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1. Abstract

Background: Ever since the seminal work by Mc-
Culloch and Pitts, the theory of neural computation and
its philosophical foundation known as ‘computationalism’
have been central to brain-inspired artificial intelligence
(AI) technologies. The present study describes neural dy-
namics and neural coding approaches to understand the
mechanisms of neural computation. The primary focus is
to characterize the multiscale nature of logic computations
in the brain, which might occur at a single neuron level, be-
tween neighboring neurons via synaptic transmission, and
at the neural circuit level. Results: For this, we begin the
analysis with simple neuron models to account for basic
Boolean logic operations at a single neuron level and then
move on to the phenomenological neuron models to explain
the neural computation from the viewpoints of neural dy-
namics and neural coding. The roles of synaptic transmis-
sion in neural computation are investigated using biologi-
cally realistic multi-compartment neuron models: two rep-

resentative computational entities, CA1 pyramidal neuron
in the hippocampus and Purkinje fiber in the cerebellum,
are analyzed in the information-theoretic framework. We
then construct two-dimensional mutual information maps,
which demonstrate that the synaptic transmission can pro-
cess not only basic AND/OR Boolean logic operations but
also the linearly non-separable XOR function. Finally, we
provide an overview of the evolutionary algorithm and dis-
cuss its benefits in automated neural circuit design for logic
operations. Conclusions: This study provides a compre-
hensive perspective on the multiscale logic operations in the
brain from both neural dynamics and neural coding view-
points. It should thus be beneficial for understanding com-
putational principles of the brain and may help design bio-
logically plausible neuron models for Al devices.
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2. Introduction

Neural computation is a popular concept in neuro-
science [1-4]. It claims that the brain operates like a com-
puter: a neuron is considered as the basic computational
unit while local and global neural circuits are the infrastruc-
tures that may account for higher-level computations. This
concept is rooted in the philosophical tradition known as
computationalism [5—7]. The first mathematical interpreta-
tion given by Warren S. McCulloch and Walter Pitts in 1943
[8] suggests that neuronal activity is computational and thus
small networks of artificial (model) neurons can mimic the
cognitive function of the brain. Their idea was introduced
into philosophy by Hilary Putnam in 1961 [7]. Ever since
these seminal works, it has further developed to provide
a framework for investigating the underlying principles of
brain function and developing artificial intelligence tech-
nologies, including brain-inspired algorithms and neuro-
morphic devices.

Neural coding and neural dynamics are two com-
plementary approaches to understanding the principles of
neural computation [9, 10]. The neural coding approach,
where a neuron is regarded as an information processing
unit, focuses on explaining how the information is en-
coded, decoded, and transferred by the neuron. On the
other hand, one may also consider a neuron as a dynam-
ical system [11, 12] that changes its state over time; this
leads to the neural dynamics approach. The dynamics is de-
scribed typically by coupled differential equations involv-
ing time derivatives of variables representing relevant bio-
logical quantities. Their solutions are obtained either nu-
merically via computer simulations or analytically. Al-
though there have been skeptical perspectives on this ap-
proach as a valid basis for theories of brain function [13], it
provides a useful tool to characterize the nonlinear behav-
iors of neurons that are essential for multimodal logic oper-
ations at single neuron and circuit levels [14-16]. Through-
out this paper, we use the term ‘neural coding’ in a general
sense (i.e., the neural representation of information) that
normally permeates neuroscience, rather than in mention-
ing specifically the coding mechanism such as ‘rate coding’
and ‘temporal coding’.

Neurons have highly specialized structures with
a variety of physical properties to facilitate information
processing. Therefore their demand for cellular energy
(e.g., adenosine triphosphate; ATP) is extraordinarily high
[17, 18]. In the process of evolution, neurons are likely
to have been optimized in the direction of minimizing the
energy consumption for information coding. For survival,
animals require to have highly energy-efficient informa-
tion processing machinery [17-20]. In this context, the
law of information is of primary importance to understand
the design principles and functions of neurons, which natu-
rally lend themselves to be explained with information the-
ory. In the field of computational neurophysics, several

metrics based on Shannon’s classical information theory
have been used to characterize neural information process-
ing [21]: mutual information measures the overlapping in-
formation between neurons (via synaptic transmission) or
within a neuron [20, 22]. Transfer entropy quantifies the
directional information flow [23]. Partial information de-
composition (PID) allows measuring unique, shared, and
synergistic contributions of multiple neuronal inputs to the
output [24]. These information-theoretic measures are ap-
plicable to multiscale levels ranging from a single neuron
and two neurons connected via a synapse to local and global
neural circuits.

