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1. Abstract

Since the discovery of the first microRNA (miR),
almost three decades ago, the roles played by miRs un-
der normal and diseased settings have been widely inves-
tigated. miRs are found to play crucial roles in cancer initi-
ation and progression, as well as towards therapy response
mechanisms. Therefore, they are relevant and attractive tar-
gets for therapeutic development. Many preclinical studies
have demonstrated their promise as future anti-cancer tools.
Recently, increasing number of early phase clinical trials
have emerged. In this Commentary, we will summarize the
major discoveries within the miR research field and high-
light the status quo of current miR-therapeutics, which has
prominent potential of impacting future cancer regimens
given their massive dysregulation in oncogenic processes.

2. Introduction

In 2021 Frontiers in Bioscience-Landmark has
reached its 25th anniversary, and this Commentary presents
an opportunity to acknowledge the success of one of its
most highly-cited papers, i.e., the 2019 article by Dai et al.
[1], which focuses on the role of microRNA (miR)-21 in
Non-Small Cell Lung Cancer (NSCLC). miR-21 will serve
as Ariadne’s thread in this mini-review, in which, miR-21 is
adopted as a narrative guide to summarize themajor discov-

eries obtained in the microRNA field, a term coined back in
2001 to classify this distinctive class of small untranslated
RNAs [2–7].

Since 1993, when the 22 nucleotide-long RNA
lin-4 was first identified [8], thousands of other microR-
NAs have been discovered to possess post-transcriptional
gene regulation properties in RNA-based gene silencing
processes in eukaryotes. lin-4 is rightfully considered as
the founding member of miR biomolecules, and its discov-
ery has shifted the paradigm on gene regulation, which has
been based on the “central dogma” of genetics where DNA
is first transcribed into messenger RNA (mRNA), and then
translated into protein.

Within the genome, miRs are often found as clus-
ters from which they are transcribed as discrete poly-
cistronic transcripts, or share the promoter of host genes and
are spliced from their mRNA transcripts during biogenesis
[9]. miR-21 was one of the first mammalian microRNAs
identified [3] and the first to be elucidated on the mecha-
nism of miRs processing starting from pri-microRNAs (pri-
miRs) [10]. These ~1-kb-long transcripts form a charac-
teristic hairpin structure that undergoes nuclear processing
through cleavage by the Drosha/DGCR8 ribonuclease com-
plex [11, 12]. Afterwards, they are released into the cy-
toplasm as ~60 nucleotides-long precursor hairpins called
pre-miRs, via an Exportin 5 and Ran-GTP complex. Subse-
quently, their ends are cleaved by the Dicer/TRBP complex
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resulting in the mature double-stranded miR duplex [13].
At this stage, only one strand of the miR duplex, the guide
strand, is loaded onto Argonaute (Ago) to form the RNA-
induced silencing complex RISC [14, 15]. This dynamic
process eventually results in the production of mature miR
that physically interacts with a complementary or partially
complementary sequence usually located in the 3′UTR (Un-
translated Region) of a target mRNA to mediate gene si-
lencing [16]. In order for miRs to exert their action, partial
or full complementarity between the seed region of miR and
(primarily) the 3′UTR is required [16, 17], although addi-
tional mechanisms of interactions have been reported [18].
This allows for a single miR to possess the ability to bind
to multiple mRNAs. In a nutshell, these interactions are the
raison d’être of miR biomolecules which are responsable
for triggering mRNA destabilization/decay or translational
inhibition, although mRNA degradation appears to be the
dominant silencing effect [16, 19–25].

3. miRs and cancer

Given that a single miR can regulate a variety of
target genes, and that a single protein-coding gene usually
contains several miR seed sequences, the miR regulatory
system stands en bloc as a complex mechanism regulat-
ing eukaryotic gene expression. It is estimated that miRs
may regulate >30% of eukaryotic genes [26]. Therefore,
it is unsurprising that alterations in this composite post-
transcriptional regulatory machine have been frequently
linked to tumorigenesis [27]. There is considerable evi-
dence to indicate that miRs and their biogenesis machin-
ery are involved in the development of cancer. miRs are
frequently altered owing to genomic events, such as muta-
tions, deletion, amplification, or biogenesis defects due to
mutations or downregulation of miR biogenesis regulating
enzymes [16, 27–29].

