from Sertoli cells, Leydig cells, testicular endothelial cells (TECs) of the vasculature and lymphatic endothelial cells (LECs) maintain the self-

renewal state of SSC via their cognate receptors by upregulating the expression of genes including Etv5, Lhx1, Cxcr4, Nanos2, Shisa6 and 

Id4. These SSCs are marked by the expression of PLZF, SHISA6, EOMES, LHX1, PDX1, and ID4. Certain self-renewal factors function by 

inhibiting differentiation pathway, for example, SHISA6 is a WNT inhibitor and Nanos2 sequesters and inhibits activity of mTORC1 pathway. 

Follicle stimulating hormone (FSH), derived from vasculature, and testosterone (T), derived from peritubular myoid cells (PMCs), act indirectly 

by upregulating GDNF expression. Differentiation primed progenitor cells of A type undifferentiated (Aundiff) spermatogonia pool express an 

exclusive set of genes compared to SSCs. The progenitor cells are marked by the expression of NGN3, SOX3, MIWI2, and RARG. The major 

characteristic of progenitor cells is the responsiveness to retinoic acid (RA), synthesized by pre-meiotic and post-meiotic germ cells such as 

spermatocytes, through RARG receptor resulting in upregulation of Stra8, Kit, Sohlh1 and downregulation of Plzf and kit-degrading miR221 

making the cells vulnerable to differentiation into differentiating spermatogonia. The progenitor cells also ensure the shutting down of self-

renewal pathway by RA and NOTCH signaling mediated inhibition of GDNF expression. RA degrading enzyme, CYP26B1, secreted by PMC 

ensures removal of RA from extratubular sources like peritubular macrophages. The color key depicting different cell types is used throughout 

this article. Figure adapted with permission from Mäkelä and Hobbs (45). 
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P84, characterized by spermiogenesis defects, loss 

of germ cells and testicular degeneration. This 

phenotype is attributed to defective perinatal germ 

cell development (gonocytes to spermatogonia 

transition) and SPG proliferation (124). Thus, TAF4B 

appears to be active in maintaining proliferation of 

gonocytes and SSCs. 

POU Class 5 Homeobox 1 (POU5F1 or 

OCT4) is a POU-subclass homeobox transcription 

factor that is essential for the establishment and 

maintenance of stem cell activity. The major cell 

types that express POU5F1 in mice are the 

embryonic primordial germ cells, gonocytes, the 

precursors of SSCs that are most abundant at birth 

and Aundiff SPGs that are present after birth (125). 

Knock-down of POU5F1 in cultured SSC caused 

decrease in the proliferation rate, survival levels and 

SSC activity as assessed by transplantation assay 

(126). However, Wu et al. found that transient 

knockdown of POU5F1 did not significantly reduce 

SSC numbers in Thy1+ SPG cultures. This 

discrepancy in the data can be attributed to the 

difference in the two studies with respect to origin of 

the cells, the culture conditions, and the genetic 

background of mice (127). Hence, further 

investigations are required to determine the function 

of POU5F1 in SSCs. 

Similar to ID4 and PLZF, NANOS2 is a 

SSC self-renewal factor that functions by preventing 

premature differentiation of SSCs. NANOS2 is an 

RNA-binding protein that acts by sequestering and 

consequently inhibiting the activity of components of 

differentiation promoting mTORC1 pathway in a 

ribonucleoprotein complex (128). It was recently 

shown that NEDD4 (neural precursor cell expressed 

developmentally downregulated protein 4), an E3 

ubiquitin ligase, targets NANOS2 for degradation 

and thus promotes differentiation (129). NANOS2 

also associates with DND1 (Dead end protein 

homolog 1) in As and Apr, and deletion of either 

results in gradual depletion of SSCs. Conditional 

disruption of postnatal Nanos2 in mouse testis 

depleted SPG reserves, whereas overexpression of 

NANOS2 in mouse testis resulted in accumulation 

of Aundiff SPGs implicating the importance of 

NANOS2 in SSC self-renewal (53). 

The stem cell property of SSCs is also 

governed by post-transcriptional and epigenetic 

mechanisms. The post-transcriptional mechanism of 

gene regulation include an array of regulatory 

noncoding RNAs (ncRNAs), such as microRNA 

(miRNA), long ncRNA (lncRNA), piwi-interacting 

RNA (piRNA) and circular RNA (circRNA), that have 

been observed to be involved in regulating the SSC 

self-renewal through forming an intricate regulatory 

network together with protein-coding genes (130). 