This study investigates the information-theoretic
approaches to characterizing logic operations in model
neurons, synapses, and neural circuits. This paper con-
sists of six sections: In Section 3, simple neuron mod-
els (including McCulloch and Pitts model, linear-threshold
model, and firing-rate model) and phenomenological mod-
els (integrate-and-fire models and Izhikevich model) are
analyzed. Section 4 begins with the analysis of Hodgkin-
Huxley type multi-compartment models for a cornu Am-
monis 1 (CA1) pyramidal neuron in the hippocampus and
Purkinje fiber (PF) in the cerebellum, which is extended to
the cooperative and competitive computations of these neu-
rons via homo and heterosynaptic transmissions. Section 5
examines methods to find a logic backbone at the neural
circuit level. Finally, Section 6 discusses the results and
concludes the paper.

3. Logic operations at single neuron level

3.1 Simple neuron models

Since the 1940s, simple artificial neurons have
been developed as the building blocks of artificial intel-
ligence (AI) technologies, including brain-inspired Al al-
gorithms and neuromorphic devices [25, 26]. The artifi-
cial neurons are simple mathematical models conceived as
amodel of biological neurons; in general, they are designed
to perform only basic arithmetical and Boolean logic oper-
ations [27-29]. Traditionally, only the basic dynamics and
coding properties of biological neurons have been consid-
ered in developing simple neuron models. Specifically, de-
tails of individual synaptic currents and distinct dynamics
of different types of spines are often disregarded because
a single excitatory postsynaptic potential is typically much
smaller in amplitude than the threshold for an action poten-
tial. The underlying notion of the simple neuron models is
that a neuron can fire only when a sufficiently large number
of excitatory synapses are activated simultaneously to drive
its voltage over the threshold.

In 1943 Warren McCulloch and Walter Pitts devel-
oped the first mathematical neuron model [8], which takes
multiple binary inputs and produces a single binary out-
put. The neuron is characterized by the parameter ¢ denot-
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Fig. 1. Boolean logic operations in simple neuron models. (A) Schematic diagram of a simple neuron model with binary output upon synaptic inputs
x; (i=1,2,...,n). Functions g and f describe the integration of the inputs and the neuronal output. Integration of inputs g(x) is compared with threshold
6 to determine the neuronal output. (B) OR (left, colored in red) and AND (right, blue) operations are illustrated. The result of the operation with a single
input is presented in the first row, followed by the result when both inputs are given (the second row). Depending on whether the threshold is low (6 = 1)
or high (0 = 2), the information processing of the neuron models are mapped to OR and AND functions, respectively. (C) Description of simple neuron
models. Here, H is the Heaviside step function defined by H(u) = 1 for u >0 and H(u) = 0; w; denotes the strength or weight of the ith synapse; 0 is the
threshold of the neuron. The time constant 7 represents the temporal response properties of the system as a whole, including the effects of both membrane
and synaptic time constants. For constant current, the relationship between the total synaptic current I that a neuron receives and its firing rate is given in
terms of a firing-rate function: r = F(I).
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Fig. 2. Illustration of mutual information calculation. The binary hidden state triggers the presynaptic input current I. The mutual information H(X;
Io—s¢) measures the overlapping information between the hidden state X = {x} and the history of postsynaptic spike trains Iy (for details see Eqns. 3,4,5).
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ing the minimum number of excitatory synapses that can
generate an action potential: if the number of synapses is
greater than or equal to 6, the neuron is active (labeled as
“1”); otherwise, it is inactive (“0”). This simple mathemat-
ical treatment also allows the Boolean logic operations, in
which the binary values 1 and 0 correspond to “true” and
“false”. They remarked that the combination of such simple
neuron models is capable of universal logic computations;
this seminal work laid the foundations of developing brain-
inspired digital electronic circuits for Al systems. Analyz-
ing the McCulloch-Pitts (MP) neuron, one can establish ba-
sic Boolean logic operations (i.e., AND and OR operations)
at the single neuron level (Fig. 1). With the threshold pa-
rameter 6 set at a high value (e.g., equal to the total number
of inputs), the neuron is active only if all the synaptic inputs
are active, leading to the logical AND operation (Fig. 1A).
Alternatively, with the threshold set at a low value, only a
small portion of active synaptic inputs is enough to fire; this
corresponds to the logical OR operation (Fig. 1B).