Cancer is defined by abnormal cell division and
differentiation, and can arise not only from alteration of
various molecular mechanisms including dysregulation of
several protein coding genes but also global changes in
miR profiles. Despite miRs being the most widely studied
class of non-coding RNAs, other components of the non-
coding machinery such as the recently-discovered RNA
species small nucleolar RNAs (snoRNAs), small interfer-
ing RNAs (siRNAs), transcription initiation RNAs (tiR-
NAs), PIWI-interacting RNAs (piRNAs), transcribed ultra-
conserved regions (t-UCRs) and large intergenic noncoding
RNAs (lincRNAs) [30–32] will certainly be identified as
significant players in our war against cancer, once we can
adequately delineate their complex biology.

The first evidence showing that miRs were dys-
regulated in human cancer came from studies on B-cell
chronic lymphocytic leukemia (CLL), in which a critical re-
gion on chromosome 13q14 has been found to be frequently
deleted in CLL, and that that this deleted region contained

two microRNA genes (miR-15a and miR16-1) [33]. Sub-
sequently, microRNA genes were identified at fragile sites
and genomic regions involved in chromosomal alterations
identified in various human tumors [34], and defects in
miR-mediated regulation can noticeably lead to human can-
cers [35]. Several other mechanisms controlling altered
miR expression in cancer have been reported comprising
mutations [36], small nucleotide polymorphisms (SNPs) as
described in lung cancer [37], DNA methylation (consis-
tently half of the genomic sequences of miR genes are asso-
ciated with CpG islands) [38], DNA hypomethylation lead-
ing to miR upregulation [39, 40] and histone acetylation
[41, 42]. Not surprisingly, another dysregulated regulatory
mechanism entails that some oncogenic mRNAs carry mu-
tations or SNPs in their 3′UTR thus eluding control through
miR binding, and consequently avoiding negative regula-
tion. An example is the oncogene K-RAS in lung cancer
where a SNP in the let-7 binding site precludes its correct
regulationwhich leads to higher tumor occurrence [43]. Re-
markably, proliferating cells have been observed to express
mRNAs with shortened 3′UTRs and, as a result, contain
fewer miRs’ binding sites [44]. This suggests almost in-
finite regulatory possibilities of dysregulation at/during tu-
morigenesis. Interestingly, it is recently shown that a very
complex network comprising both coding and non-coding
RNAs bears the same miR response elements (MREs) on
their 3′UTRs, and can compete with each other for the same
limited pool of miRs. Such RNAs are called competing en-
dogenous RNAs (ceRNAs) and they are capable of confis-
cating miRs, thereby acting as natural microRNA sponges.
Thus, by competitive binding for shared miRs, they affect
each other’s expression and can co-regulate each other in
the highly complex ceRNA networks to support miR in-
hibition [45, 46]. Needless to say, alterations in ceRNA
networks have important roles in different aspects of tumor
etiology [47].

4. miR-21 the par excellence onco-miR

Large-scale profiling of gene expression in mul-
tiple human cancers have shown that one of the most
frequently dysregulated gene in cancer is miR-21, fre-
quently found overexpressed in all tumor types including
lung cancer [48–50]. miR-21 expression within the tumor
microenvironment (TME) is currently under-investigated
when compared to tumor cells per se. However, we are be-
ginning to comprehend its key relevance in the TME, which
is to be considered as the most tumor-intermingled “or-
gan” and symbiotic with cancer cells. In tumor-infiltrating
macrophages, miR-21 inhibition for example, is pivotal in
regulating tumor progression [51]. In addition, miR-21
(and miR-29a) which is secreted by tumor cells in exo-
somes, better defined as small extracellular vesicles (sEVs)
[52, 53], can interact with members of the TLR (Toll-like
receptors) family to stimulate TLR-mediated pro-metastatic
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inflammatory response on tumor associated macrophages
(TAMs), thus suggesting a new mechanism of miR-TLR
mediated intercellular communication between the TME
and cancer cells [54]. Interestingly, sEVs produced within
the TME by cancer-associated adipocytes (CAAs), TAMs,
and cancer-associated fibroblasts (CAFs) contain miR-21,
and sEVs-mediated miR-21 delivery into cancer cells is
shown to confer therapeutic resistance in multiple can-
cers [55, 56], suggesting apart from cancer cells, the TME
should also be targeted with anti-miR-21 therapeutics.