Dozens of miRNAs have been identified that are 

specifically or preferentially expressed in SSCs and 

have been found to modulate expression of known 

SSC self-renewal genes. For example, miR-21 is 

regulated by ETV5 (131), miR-20 and miR-106a 

upregulates the expression of the self-renewal factor 

Plzf; whereas, miR-221 and miR-146a suppresses 

the expression of the differentiation factor c-Kit (132, 

133). LncRNAs are arbitrarily defined as transcripts 

of greater than 200 nucleotides in length that lack 

functional ORFs and can be localized to both the 

nucleus and cytoplasm. Accumulating evidence 

suggests that lncRNA also has substantial 

contributions in SSC maintenance (130). Two 

spermatogonia-specific lncRNA candidates, known 

as SPGA-lncRNA1 and 2, have exhibited a 

significant inhibitory effect on differentiation in an in 

vitro model (134). PiRNAs are a distinct class of small 

non-coding RNAs primarily expressed in the germline 

cells (135). These 21-31 nucleotide-long non-coding 

RNAs produced by a Dicer-independent mechanism 

are loaded into specific PIWI orthologs to form the 

piRNAs-PIWI complex and this ribonucleoprotein 

complex along with other protein components 

perform their function (136). PIWI proteins are 

composed of three proteins in mice namely, MIWI, 

MIWI2 and MILI. Although piRNAs-PIWI have been 

delineated to be involved during the meiosis of 

spermatocytes and spermiogenesis stages of 

spermatogenesis, some in vitro and in vivo (137, 138) 

studies are suggestive of their involvement in SSC 

maintenance and self-renewal. However, further 

research is required to explore the functions of 

PiRNAs in early stages of spermatogenesis. 

CircRNAs are an emerging class of single-stranded 

RNA molecules with a covalently closed loop 

structure generated through a special type of 

alternative splicing termed backsplicing, derived 

mostly from exons, but also from antisense, 
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intergenic, intragenic, or intronic regions. CircRNAs 

can modulate gene expression via multiple actions, 

including sponging miRNAs and proteins as well as 

regulating transcription and splicing. 5,573 circRNAs 

are identified so far in SSC and the average levels of 

circRNAs exhibited dynamic changes during male 

germ cell development, indicating that these 

circRNAs are probably involved in SSC self-renewal 

and differentiation (139). Nevertheless, the biological 

function of these circRNAs in the SSCs remains 

elusive. 

Interestingly, the epigenome (DNA 

methylation at CpG sites plus histone modifications) 

of male germ cells undergoes profound changes 

during fetal development, whereas in postnatal germ 

cells the epigenetic marks are more stable. It has 

been shown that the epigenetic landscape of SSCs 

is plastic and is similar to that of pluripotent cell types, 

characterized by bivalent (both activating H3K4me3 

and repressing H3K27me3) histone modifications 

placing promoters in a poised state capable of 

dynamic activation (140). 

Emerging evidences have also identified 

many potential players of SSC maintenance. 

Reactive oxygen species (ROS), which were 

considered to be inhibitory for stem cell function, 

have striking self-renewal promoting effects in SSCs 

(141, 142). Cyclin M1 (CNNM1) protein that belongs 

to the Ancient Conserved Domain Protein family 

appears to act as a cytosolic copper chaperone. 

Using in vitro cultured mouse SSCs and 

spermatogonial cell lines, CNNM1 was found to be 

associated with SPG self-renewal (143). Recently, 

preferentially expressed antigen of melanoma 12 

(PRAME12) protein, expressed in Aundiff and early 

differentiating SPGs, was found to be contributing to 

SSC maintenance. Knock-out of Pramef12 impaired 

SSC self-renewal and early differentiation, resulting 

in a Sertoli cell-only syndrome in adult mice (144). 

6.2. Differentiation priming 

This stage is marked by the exit of SSCs 

from the self-renewing state to a differentiation 

primed progenitor state, wherein the Aundiff cells 

become sensitive to retinoic acid signals. The most 

significant molecular event triggering differentiation 

priming is the activation of mTORC1 pathway in 

SSCs (38, 121, 129, 145). In addition to mTORC1 

pathway, the WNT/beta-catenin signaling also 

promotes transition from self-renewing to RA-

responsive progenitor state of SPGs (95–97, 146). 

These pathways result in the downregulation of self-

renewal genes including Gfra1, Ret, Lhx1, Eomes 

and Pdx1 and upregulation of genes including Ngn3, 

Sox3, Lin28 and Rarg (39) as shown in Figure 4. 

Hence, these upregulated genes are used as 

markers to identify progenitor SPGs. 

6.3. Differentiation commitment 

The NGN3+ progenitor SPGs are shown to 

express RARG which increases their differentiation 

competence by making them responsive to 

differentiation inducing RA signaling (85, 147). 

Progenitor SPGs have the capacity to transition into 

a self-renewing state or to enter differentiation state. 