Similarly, the dynamics of linear-threshold (LT)
[30] and firing-rate (FR) [31] models can be interpreted
as AND/OR Boolean operations, with the given threshold
f (Fig. 1). The LT model neuron employs continuously
graded input values to describe different contributions of
synaptic inputs to the neuronal activation. Each synaptic
input is assigned a weight (according to the relative contri-
bution); the weighted sum of all the inputs is compared with
6 to decide whether or not to activate the neuron. In the FR
model, not only the input but also the output is treated as
a continuously graded quantity. While MP and LT neuron
models describe the integration of synaptic inputs using the
Heaviside step function defined by H(u) = 1 for u >0 and
H(u) = 0, the FR model is based on a differential equation
for the firing rate with a continuous-time domain.

3.2 Integrate and fire models

The integrate-and-fire (IF) model is the most
widely used simple spiking neuron model in artificial neural
network algorithms [25, 32—-35]. It is a single-compartment
model describing the dynamics of membrane potential, with
the morphologies of dendrite branches and axons not ex-
plicitly included.

The one variable IF models describe the relation-
ship between the time-dependent voltage V(t) and current

I(t):

=), M)
where 7,,, and A denote the membrane time constant and the
effective surface area, respectively, and f(V) describes the
leak and spike-generating currents as a function of V. If the
voltage V(t) exceeds V, which stands for the cutoff voltage
V. or threshold voltage V1 (depending on whether or not
the spike-generating part of f(V) exists), the voltage V(t,.)
at time ¢ right after spiking becomes equal to the resetting

voltage V,.. After the membrane potential crosses V, it is
reset to V. and is inactivated for a brief time corresponding
to the absolute refractory period t,.; of the neuron.

Two-variable IF models include the additional
time-dependent adaptive variable u:

Py L
du
Tuaza(V—VL)—u

with constant a controlling the adaptation to voltage and
V1, denoting the leak reversal potential. If the voltage V()
exceeds V, the voltage V(¢ ) right after spiking reduces to
V.., similarly to the case of Eqn. 1; in addition, the adap-
tive variable u(t) increases by the amount b controlling
the magnitude of the spike event, namely, u(t, ) is set equal
to u(t_)+b with t_ being the time just before spiking.
Table 1 lists the five models, i.e., LIF (leaky
integrate-and-fire); QIF (quadratic integrate-and-fire) with
and without an adaptive variable; EIF (exponential
integrate-and-fire) with and without an adaptive variable.
The information transfer capabilities are assessed
in the information-theoretic framework originally sug-
gested by Denéve and colleagues [37—41]. Fig. 2 illustrates
the framework used in the present study. In brief, the bi-
nary hidden state triggers a presynaptic neuron. Then the
presynaptic neuron fires a spike train via a Poisson pro-
cess with the firing rate q,,, or q, sy, depending on the hid-
den state. Synaptic input current I is generated by con-
volving the spike train with the double exponential kernel:
k(t) =exp (—t/71) — exp (—t/70) with 79 = 0.2 ms and
71 = 2 ms, followed by multiplying by the synaptic weight,
which is modified to control the average input current I. In
general, mutual information measures the overlapping in-
formation of two random variables. The mutual informa-
tion H (X;Iy_,:) between the hidden state X = {z} and
the history of postsynaptic spike trains Iy, is defined as

H(X%[()ﬁt) = Z
= S(X) 8 (X | Tose).

p(z;lo—t)
P o108 oy (= 1)

z,lo ¢

3)
where p (x; Ip_) is the joint probability, and S(X) and
S (X | Io—+) denote the information entropy of X and the
conditional entropy of X given Iy_,;, respectively. They
are given by

S(X)=-)_ p(z)logp(x)
= —(z)log(x) — (1 — (z)) log(1 — (x))

“4)

S(X | Ipt) =

—(zlogp (z =1 Iows)) = (1 —2)log (1 —p(z = 1] los1))),

®)
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Table 1. Summary of integrate-and-fire neuron models.