A role for miR-21 as an oncogenic miR (oncomiR)
was demonstrated in vivo using a doxycycline-inducible
miR-21-LoxSTOPLox-Tet-off mouse model [57], that
upon induction, displayed malignant pre-B cell lymphoid-
like phenotype. A parallel study demonstrated a pro-
tumorigenic role of miR-21 in NSCLC where deletion of
miR-21 in a KRAS-driven lung cancer model reduced tu-
morigenesis, while mir-21 overexpression showed the op-
posite effect [58]. Additionally, amplification of chromo-
somal 17q23.2 region, which includesmiR-21, has been ob-
served in breast, lung, hepatocellular, ovarian and prostate
cancers [59]. Further, TCGA data demonstrate the locus
containing miR-21 is amplified, and that such amplifica-
tion can act as a prognostic marker in pulmonary adeno-
carcinomas [60]. miR-21 expression can also be upregu-
lated via transcription factors that are upregulated in can-
cer such as AP-1 that acts down-stream of RAS and binds
to miR-21 promoter [61, 62]. Other factors implicated in
miR-21 upregulation are STAT3 [63] whose high expres-
sion is associated with poor patient outcomes [64–66] and
NF-kB [67]. However, the complexity of the predicted pro-
moter region of pri-miR-21 [61, 68] and occurrence of al-
ternative transcription start sites [69] suggest that regula-
tion of miR-21 transcription may not be a straight forward
process [70]. Not surprisingly, miR-21 is upregulated by
one of the most lethal oncogenes, i.e., BMI-1. BMI-1 is
responsible for maintaining the self-renewal ability of can-
cer stem cells in virtually all tumors, including lung cancer
[71–73]. In gastric cancer, BMI1 can upregulate miR-34a,
which appears to have opposite effects than miR-21, hint-
ing the presence of a negative feedback loop between BMI1
and miR-34a, through which BMI1 can regulate its own
function [71]. The interplay between BMI1 and miR-21
in lung cancer is still undefined; however, BMI1 may form
regulatory networks with other relevant miRs. For exam-
ple, we identified miR-192 as one of the main upregulated
miRs upon treating lung cancer cells with PTC-209, a com-
pound capable of inhibiting BMI1 activity. This prevents
cell cycle progression by arresting cells in G0. miR-34a
was upregulated, although at a lower extent than miR-192,
whereas, miR-21 levels remained unaffected (Maroni and
Levantini, personal communication) thus implying that dif-
ferent miRs, other than miR-21, may constitute the BMI1
oncogenic regulatory network under different conditions.