Accordingly, the timely onset of differentiation is 

regulated by managing the availability of RA and 

RARG expression within the seminiferous tubule. 

Since the meiotic and post-meiotic germ cells are the 

primary source of RA during spermatogenesis, the 

extratubular supply of RA is kept blocked by its 

degradation by the CYP26B1 enzyme expressed in 

PMCs (146, 148). An alternate mechanism of 

sequestration of RA precursors by round spermatids 

at stages II-VI has also been proposed as a 

mechanism to prevent pre-mature entry of 

progenitors into differentiation states (103). It is also 

believed that the somatic cell derived niche factors 

determine cyclic expression of RA specifically during 

the VII-VIII stages which dictate the spermatogenic 

wave (101). As a result of rise in RA levels at stages 

VII-VIII, the RARG+ progenitor cells transit into type 

A1 differentiating SPGs and expresses early markers 

of spermatogonial differentiation including c-KIT and 

stimulated by retinoic acid 8 (STRA8) as shown in 

Figure 4 (85, 105, 149–151). 

6.4. Stage specific regulation of niche 

factors 

The three stages of SSC life cycle 

mentioned above (Section 6.3) can be correlated with 

stages of the seminiferous epithelial cycle (Figure 5). 

GDNF levels are high during the stages XII-IV which 
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are marked by proliferation of Aundiff and self-renewal 

of SSCs (29). Wnt6 signaling is strongly active in 

stages I-VIII (73, 97). Moreover, RA pulses start at 

late stages of VII. Consecutive to the action of WNT 

and RA signaling on SSCs, RARG+ progenitor cells 

are observed during the stages of II-VII (85). The 

highest levels of RA are recorded at stages VII-IX 

which coincide with the appearance of KIT+ 

differentiating SPGs. Mäkelä and Hobbs proposed a 

model, wherein the reducing levels of RA and a sharp 

decline in the number of FGF-consuming cells (due 

to Aundiff-to-A1 transition) at later stages (X-II) of the 

cycle allow GDNF and FGF levels to rise, resulting in 

the next wave of proliferation of Aundiff (45). 

6.5. SSC maintenance during homeostasis 

and regeneration 

SSC niche is dynamic in nature and varies 

with the state of the biological system, as is observed 

during postnatal and pre-pubertal testis 

development, homeostasis and regeneration after 

testicular tissue injury. The dynamic SSC niche 

subsequently results in the dynamic interconversion 

of undifferentiated SPGs into different states. In 

developing testis, the SSC niche produces abundant 

growth factors and less inhibitory factors resulting in 

an environment that supports self-renewing 

proliferation. On the other hand, the SSC niche in 

homeostatic adult testis produces a moderate 

amount of mitogenic factors to maintain a stable SSC 

number. Accordingly, the majority of SSCs in 

developing testis are in mitotic state, while the SSCs 

in homeostatic condition are likely to be quiescent or 

in a slow cycling state. In regenerating testis, the SSC 

niche again stimulates growth factor production for 

SSC expansion. 

It has been reported that during 

regenerative conditions, progenitor Aundiff cells 

(Gfra1- Ngn3+) re-express the self-renewal genes 

and acquire SSC activity. Furthermore, during 

 
 

Figure 5. Regulation of SSC niche across the seminiferous epithelial cycle in adult mouse. During the steady state spermatogenesis, the high 

level of GDNF present at stages XII-IV is conducive for maintenance of self-renewing subset of undifferentiated A type (Aundiff) spermatogonial 

cells (SPGs) which constitute the SSC population. The presence of WNT ligands in stages II-VII ensures existence of progenitor Aundiff. The 

peak in the concentration of retinoic acid (RA) which is observed during stages VIII-IX results in the stimulation of the progenitor cells to give 

rise to differentiating SPGs. The reduction in the concentration of RA levels during stage X-XII and the concomitant increase in the level of 

FGF mark the onset of the next SSC self-renewal and differentiation cycle. The color key depicting different cell types is used throughout this 

article. Figure adapted with permission from Mäkelä and Hobbs (45). 
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transplantation assay which represents a 

regenerative condition, Ngn3+ Miwi2 (Piwil4)+ Gfra1− 

Kit− Aundifff cells identified as differentiation primed 

progenitor cells also display reconstitution of stem 

cell activity (42). Recently, a minor subset (0.2% of 

testicular cells) of GFRA1+ cells were identified as co-

expressing Pdx1, Brachyury, Eomes and Lhx1 (39). 

Interestingly, it was observed that this subset of 

SPGs adopts a different expression profile signifying 

different cellular states in response to the niche 

conditions. The self-renewal state marked by Pdx1+, 

Eomes+ and Lhx1+ prevails during homeostasis. 