Models f) Adaptation Parameters

LIF —(V-W) No tref =1.966 ms, Vy, = -61.72 mV

QIF % — Boly No tref =2.473 ms, V; = =57.56 mV, A = 0.4090 mV

QIF* (Izhikevich) % — % Yes trey =0ms, V, =-65mV, Ar=0.8333 mV,a=0.2, b=0, 1, =50 ms
EIF Arexp (V;T"T) —(V-W)-falo No tres = 10.85 ms, V. = ~58.84 mV, Ag = 0.1666 mV

EIF* (AdEx) tres = 10.85ms, V. = -58.84 mV, Ar = 0.1666 mV,a=0,b =0.1, 7, = 100 ms
f

Ar exp (%) —(V-Wn)- % Yes

Abbreviations: LIF, leaky integrate-and-fire; QIF, quadratic integrate-and-fire; EIF, exponential integrate-and-fire. Asterisk (*) denotes the model with
an adaptive variable.

Parameters: V, leak reversal potential; t,.. s, refractory period; V., resetting voltage; A, spike slope factor; Ry, membrane resistance; A, effective
surface area; a, constant controlling the adaptation to voltage; b, constant controlling the adaptation to the spike event. The threshold point (V 7, IT)
satisfying f(V1) + (Rm/A) IT=0and f ' (V) = 0 is identified to be (-57.28 mV, 65 pA), which agrees with that of the biophysical model [29, 36]. The
EIF model has an additional fitting parameter Io = [Ap — (Vp — V1) + (Rm/A) IT1/(Rm/A). Other parameters are given by R, = 40000 Q-cm2, Tm =

30 ms, and V;, =70 mV for all models.

where the average, defined to be taken with respect to the
probability measure p(x), may be estimated as the time av-
erage.

The conditional probability p(z = 1|Ip—¢) is
equivalent with posterior log-likelihood of the hidden state,
L(t) = log, %%M, where p (z = 1,t | Ip—+) is the
conditional probability of on-state (z = 1) at time t, given
the history Iy_; = (Io, I1, . . ., I;) of the input current from
time O to t. The log-odds ratio can be estimated via the fol-
lowing differential equation:

% = Ton (1 +6_L) — Toff (1 +€L) +wd (I; —1) =0,

dt
O]
where w = 108 (¢on/qoft) and @ = gon — Gor With the mean
postsynaptic firing rates q,, and q,¢s for x = 1 and 0, re-
spectively. The Dirac delta function § produces a discon-
tinuous jump when the postsynaptic neuron fires.

The information-theoretic framework is used for
comparing the neural dynamics and coding properties of the
five IF neuron models (Table 1). The train of hidden state
X is presented to each of the neuron models to induce the
presynaptic input current I and the resulting postsynaptic
spike train /g_,;. The time evolution of the hidden state and
the postsynaptic spike is used to calculate the mutual infor-
mation H (X; Iy_,+) as a measure of information transfer
by a neuron model.

Fig. 3 displays the current-rate (I-f) curves (the
left column) and the time evolutions of the hidden state x
and output spike trains (the right column). The I-f curve,
which expresses the relationship between the applied cur-
rent to a neuron and the firing rate (i.e., the frequency of
output spikes), is used as the basic measure for character-
izing neural dynamics. The firing rate f of the LIF model
is the highest, followed by QIF and EIF. The models pos-
sessing adaptive variables (QIF* and EIF*) exhibit reduced

A
100 x é [T
LIF _
— < 0 I=50pA
> 7=100 pA
B
S
C
D
[
E
0 50 100 150 200 1.0 1.5
7(pA) t(s)