5. miR signatures as potential biomarkers

Given miRs are highly dysregulated in cancer, the
potential for miR signatures to distinguish not only between
tumor and normal tissue, but also to identify different sub-
groups of tumors and predict outcome or response to ther-
apy treatments has been intensely investigated. Our ability
to adopt them as biomarkers, however, is still in the infancy
stage. Inconsistent results were frequently reported by dif-
ferent research groups and these may arise from differences
in stage and treatment received by patients of the analyzed
samples. Therefore, large scale studies are needed and
preferably should be carried out at multicenter locations to
ensure higher patient recruitment, with strict screening cri-
teria and higher statistical power when assessing sensitiv-
ity, specificity and pertinence of miRs as future biomarkers.
However, successful observations have been reproduced
and one evidence that has been stratifying over the years,
is the role that miR-21 plays in restricting response to ther-
apy and causing drug resistance by regulating expression of
resistance-related factors in multiple cancer types. One of
the first reports describing miR-21 involvement in chemo-
resistancewas shown in cholangiocarcinoma cells, in which
its (and miR-200b’s) inhibition led to increased sensitiv-
ity to gemcitabine [74]. miR-21 overexpression is related
to development of Multi Drug Resistance in breast cancer
[75], in which its downregulation improves the chemothera-
peutic effect of Taxol [76]. miR-21 inhibition is shown to be
directly responsible for PTEN expression and re-sensitivity
to doxorubicin via increased caspase-related apoptosis [77];
and its inhibition, associated with co-delivery of the cyto-
static compound docetaxel within “chitosomes”, improves
chemo-sensitivity to the compound [78]. Near-infrared-
radiation-responsive hollow gold nanoparticles have been
adopted to achieve sequential delivery of miR-21 inhibitor
and doxorubicin, in breast cancer xenograft models. They
displayed successful tumor delivery followed by effective
accumulation, that resulted in good therapeutic efficacy,
showing the potentiality of the “sequential delivery con-
cept” for cancer therapeutics settings [79]. Similarly, si-
multaneous systemic administration in exosome nanocar-
riers of the cytostatic drug 5-FU and a miR-21 inhibitor
oligonucleotide demonstrated major anti-tumor effects in a
colon cancer mouse model [80]. In gastric cancer, the same
combination of 5-FU and miR-21 inhibitor was delivered
in trastuzumab-conjugated nanoparticles, which increased
trastuzumab targeting and antibody-dependent cellular cy-
totoxicity while enhancing sensitivity of gastric cancer cells
to trastuzumab and 5-FU [81]. There is growing evidence
that delivery of miR therapeutics together with chemother-
apeutics can improve treatment efficiency, and miR-21 is
one of the most extensively studied miR therapeutics in
combination-delivery settings, given its protagonist role in
various tumorigenic settings [78–81].

Higher expression of miR-21 has been reported in
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plasma [82] and tissues [83] from NSCLC patients, as com-
pared to healthy donors. Additionally, it has been identi-
fied as a useful predictor for early detection and chemo-
sensitivity biomarker in plasma from patients with ad-
vanced NSCLC [84, 85]. Further, miR-21 has been impli-
cated in the development of gefitinib resistance in EGFR
mutant NSCLCs [86]; as well as resistance to cisplatin,
gemcitabine, 5-fluorouracil and teniposide in various can-
cers [75, 87–95]. It has alone been correlated with the de-
velopment of brain metastases in NSCLC patients [96] and
its inhibition could improve sensitivity to radiotherapy in
the NSCLC cell line A549, mediated by the PI3K/Akt path-
way [97]. Consistently, miR-21is a part of a defined signa-
ture (containing sevenmiRs) capable of predicting response
to platinum-based treatments [98]. As biomarker, miR-21,
belongs to a novel panel of serum-based miRs capable of
discriminating breast cancer patients and healthy controls
[99]. miR-21 possesses the highest specificity and sensi-
tivity in NSCLC patients’ sputum or plasma [84, 100]; and
it is a common component to several molecular signatures
for NSCLC diagnosis [101–103] where high plasma sEV
miR-21 levels are shown to associate with poor overall sur-
vival (OS) [104]. On the basis of the above considerations,
miR-21 can serve as an attractive candidate as a potentially
relevant biomarker for diagnosis, prediction, and progno-
sis [105–108] though, it has not been adopted in the clinic
presently [109]. However, it should also be taken into ac-
count that not all that glitters is gold, and that miR-21’s util-
ity as a biomarker may be a double-edged sword. miR-21
ubiquitous overexpression in virtually all cancers represents
the biggest challenge which is specificity. miR-21 may not
be the most suitable biomarker for a specific type of can-
cer but rather a broad “alarm-miR” which is indicative on
the presence of oncogenesis and may require coupling with
more tissue/organ-specific biomarkers. The evidence pre-
sented suggest a great possibility that miR-21 to be adopted
in the screening for lung cancer, which is the deadliest ma-
lignancy worldwide.