However, during postnatal development and under 

regenerative conditions, when the niche provides 

excess of self-renewal signal, Eomes and Lhx1 

expression are upregulated and Pdx1 is down-

regulated (39). Hence, Pdx1, Eomes and Lhx1 

expression might be required for long term 

maintenance of SSCs under steady state 

spermatogenesis. Thus, replenishment of cells in the 

differentiation-primed state and restoration of self-

renewing fractions after genotoxic damage are 

possible via dynamic interconversion of these Aundiff 

states 

7. IN VITRO MANIPULATION OF MOUSE 

SPERMATOGONIAL STEM CELLS 

SSCs are the only cells in the adult body 

which can transmit genetic information to subsequent 

generations and increase in number following birth. 

Thus, SSCs provide an accessible and renewable 

source of genetic code which can have enormous 

valuable applications for germline modifications in 

the field of medicine and molecular breeding. The 

development of spermatogonial transplantation 

techniques paved the way for in vitro manipulation 

experiments on SSCs (152). The transplantation 

assay for SSCs was primarily developed by Brinster 

and Zimmermann. They injected testis cell 

suspension containing SSCs into seminiferous 

tubules of busulfan-treated infertile mouse and 

congenitally infertile KitW/KitW-v mouse. The 

transplanted SSCs colonized the recipient 

seminiferous tubule and started spermatogenesis 

demonstrating the self-renewal and reconstitution 

properties of the injected cell suspension. The 

generated spermatozoa were able to produce 

offspring (153). Moreover, it was reported that one 

colony generated by spermatogonial transplantation 

is derived from a single SSC (154, 155), implying that 

the spermatogonial transplantation technique can be 

used as a biological assay for SSC identification and 

quantitation. The first transgenic animals using SSCs 

were created by transduction of mouse SSCs using 

a retrovirus vector containing the beta-galactosidase 

gene (156). Subsequent development of long-term 

culture systems has allowed a variety of techniques 

to be used for genetic modification of SSCs such as 

homologous recombination and gene-editing using 

the TALEN and CRISPR/Cas9 system (155, 157). 

7.1. Establishment of germline stem cell 

(GS) culture 

Two-dimensional (2D) culture of isolated 

SSCs has become a popular approach to study the 

influence of niche factors involved in the regulation 

of their proliferation and the differentiation of their 

progeny. The first report of culture and 

maintenance of mouse SSCs in vitro was 

published in 1998 (158). In this study, 

unfractionated testicular cells from neonatal and 

adult transgenic mice expressing beta-

galactosidase were cultured for approximately 4 

months on SIM mouse embryo-derived 

thioguanine and ouabain resistant (STO) feeder 

cells, which have been routinely used for mouse 

embryonic stem (ES) cell cultures, in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS). In 

transplantation assay, the cultured cells derived 

from neonatal testis formed spermatogenic 

colonies in the recipient testis demonstrating the 

stem cell potency of the cultured cell. However, no 

expansion of SSCs was observed, and the number 

of surviving SSCs was very low. Since the 

proliferation of stem cells is regulated intrinsically 

and extrinsically by the stem cell niche, several 

modifications in the culture condition were 

performed to identify the soluble factors which 

would support the maintenance and expansion of 

SSCs in culture. A beneficial effect of GDNF, 

minimal essential medium (MEM) and OP9 bone 

marrow stroma or fibroblast cell lines as feeder 

layers was observed on SSC maintenance in this 

short-term culture experiment (30). However, the 

expansion of SSC and consequent long-term 
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culture was not obtained using these culture 

conditions. 

The first report of successful in vitro 

expansion of mouse SSCs was in 2003 by Kanatsu-

Shnohara et al. The SSCs in this study were enriched 

by differential plating and cultured on mouse 

embryonic fibroblasts (MEFs) feeders in a serum-

supplemented proprietary StemPro-34 (Gibco)-

based medium, which contained the original 

StemPro-34 supplement plus 16 individual 

compounds and FBS with a cytokine mixture of 

GDNF, FGF2, LIF, and epidermal growth factor 

(EGF). Using the enriched culture media, quiescent 

SSCs resumed proliferation and formed grape-like 

clusters that expressed spermatogonia markers 

ITGA6, ITGB1 and EPCAM. The cultured cells 

proliferated for approx. 5 months in a logarithmic 

manner without losing colonization activity in 

transplantation assays. Moreover, the haploid male 

germ cells could produce offspring, proving that the 

cultured cells possessed the proper SSC activity 

(71). Although the cultured cells exhibited stem cell 

activity, these cells appeared (grape-like aggregates) 

different from the isolated SSCs in seminiferous 

tubules. Hence, these cultured SSCs were termed as 

germline stem cells. Subsequently, some studies 

reported comparable results regarding GS cell 

derivation from other mouse strains under similar 

conditions (69, 159). These results suggested that 

the combination of mouse strain and age, feeder cells 

used, and medium composition affected the in vitro 

expansion of SSCs. 