Fig. 3. Dynamics of integrate-and-fire (IF) models: (A) LIF, (B) QIF,
(C) QIF* (QIF with an adaptive variable), (D) EIF, (E) EIF* (EIF with
an adaptive variable). The left column shows the I-f curves, where T
denotes the average input current and f the firing rate. The binary hidden
state x triggers the spike train via a Poisson process with the firing rate
Gon=100 and q,7y = 1 for x = 1 and x = 0, respectively. In the right
column, time evolutions of the hidden state x (top) and spike output V'
(mV) of the neuron at I = 50 pA (middle) and I = 100 pA (bottom) are
displayed.
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firing rates compared with the corresponding models with-
out adaptive variables. The right column displays the time
evolutions of the hidden states (the first row) and resulting
output spikes upon I = 50 pA (the second row) and 100
PA (the third row). In all models, the timing of spikes is
generally well-matched with the hidden state “1”; however,
the spike events do not reflect the fast transitions of hidden
states between “0” and “1”.

The dynamics and information processing of IF
models are mapped to Boolean operations in Fig. 4. At a
given threshold for firing rate f or that for mutual infor-
mation H, if f or H is greater than or equal to the thresh-
old, then the neuron is active (“1” or “true”); if it is under
the threshold, the neuron is considered as inactive (“0” or
“false”). Both OR and AND operations occur as a function
of the fold change of the difference between the threshold
voltage V1 and the resetting voltage V. with respect to the
default value V4/V4(®, where Vg = Vo — V,. and V4
= V7 — v, (with superscript “(°)” denoting the de-
fault parameters). V4 may indicate the voltage required for
generating subsequent action potentials: a smaller value of
V  corresponds to the increased membrane excitability (i.e.,
greater tendency to fire). Several biological contexts, giv-
ing rise to the decrease of V4, include (1) depolarization of
the resting membrane potential, (2) reduction in GABAer-
gic inhibition, (3) increased neuronal responsiveness to sub-
threshold input, and (4) increased conductance that dictates
the rate of action potential firing [42]. The OR operations
(red shaded regions) arise when both weak (e.g., I = 50 pA)
and strong (I = 100 pA) inputs activate the neuron; on the
other hand, AND operations (blue shaded regions) occur
only when strong presynaptic input (e.g., I = 100 pA) can
activate the neuron. These Boolean operations correspond
to the schematic illustrations in Fig. 1B: the input current I
= 50 pA may denote the active input ‘1°, and I = 100 pA
thus corresponds to two active inputs. Depending on the
thresholds for f and H, the regions can be mapped to OR or
AND operations.

Although these IF models are simplified versions
of the biophysically realistic multi-compartment neuron
models (which are explored in the following section), they
appear to characterize the neural logic operations success-
fully. In particular, the neural dynamics and coding prop-
erties of exponential integrate-and-fire models (EIF and
EIF*) are overall similar to the biophysical models, com-
pared with other IF models [29]. The neural dynamics of
IF models vary, depending on the mathematical form of the
leak and spike-generating currents. In brief, the leak cur-
rent term is necessary for responding to the changes of the
hidden states in a timely manner; the IF models without the
term usually fire in response to inactive hidden states (‘0’)
because depolarization of the membrane potential during
previous active hidden states (‘1’) is maintained during in-
active states. The spike-generating currents [Eqn. 1 and
Table 1] determine the speed of spiking: the IF models ex-

A 0.4
100¢f A
N b\\_
LIF < 50" To2% .
= Tl \
0.0 M
B 0.2
N\
QIF 0.1
.................. a’“‘%%%
0 0.0 e
C
QIF*
0 0.0
D
EIF
E
EIF*
0 3 5 00
VvV

Fig. 4. Mapping dynamics and information processing of IF neurons
to Boolean logic operation. (A) LIF, (B) QIF, (C) QIF* (QIF with an
adaptive variable), (D) EIF, (E) EIF* (EIF with an adaptive variable). The
left and right columns display the firing rate f and mutual information H
between the hidden state and output spike train, respectively. The results
for I =100 pA and I =50 pA are marked with filled and unfilled circles, re-
spectively. The horizontal axis of each panel represents the fold change of
the difference between the threshold voltage V1 and the resetting voltage
Vi (e, Vg =V — V) with Vg(®) = v (0) V$0> denoting the default
value. Displayed are f and H versus V4/V 4(?) ranging from 0.2 to 5. Red
and blue shaded colors indicate OR and AND operations, respectively, at
given thresholds for f and H (dotted lines).