NSCLC, that we investigate in my laboratory, ac-
counts formore than 80%of all lung cancer cases [110]. It is
essentially untreatable, although many strategies have been
proposed to improve patients’ survival. Most patients are
diagnosed at an advanced stage and half of cases have dis-
tant metastatic disease at initial diagnosis, with poor prog-
nosis. As a result, there is a major need to identify faster
and non-invasive ways to detect lung cancer at early stages.
miRs, as biomarkers, may fulfil this request after we have
successfully understood how to employ them in the correct
manner. Aberrant miR signatures are commonly observed
in NSCLC and they aremost frequently associated to upreg-
ulation rather than downregulation [111–121, 123]. These
abnormally overexpressed miRs represent a valuable reper-
toire from which the proper panel of biomarkers can be se-
lected for association to “alarm-miR-21” in the design of
non-invasive tests for next-generation NSCLC detection.

Certainly, additional basic research is required be-
fore miR-21 can be extensively adopted as an approved
biomarker. However, its upregulation in numerous types
of cancer and association with cancer-related pathways ren-
ders it a promising molecule for RNA-based therapies.
miR-21 regulates various downstream effectors associated
with tumor pathogenesis during all stages of carcinogenesis
as it is involved in regulating signaling pathways implicated
in apoptosis, cell growth, proliferation, survival, angiogen-
esis, migration, extravasation, invasion and metastasis, and
also chemo- and radio-resistance pathways [57, 58, 124–
144]. Dai et al. [1] corroborated the existence of an in-
verse relation between miR-21 and PTEN in NSCLC, that
is also observed in other cancers [143, 145–150]. Specif-
ically, they demonstrated that miR-21 regulates lung can-
cer proliferation, cell cycle progression and EMT, through
the PTEN/Akt/GSK3β signaling cascades [1], and they also
showed the relevance of down-regulating miR-21 as a new
therapeutic strategy for human lung cancer.

Several experiments aimed at affecting miR-21
have been performed over the years. When a miR-21 an-
tagomir was used in breast cancer cells, tumor growth was
restricted through inhibiting cell proliferation and induc-
ing apoptosis [151]. Additionally, synthetic circular RNAs
(circRNAs) that could function as miR-21 sponges, thus
acting as competitive inhibitors, have been developed to
inhibit miR-21 activity which displayed inhibition of cell
proliferation in gastric cancer [152]. Intra-venous admin-
istration of MKAD-21 (a chemically modified antisense
oligo against miR-21) in xenograft models could dose-
dependently suppressed bladder cancer growth through reg-
ulation of the PPP2R2A-ERK network, which is a media-
tor of miR-21-induced oncogenesis in bladder cancer [153].
Anti-miR-21(AM-21), composed of two cationic lipids, has
been therapeutically used in a preclinical murine model of
lung cancer, in which it displayed reduced tumor growth
with prolonged survival without toxicity [154].

6. miRs as therapeutic targets

As a naturally occurring class of gene regula-
tors, microRNAs have attracted great attention as promis-
ing targets for therapeutic development, given their knack
for targeting virtually any gene of interest at the post-
transcriptional level. Tumor progression is caused by
the deregulation of multiple cellular pathways, therefore
the combinatorial ability miRs display to target multiple
disease-related genes concurrently, may provide an ad-
vantage, as compared to traditional small molecule thera-
peutics. Both viral and non-viral carriers, have been uti-
lized to develop miR-based therapies aimed at either re-
ducing the expression of specific oncomiRs (by means of
antimiRs/antagomiRs based on antisense oligonucleotides
(ASO), locked nucleic acid (LNA) antimiRs, or tiny LNA
antimiRs) or at replenishing rare tumor suppressing-miRs
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Fig. 1. Hurdles to be solved for efficient delivery of miR therapeutics.

(by means of synthetic and/or chemically-modified miR
mimics). Nowadays, the miR therapy road is still paved
with several challenges (Fig. 1) that need to be addressed
(mainly identification of potential off target effects and im-
proved delivery methods) before their effective translation
into future therapeutic applications can take place.