7.2. Genome editing of GS cells 

GS cells are considered to be more suitable 

than embryonic stem cells (ESC) for genome editing 

of germline lineages as GS cells have the following 

advantage over ES cells: 1) stable epigenetic/ 

genetic properties, 2) normal karyotype, 3) normal 

genomic imprinting status, 4) susceptible for drug 

selection and 5) can be maintained in vitro for as long 

as 2 years (71, 160). Transgenes can be introduced 

and established in GS cells through conventional 

gene transfer techniques such as lipofection, 

electroporation, and retroviral vector infection, 

lentivirus-, adenovirus-, and adeno-associated virus-

mediated gene transductions (160–162). However, 

the genetic modification of GS cells has proved to be 

more difficult than that of ESCs, mainly due to low 

gene transfer and genome targeting efficiency in GS 

cells. The targeting efficiency of genome editing 

using homologous recombination has been 

increased by several fold using site specific double 

strand break producing nucleases such as zinc finger 

nucleases (ZFNs), transcription activator-like effector 

nucleases effector nucleases (TALENs) (157, 163). 

Successful genome editing using clustered regularly 

interspaced short palindromic repeat (CRISPR)/Cas9 

technology for base pair substitutions and transgene 

knock-in is also reported in mouse GS cells (164). 

7.3. In vitro spermatogenesis 

Although SSCs can be maintained and 

expanded for several months in 2D culture (section 

7.1), it is difficult to induce meiosis or later stages of 

spermatogenesis in these conditions (71, 165). A few 

studies have demonstrated the ability of immortalized 

spermatogonia cells to differentiate into 

spermatocytes and round spermatids (166, 167). 

However, this strategy has its own limitations such as 

manipulation of the genome for immortalization of 

germ cells which is not feasible for reproduction of 

animals, let alone for humans. The passage of SPGs 

into meiosis (and hence, migration through the 

seminiferous epithelium) depends upon the structural 

support of the seminiferous epithelium, interaction 

with the extracellular matrix (ECM) and the 

availability of SSC niche factors 

The importance of Sertoli-germ cell 

interaction was also revealed in Sertoli-

spermatogenic cell co-cultures established from 13- 

to 18-day-old mice that were able to convert 

pachytene spermatocytes to round spermatids 

capable of developing normal and fertile offspring 

when injected into mature oocytes (168). The 

requirement of spatial and temporal testicular 

microenvironment was understood in ex vivo organ 

culture. The first description on in vitro 

spermatogenesis was reported by Martinovitch, who 

used newborn mouse testis tissue cultured on a clot 

composed of equal parts of fowl plasma and fowl 

embryo extract and demonstrated the development 

of pachytene spermatocytes from presumably 

immature spermatogonia in the culture (169). Organ 
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culture experiments in the later years also achieved 

limited success till the pachytene spermatocyte 

stage. In 2003, Suzuki and Sato isolated 

seminiferous tubules from 5-day old mice and 

cultured it on an agarose gel block at the liquid-air 

interface (170). The round spermatids obtained were 

injected into the oocytes resulting in embryos that 

developed up to the 8-cell stage but no offspring was 

produced. This technique is also applicable to adult 

and cryopreserved tissues (157, 171). 

Reproducing the testicular third dimension 

in vitro (three-dimensional or 3D culture) has been 

achieved by embedding various (dissociated) cell 

types of the seminiferous tubule in a collagen gel 

matrix. In this way, a suitable support is provided for 

isolated germ cells to interact with Sertoli cells and 

other structural and hormone-producing elements. 

Stukenborg et al. established soft agar culture 

system (SACS), wherein enriched SSCs from 10-

day-old mice were mixed with the gel-agar medium 

(0.35%) and incubated on a solid-agar base (0.5%). 

The agar was mixed with a high glucose DMEM 

solution. This approach yielded enhanced viability, 

germ cell meiosis, and differentiation up to post-

meiotic stage (172). SACS technique has reported 

morphologically normal spermatozoa from pre-

meiotic germ cells (173, 174). Although the study of 

in vitro spermatogenesis progressed significantly 

over the last century, mouse tissues have been more 

feasible for spermatogenesis under culture 

conditions (175). 