cept EIF and EIF* exhibit much slower spike generation,
compared with the biophysical model [29].
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Fig. 5. Schematic of the information-theoretic framework for multimodal synaptic transmissions in the biophysical model of the CA1 pyramidal

neuron. Each of the two hidden states X; and X5 with coherence « triggers a set of presynaptic neurons which form glutamatergic synapses with the

CA1 pyramidal neuron. The apical dendrite of the CA1 neuron is divided (black dotted line) into sections distal and proximal to the soma, which receive

inputs from the direct pathway (X1) and the indirect pathway (X2), respectively. The mutual information H(X;; Io—) is measured between X; (fori=1,

2) and the postsynaptic spike train emerging in the soma.

4. Synaptic logic gate
4.1 Biophysical model

This section describes the characterization of in-
formation processing of the biophysically realistic multi-
compartment neuron models, which describe how action
potentials are initiated and propagated, based on Hodgkin-
Huxley (HH) type conductance models for ion channels
[43, 44]. Containing the axon and dendrites explicitly, the
model has highly realistic structures via three-dimensional
morphological reconstruction of biological neurons [45].

Two representative neuron models for neural com-
putation are compared: the pyramidal neuron in CA1 in the
hippocampal circuit (ModelDB accession 7907) [46] and
PF in the cerebellum (ModelDB accession 7907) [46]. In
the CA1 pyramidal neuron model, all dendrites are divided
into compartments with a maximum length of 7 mm. Spines
are incorporated where appropriate by scaling membrane
capacitance and conductance [47, 48]. Two Hodgkin—
Huxley-type conductances (g, and gx) are inserted into
the soma and dendrites at uniform densities. The model is
tuned by attaching a synthetic axon. The uniform passive
parameters of the model are given by R; = 150 2-cm, C,,, =
1 mF/cm?, and R,,, = 12 kQ2-cm?. The standard values for
gne and g are 35 and 30 pS/mm?, respectively. For the
Purkinje cell, we use the morphology of a 21-day-old Wistar
rat PF [49]. The model consists of an axon, a soma, smooth
dendrites, and spiny dendrites. The model has passive pa-
rameters as follows: R,,, = 12 kQ-cm?, R; = 150 2-cm, and
C,, = 1 uF/cm?. To compensate for the absence of spines

in the reconstructed morphology, we scale the conductance
of passive current and C,,, by a factor of 5.34 in the spiny
dendrite and 1.2 in the smooth dendrite. Two Hodgkin—
Huxley-type conductances (g, and gx) are inserted into
the soma and dendrites at uniform densities. The model is
tuned by attaching a synthetic axon. The standard values
for gy and gx are 35 and 30 pS/mm?, respectively.

The information-theoretic framework is similar to
that used in Section 3 for IF models, except that the stim-
ulus sites are carefully chosen based on biological knowl-
edge and two inputs are provided simultaneously, with their
competitive and cooperative effects assessed [29, 50, 51].
Fig. 5 displays the schematic of the framework. Each of
the two hidden states X; and X triggers a set of presynaptic
neurons connected to the postsynaptic neuron via synapses.
The synapses from each set (corresponding to X; or X5) are
colored blue or red, respectively. The coherence between
X, and X5 is measured by parameter « in the range [0, 1]:
« vanishes for the two states behaving independently while
it is equal to unity for the two fully synchronized. The mu-
tual information H (X;; Iy—,:) between each hidden state
X and the output spike train is measured as in Eqn. 3 (with
X, replacing X).

In the rest of this section, we explore the infor-
mation processing of homosynaptic plasticity (Section 4.1)
and analyze Boolean logic operations triggered by one hid-
den state. Then we examine heterosynaptic transmission in
the two hidden state scheme, which allows us to assess the
synaptic cooperation and competition (Section 4.2).
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Fig. 6. Boolean logic mapping dynamics and information processing of neurons: (A) CAl pyramidal neuron and (B) Purkinje fiber. The mor-

phologies of the neurons are illustrated on the left panels. The neurons are given synaptic inputs stimulated by a hidden state. For the CA1 pyramidal

neuron, regions a and b denote locations of synaptic inputs placed relatively distally and proximally from the soma, respectively. For the Purkinje cell,

locations of ¢ and d correspond to relatively distal and proximal positions, respectively. The panels in the middle column show the postsynaptic firing

frequency f as a function of the number of synapses in each condition. Those on the right show the mutual information H between the hidden state and

the postsynaptic spike train. The outputs are mapped to Boolean operations using threshold values of 10 Hz and 0.1, indicated by the dashed line. When
f or H is below and above the threshold, the output is zero (dark gray region) and unity (light gray region), respectively. Error bars represent the standard

errors of five independent simulations with different random seeds for hidden state generation.