In primis, in order to truly enter the era of RNA
therapeutics, it is necessary to identify the best miR candi-
dates or miR targets for each disease, as well as understand
if a specific miR (and its targets) follows a unidirectional
function/behavior of oncomiR or tumor suppressor, or if
their role changes in different tissues/conditions. This in-
formation is relevant to decide whether miR inhibitory or
miR mimics therapeutic strategies can be utilized in each
specific disease-driven scenario. At the present stage, we
should also consider an extra level of complexity; i.e., the
major heterogeneity displayed by tumors and their inter-
mixed TMEs, which can be patient-specific and represents
a major obstacle in identifying the relevant target miRs
to adopt each time. Despite tumor cellular heterogeneity,
functional heterogeneity governed by factors such as hy-
poxia and inflammation can cause dynamic localized het-
erogeneities [28, 155–159]. miR biogenesis enzymes such
as Drosha, Dicer and AGO2 are downregulated by hypoxia,
further destabilizing miR expression [157, 158, 160, 161]
and complicating the identification of candidate miRs.

Currently, the molecular characterization of tu-
mors is predominantly derived from analyses of bulk tis-
sues, and the application of single cell RNA sequencing
(scRNAseq) techniques should bring major advances in our
understanding of how transcripts (both non-coding and cod-
ing) perform at the single-cell molecular level, and how
they are affected in contexts as various as tumor initiation,
response to drug treatment, and development of therapy re-
sistance. Given miRs’ mechanisms of action, the amount
of miR within a cell can dictate the impact on gene ex-

pression. Therefore, quantifying single cell miRs levels
will be great interest to study their expression in defined
subpopulations (identified by scRNAseq as distinct tran-
scriptional clusters) contained within tumors and TMEs.
As mentioned above, miRs can essentially exert dual roles
and function as both oncogenic or tumor suppressive units.
However, they can even act in a context-dependent man-
ner and exert different roles in suppressing or enhancing
tumor progression. miR-141, for example, was reported to
be a tumor-suppressive miR by counteracting Tregs recruit-
ment and immune escape in advanced-stage NSCLC pa-
tients with malignant pleural effusion [162]. However, the
same miR is shown to be oncogenic by targeting tumor sup-
pressor genes PHLPP1 and PHLPP2 in NSCLC and induc-
ing the proliferation of cancer cells [163]. Similarly, mem-
bers of the miR-29 family, comprising three isoforms (miR-
29a, miR-29b and miR-29c) can act as tumor-suppressors
in mantle-cell lymphoma, acute myeloid leukemia (AML),
lung cancer, diffuse large B cell lymphoma and Burkitt
lymphoma, and oncogenic miRs in indolent human B cell
chronic lymphocytic leukemia, AML and metastatic breast
cancer [164, 165]. The miR143/145 cluster is a tumor sup-
pressor in cancer cells however, it can also induce neo-
angiogenesis in the TME leading to increased tumor growth
[166]. To achieve a better response to treatments, through
miR-based cancer therapy, it is anticipated that miRs are
required to be downregulated or upregulated in a tissue- or
context-dependent manner. Regrettably, this level of accu-
racy is not achievable at this present stage.

Further, miRs affect multiple target genes hence
it is difficult to predict and evaluate all their potential off-
target effects [167]. For example, when a target gene has
functions that can either promote or suppress the carcino-
genic process [168] such as the miR-21 target BCL2 [169],
the effectiveness of a miR-based therapeutic option is ques-
tioned. Also, the ability of miRs to target several genes in-
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volved in disease is a bonus as it helps with the targeting of
the entire lineage of disease-related genes, but this intrinsic
feature may also favor the introduction of off-target effects
[170]. Thus, elucidating the entire and extensive network of
interactions displayed by miR-target genes (the miR targe-
tome) is the gold standard to take miRs one step further to-
wards therapeutic application. Only when such knowledge
is available, well-designed therapeutic methods can be im-
plemented to unambiguously slow down tumor growth, and
preventing drug resistance and metastases, even in person-
alized medicine protocols.