7.4. Germ cell induction from pluripotent 

stem cells 

There have been attempts to generate 

gametes or PGCs in vitro from ESCs both in mice and 

humans by isolating cells that express a germ cell 

marker(s) in spontaneously differentiated embryoid 

bodies (176). However, these attempts were 

inefficient in obtaining the induced cells (less than 

1.0%) and in generating induced gamete-like cell 

derived healthy offspring, thus unsuitable for 

analyzing the events that take place before the 

emergence of germ cell-like cells. While ESCs are 

pluripotent stem cells (PSCs) derived from the inner 

cell mass (ICM) of preimplantation blastocysts at 

E3.5-E4.5 in vitro, epiblast stem cells (EPiSCs) are 

PGCs derived from epiblast (which are the 

precursors of PGCs in vivo) of post-implantation 

embryos at E5.5-E6.5 in vitro (177). EpiSCs exhibit a 

primed pluripotency and retain attributes of the 

original epiblasts making them a superior source for 

the generation of germ cell-like cells compared to 

ESCs in vitro (178). Hence, recent studies have 

focused on inducing PGC like cell (PGCLCs) from 

epiblast-like stem cells (EpiLCs) generated from 

ESCs and induced pluripotent stem cells (iPSCs). 

Fragilis, stella (Pgc7/Dppa3) and Blimp1 (also known 

as Prdm1) genes in the epiblast and BMP4 signaling 

from the extraembryonic ectoderm were found to be 

required for the specification of germ cell fate in mice 

(11). Subsequently, a transgenic mouse stain and ES 

cell line were established by Ohinata et al., which 

showed germ cell commitment by dual fluorescence 

reporter genes (Blimp1-Venus:: Stella-Cfp reporter 

mouse/ES cells) (179). Thereafter, Hayashi et al. in 

2011 succeeded in inducing EpiLCs from ES and iPS 

cell lines using activin A and FGF2, and then 

PGCLCs were derived from aggregated EpiLCs in 

suspension culture by stimulation with BMP4, 

BMP8b, SCF, LIF, and EGF. The resulting PGCLCs 

were then transplanted into infertile mouse testes to 

produce haploid male germ cells (180). 

8. CLINICAL APPLICATIONS OF 

SPERMATOGONIAL STEM CELLS 

Infertility is a worldwide problem affecting 

15-20% of couples globally with male factor 

involvement estimated to be present in about 50% of 

cases, with sole responsibility in 30% of cases and 

with a co-contributing female factor in 20% of cases 

(181, 182). Severe male infertility, including 

azoospermia and oligoasthenozoospermia, as well 

as testicular dysfunction can result from genetic or 

medical conditions such as Klinefelter syndrome, 

environmental insults such as infections, 

inflammation/autoimmunity or gonadotoxic medical 

treatments such as oncotherapies (183–185). 

Fertility preservation is proposed for all these health 

conditions, especially in pediatric cancer patients 

from the perspective of future interventions allowing 

parenthood. For adult men or adolescents, 

cryopreservation of ejaculated or surgically retrieved 

sperm is routinely proposed before gonadotoxic 

therapies, while for prepubertal boys, 
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cryopreservation of a testicular biopsy of immature 

testicular tissue (ITT) containing SSCs is now 

ethically accepted as the only way to offer a fertility 

preservation strategy (186). 

There are at least four potential ways to 

theoretically use cryopreserved pre-pubertal or adult 

testicular tissue biopsies or germ cell preparations to 

obtain functional sperm. These includes the 

following: 1) autologous transplantation (auto-

transplantation) of testicular tissue termed as testis 

tissue transplantation (TTT), 2) xenografting of 

testicular tissue under the back skin or scrotal skin of 

mice, 3) isolation of spermatogonial stem cells, with 

and without expansion, for auto-transplantation and 

4) isolation, expansion, and maturation of germ cells 

ex vivo via 2D, 3D, and organoid tissue cultures. 

8.1. Testicular tissue transplantation 

TTT has the advantage that it retains SSCs 

within their niche and ensures germ cell and 

supporting cell interactions, providing an optimal 

microenvironment for cell proliferation, maturation 

and differentiation. However, since TTT carries a 

potential risk of reintroducing cancerous cells back to 

the patient and causing malignant relapse (187), it 

should only be considered for patients diagnosed 

with non-systemic cancer and/or non-malignant 

hematopoietic disorders (188). Complete 

spermatogenesis following auto-transplantation of 

ITT was first demonstrated in mice (189). Successful 

autologous/allogeneic TTT has been reported in 

rhesus monkeys (190), but not in other species 

including humans. In recent years, ectopic grafting of 

immature testicular tissues from various mammalian 

species under the back skin of immunodeficient mice 

(xenotransplantation) has been developed as a 

strategy for preserving testicular function and 

generating mature spermatozoa (189). However, 

complete spermatogenesis was not achieved in 

human xenotransplantation cases. Pachytene 

spermatocytes and spermatid-like cells were 

reported in human ITT xenotransplants placed into 

the scrotum of castrated immunodeficient mice (191, 

192), while early spermatocytes were detected in 

xenotransplants under the dorsal skin (193). 

Intratesticular xenotransplantation also led to 

differentiation only up to pachytene spermatocytes 

stage (194). The reason for inefficient 

spermatogenesis in human xenotransplantation 

studies is believed to be the long duration of 

prepubertal development (8-10 years) observed in 

humans which may not be achieved in transplant 

recipient mouse systems (193). 

8.2. SSC transplantation 

Brinster’s group was the first to 

demonstrate successful transplantation of testicular 

cell suspension containing SSCs with development 

of mature sperm in mice using freshly isolated and 

cryopreserved prepubertal or adult mouse testicular 

cell suspension (152, 195). Many studies thereafter 

have reported live offspring generation in different 

species including mice, rats, goats, chickens, and 

sheep and embryo development in non-human 

primates following auto-transplantation of cultured 

SSCs (196–200). So far, only one report has 

described autotransplantation of cryopreserved 

human testicular cell suspension in patients cured of 

non-Hodgkin’s lymphoma, but no follow-up was 

published (201, 202). The small size of human 

testicular biopsy samples makes it difficult to isolate 

SSCs for preservation and transplantation, making in 

vitro expansion and maturation of human SSC 

critical. Other important concerns are the risk of 

neoplastic contamination of cryopreserved tissue 

with subsequent possibility of re-inducing the disease 

in a cured patient and the need for standardization of 

an efficient cell injection technique. The availability of 

an undamaged recipient niche which would support 

migration, proliferation and differentiation of the 

transplanted SSC is also an important factor for the 

success of SSC transplantation compared to TTT. 

Long-term ex vivo propagation and 

expansion of pre-pubertal SSC and adult SSC from 

normozoospermic and infertile men (203, 204) have 

both been reported and these cells were shown to 

have stable genetic and epigenetic profiles after 

culture (205). Recently, Bhang et al. discovered that 

human endothelial cells secreted GDNF, basic 

fibroblast growth factor (bFGF), stromal cell-derived 

factor-1 (SDF-1), macrophage inflammatory protein 

2 and insulin-like growth factor-binding protein 2 

and could support SSC growth for at least 150 days 

(206). 
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To eliminate the risk of cancer-cell 

contamination of testicular cell suspension, attempts 

have been made to efficiently isolate human SSCs 

from cancer cells using specific markers and cell-

sorting techniques (200, 207). However, these 

techniques did not allow complete removal of cancer 

cells. Alternatively, culturing the testicular cells to 

propagate SSCs led to elimination of all 

contaminating malignant cells after 26 days of culture 

(208). 

The rete testis ultrasound-guided injection 

was established as the best approach for SSC 

transplantation into large testes with 70% of the 

tubules filled after an average of 30 min in the 

monkey testis (209). More recently, an infusion pump 

was used to inject SSCs in human cadaver testes, 

showing less variability between subjects if 

compared to the injection under hydrostatic pressure 

(210). However, leakage in the testicular interstitium 

was observed and further studies are warranted to 

improve the injection technique. 

Eventually, as SSCs after being re-

transplanted have to migrate to colonize the host 

testicular stem cell niche to gain physical and 

molecular support for their proliferation and 

differentiation, an undamaged niche is of paramount 

importance for a successful SSCs transplantation. 

8.3. In vitro maturation of SSCs 

Although testicular tissue or SSC 

transplantation are promising fertility preservation 

strategies, the risks related to the transplantation of 

residual neoplastic cells limit their application. In vitro 

maturation and differentiation of cryopreserved SSCs 

into haploid cells for later usage in assisted 

reproduction techniques (ART) would bring a 

promising fertility preservation option for childhood 

cancer survivors. Similarly, it would benefit the 

infertility treatment of the wide range of non-

obstructive azoospermia patients who are not able to 

produce sperm but still have SSCs. In vitro 

spermatogenesis using human testicular cells was 

earlier reported in 1967 by organ culture which 

demonstrated differentiation of spermatocytes from 

preleptotene to pachytene stage (211). Many studies 

on organ culture in the following year showed limited 

success with differentiation of spermatogenic cells, 

that too achieved only till pre- and post-meiotic 

spermatocyte stage (175). Recently, development of 

haploid germ cells from spermatogonia cells using 

organotypic culture for testicular tissues from pre-

pubertal cancer patients was reported (212, 213). 

Nevertheless, the characterization of non-cultured 

and cultured human SSC remains challenging/ 

controversial due to the heterogeneity of 

spermatogonia, ambiguity of human SSC-specific 

markers, and the inherent contamination of SSC with 

other testicular cells during the culture process. In 

addition, cell culture conditions for ex vivo 

propagation and differentiation of mouse 

spermatogonia have not been fully translatable to 

human SSC. 