An additional hurdle to consider is the ability to
design appropriate parenteral delivery systems capable of
specifically and effectively target cell types/tissues/organs
and to ensure high stability, efficient uptakes by the cells
and proper localization of the miR sequence into the cyto-
plasm [171–173]. Another concern is the use of miR drugs
at non-physiological concentrations as they may exhibit a
different targeting scenario than usual and can dysregulate
gene expression in unanticipated manners. An even more
critical factor required for the activity of miR drug process-
ing is the amount of physiological RISC complex available,
given that RISC proteins are abnormally downregulated
during hypoxia [174], which is frequently associated to tu-
morigenesis hence creating a catch-22 situation. Sufficient
expression of RISC complex proteins should be first evalu-
ated while treating with exogenous miRs, considering that
limited RISC expression may create competition between
exogenous and endogenous miRs [175] thus diminishing
the effectiveness of treatment overall. Finally, the com-
plex extracellular matrix surrounding solid tumors may im-
pede the delivery of any compound to cancer cells, and non-
malignant cells may concomitantly sequester miR drugs
from the tumor area. All these parameters can significantly
contribute to a reduced presence of miR therapeutics in the
TME, and consequently lead to inefficient uptakes into tu-
mor cells. The ability to directly target dysregulated miRs
in tumor cells or in tumor-infiltrating cells and/or cancer-
associated fibroblasts or endothelial cells would have sig-
nificantly improved treatment regimens however, such de-
livery technique is a chimera that we are still chasing.
Overall, some progress has been made, but we still have
a lengthy journey ahead before miR therapies are fully op-
timized for cancer treatment [176, 177].

miRs are water-soluble which endow properties
that are appropriate for parenteral administration. Unfor-
tunately, following i.v. injection, naked miRs are rapidly
degraded by the abundant nucleases present in the extra-
cellular and plasma environment [178] and removed from
the circulation [175], thus causing a rapid drop in plasma
levels within minutes post administration. Delivering miRs
via systemic administration by using antibodies, ligands,
and nanoparticles, or even by directly injecting the drug
at pathogenic site, can enhance target specificity and effi-
cacy, as well as minimize side effects [175, 179]. How-

ever, the latter is impractical for treating metastasizing tu-
mors and leukemias [180]. Another challenge is the ability
of delivering miRs through the blood brain barrier (BBB).
Partial success has been obtained by adopting intranasal ad-
ministration and modified micelle, liposomes, or nanopar-
ticles, given only lipid-soluble small molecules are able
to cross the BBB [181, 182]. Recent findings have re-
vealed that miRs can be drugged with small molecules,
i.e., small-molecule inhibitors of miRs (SMIRs) and small-
molecule degraders (SMDs) that target miRs directly. The
first SMIR was developed against miR-21 [183]. SMIRs
bind to miRs and inhibit their biogenesis and maturation,
while SMDs bind to miRs and induce their degradation
[184, 185]. These small molecules will pave the way for the
development of novel therapeutics against miRs that only
recently were considered druggable.

Presently, despite some phase I/II clinical trials,
the era of phase III compounds is still a moving target. A
prominent example of a miR drug that encountered prob-
lems in clinical trials is MRX34, a mimic of naturally oc-
curring miR-34, that was terminated at the phase I study
due to serious immune-related adverse events and later on, a
planned phase II study inmelanoma patients waswithdrawn
[186]. A more favorable outcome occurred to the first Tar-
gomiR (miR-15/16 mimics packaged in nano-cells targeted
with EGFR antibodies) that was tested in a phase I study on
patients with malignant pleural mesothelioma [187], show-
ing an acceptable safety profile thus supporting additional
studies of TargomiRs in combination with chemotherapy
or immune checkpoint inhibitors [188]. Similarly, Cobo-
marsen (MRG-106), a locked nuclear acid-based anti-miR,
which targetsmiR-155 inmultiple hematological malignan-
cies, is shown to be safe in a phase I study.

This small excursus on miR-based medicine
shows that the possibility to adopt them as pharmaceuticals
is still in its early stages and that several strategies have been
designed to efficiently deliver them (Fig. 2).