8.4. Pluripotent stem cells 

Human ESCs and iPSCs have been 

considered as valuable sources of pluripotent cells to 

obtain germ cells in vitro. Human ESCs have been 

utilized to model and improve our understanding of 

human germ cell development and infertility, and 

have also been investigated in stem cell-based 

fertility preservation strategies. Germ cells or gonadal 

support cells have also been developed from human 

iPSCs derived from autologous cells such as skin 

biopsy-derived fibroblasts or blood cells or urine 

derived cells or hair keratinocytes (214–216). These 

strategies are encouraging for patients who lack 

spermatozoa or SSCs. Similar to the case in rodent 

species, pluripotent stem cell based strategies 

involve the derivation of PGCLC from a patient’s 

somatic cell (typically dermal fibroblast, 

keratinocytes, or blood cells) via induction of iPSC, to 

be used for transplantation into the testis to induce 

spermatogenesis in vivo, or to pursue in vitro 

derivation of gametes (216, 217). These strategies 

have been employed for Klinefelter and non-

obstructive azoospermia patients albeit with limited 

success (218, 219). However, direct reprogramming 

of mouse skin fibroblasts into embryonic Sertoli cells 

and Leydig-like cells has been reported (220, 221). 

Sertoli cell- and Leydig cell-induced differentiation of 

human iPSC was also recently reported (222, 223). 

An important limitation of human ESC and human 

iPSC-based approaches, apart from the legal and 

ethical barriers, is the high risk of accumulation of 
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genetic and epigenetic mutations during 

reprogramming (224). Consequently human ESC or 

iPSC derivation of germ cells which have the 

potential to transmit genetic material to the offspring 

may not be the safest approach for fertility 

preservation. 

9. CONCLUSION 

The development of new cellular, molecular 

and computational technologies such as single-cell 

transcriptomic analysis has aided the research 

fraternity to elucidate the heterogeneity of mouse 

spermatogonial stem cells and somatic cells that 

contribute to the regulation of SSCs (Figure 6). This 

should result in a finer characterization of 

spermatogonia populations and development of a 

detailed hierarchy of successive cell states in the 

developmental lineages. Further, a broad-spectrum 

omics (including transcriptomics, epigenomics and 

proteomics) based study is envisaged to understand 

the complexity of SSC function at the molecular and 

spatiotemporal level. Although the rodent species 

have been the favored choice of animal model with 

the ease in handling, housing and breeding, it is 

important to take into consideration the interspecies 

differences in spermatogenesis resulting in 

difficulties in translating rodent data to higher species 

such as humans. Hence, it is critical to develop an 

efficient non-human primate model to study the 

process of spermatogenesis and to improve 

strategies for fertility preservation and treatment in 

humans. Availability of efficient manipulation 

techniques of SSCs would also have non-clinical 

applications such as improvement of molecular 

breeding of livestock animals. Significant advances in 

the area of SSC cryopreservation and in vitro 

maturation point towards the potential of SSC based 

clinical application to restore fertility in near future. 

Moreover, evolving germline genome editing 

research may, in the distant future, allow for the safe 

use of these approaches for the treatment of genetic 

factor-induced male infertility. We hope that future 

research in this line would decode the secrets of 

 
 

Figure 6. Schematic of potential SSC-based fertility preservation strategies in humans. Three methods for fertility preservation, especially at 

the prepubertal male stages, have been investigated using animal models and in few instances, using patient samples such as prepubertal 

cancer patients and Klinefelter patients. A) In the first method, SSCs can be isolated from testis biopsy samples and expanded in vitro. The 

expanded SSC-derived germ-line clusters can be cryopreserved for future application. B) In the second method, the tubules obtained from 

testis biopsy can be directly cryopreserved for future applications. In the adult stage of the male, the cryopreserved samples can be 

transplanted back into the testis to restore spermatogenesis and fertility. Alternatively, the cryopreserved samples can be revived by in vitro 

maturation (IVM) in 2D, 3D or organ culture, resulting in the formation of mature sperms that can be applied in assisted reproductive techniques 

(ART) such as intracytoplasmic sperm injection. Tissue-based approaches have the advantage of preserving the structural integrity of the 

seminiferous epithelium resulting in efficient restoration. C) In the third method, somatic cells such as fibroblast cells, derived from skin biopsy 

from prepubertal or adult male, can be reprogrammed in vitro to pluripotent cells (induced pluripotent stem cells, iPSCs). These iPSCs can be 

transdifferentiated in vitro into primordial germ cell like cells (PGCLCs) that can be autotransplanted into the adult male to restore natural 

fertility. 
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human SSC to the level of our understanding of 

mouse spermatogenesis, which would enable us to 

do this task in a safe and efficient manner. 
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