7. miRs as future therapies in pulmonary
diseases

There is considerable interest in using miR drugs
in pulmonary diseases. Direct intrapulmonary adminis-
tration, with or without aerosolization, has been adopted
in murine models of pulmonary hypertension [189–193].
A meritorious paper from Schlosser et al. [194], sys-
tematically investigated the relative pros of intratracheal
and intranasal routes of administration, with and without
aerosolization, and comparing them with intravenous, in-
traperitoneal and subcutaneous injection. Pulmonary lev-
els of the miR mimic showed variations by up to 4 or-
ders of magnitude between different delivery methods thus
demonstrating the impact of both the route of administra-
tion and mimic formulation. Although all methods showed
elevated lung levels, intratracheal and intranasal routes of
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Fig. 2. Strategies to treat patients with miR therapeutics. Both single molecule (left panel) and combination strategies (right panel) are tested in
pre-clinical settings to design efficient and proper delivery in patients of miRs or miRs combined to chemotherapeutics.

administration were clearly superior for lung-selective tar-
geting. This selectivity was evidenced by pulmonary levels
that were at least 10-fold, and up to 10,000-fold, higher than
levels observed in other tissues. In applications where lung-
targeted mimic delivery is not an essential requirement, in-
traperitoneal and subcutaneous administration could serve
as alternative methods to increase lung miR levels without
the need for anesthesia [194]. Previous studies have indi-
cated that some aerosolized materials may be distributed
more uniformly within the lungs [195, 196]; and in a proof-
of-concept study, the delivery of miR-17 to bronchial ep-
ithelial cells (BECs) using nebulized lipid-polymer hybrid
nanoparticles (LPNs) showed efficient and well-tolerated
delivery of miR mimics to BECs [197].

In lung cancer, miR-21 has been considered as
a potential gold standard for personalized therapy given
its heavily-documented oncogenic role. Advancements in
RNA chemistry and delivery technologies are encouraging
for a potential future use of miR-21 as part of the stan-
dard treatment for NSCLC [198]. Recently, a nano-cellular
(minicell) delivery vehicle loaded with miR-16-5p mimics
was designed to target tumors via minicell-surface attached
bispecific EGFR-targeting antibodies (EnGeneIC Dream
Vectors - EDVs), upon intravenous injection [199]. Pre-
liminary data presented by Van Zandwijk et al. [188] from
phase I clinical trials for patients with Malignant Pleural
Mesothelioma and advanced NSCLC showed manageable
safety profiles in 5 patients [199].

Early phase clinical trials, aimed at suppressing
miR-21, are currently ongoing. RG-012, a chemically-
modified oligonucleotide capable of binding miR-21, is
currently being tested in phase I on patients affected by
Alport syndrome, and initial data showed that the rate of
progression of renal fibrosis is reduced (ClinicalTrials.gov:
NCT03373786). In addition, an interventional clinical trial
is currently being conducted that involves the study of six
miRs (including miR-21) to determine whether a patient
with stage II colon cancer is a candidate to receive adju-
vant chemotherapy based on OS and disease-free survival
(DFS) measurements (ClinicalTrials.gov: NCT02466113).

Overall, experimental and clinical evidence
demonstrate that miR-21 is a promising biomarker (for
diagnosis, prognosis and prediction) in tumorigenesis,
as it is commonly dysregulated in virtually all types of
cancer. Identification of its target genes and the effects
of their downregulation remains to be fully elucidated.
In vitro and in vivo studies have shown that its inhibition
has anti-tumor effects, thus advocating for its promising
therapeutic function [200]. Presently, clinical trials and
toxicity pharmacokinetic evaluations are being conducted
for miR-21 inhibitors however several limitations for its
use still exists such as the lack of knowledge on dose re-
quirements as well as delivery strategies and identification
of side effects. Work on these limitations is currently
underway and current techniques are being designed to
mitigate such issues, and to maximize therapeutic efficacy.
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The overall progress in developing miR therapeutics
within the short time frame, since their discovery, is
noteworthy [201]. Nevertheless, several well-designed
preclinical studies, coupled to novel delivery platforms,
are strictly required to explore the promising potential of
RNA therapy. These findings will serve as catalysts for the
new era of RNA-based therapeutics, especially for miRs,
that are markedly dysregulated in cancers.
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