4.2 Homosynaptic plasticity

Homosynaptic transmission refers to the specific
modification of a synapse by the activity of the correspond-
ing presynaptic and postsynaptic neurons. The most widely
used realization of this concept, first proposed by Hebb in
1949 [52], is the spike-timing-dependent plasticity (STDP)
rule [53], which is often adopted in spike-based artificial
neural networks. This rule states that a presynaptic stim-
ulus immediately followed by a postsynaptic spike results
in potentiation of the synapse while the opposite results in

depression. Another well-known synaptic plasticity rule is
the Bienenstock, Cooper, and Munro (BCM) rule [54, 55],
according to which modification of the synapse depends on
the instantaneous postsynaptic firing rate. In the original
formulation of the rule, depression occurs when the post-
synaptic firing rate is below a threshold while potentiation
occurs when the rate is above the threshold. In particular,
the threshold separating depression and potentiation is itself
a slow variable that changes as a function of the postsynap-
tic activity.
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Here, we implement a learning rule in which the
STDP rule is combined with the BCM rule [50, 56-58]. Ac-
cording to the STDP rule, weight changes occur for each
pair of presynaptic and postsynaptic spikes separated by
time interval At in the following way:

Awy(At) = Ap(t) exp (—At/7p) for At >0 ;

Awg(At) = Aq(t) exp (At/7q) for At <0, @
where the subscripts p and d label potentiation and depres-
sion, respectively, and At = tpost — tpre is the time dif-
ference between the presynaptic and postsynaptic spikes.
The sign of At determines whether the presynaptic spike
precedes the postsynaptic spike (positive) or follows (neg-
ative). The BCM rule is implemented by allowing the am-
plitudes A, and A, to vary with the postsynaptic firing rate
(c) according to

Ap(t) = ()71 4p(0)

Aa(t) =() Aa(0). ®

where (c) is a weighted sum of postsynaptic spikes, given
by

(c) = O‘“/; dt'c (¢') exp (J_t'). ©)

Te Te

The BCM rule has a balancing effect that allows
robust synaptic learning [55, 56]. The parameters for the
learning rule are as follows: 7, = 20 ms; 74 = 70 ms; A,(0)
=0.006 1S; Aq(0) = 0.002 uS; 7. = 1500 ms; o, = 62.5.

Boolean logic mappings of the dynamics and in-
formation processing of the biophysical neurons are illus-
trated in Fig. 6. Note that the Boolean operations depend
on the location of the synaptic input. For the CA1 pyra-
midal neuron, synapses are placed in the distal section or
proximal section of the apical dendrite (a or b in Fig. 6A) in
one setting or the other. These locations are selected based
on neuroanatomical knowledge: The apical dendrite of the
CA1 pyramidal has a long, extended structure to receive
inputs from distinctly organized regions. Its distal region
directly receives input via the perforant pathway from the
entorhinal cortex while the proximal region indirectly re-
ceives via the granule cell and CA3 pyramidal neuron [59]
(Fig. 5).

Presynaptic neurons fire at an average rate of 100
Hz, provided that the hidden state is on. When the stimu-
lus is given to section a, nine synaptic inputs are required
to cross the firing threshold of 10 Hz and the mutual infor-
mation threshold of 0.1. In the case of the stimulus given
to section b, the required number of synapses for the same
threshold is just four. This manifests that the Boolean logic
operations occurring with synaptic transmission depend on
the location on the dendrite: in the distal region, the opera-
tion is closer to AND, with many concurrent inputs required

to exceed the threshold, while in the proximal region, it is
closer to OR, with only a few required.

The Purkinje cell has a highly branching, flattened
structure built to receive inputs from up to 200,000 paral-
lel fibers that pass orthogonally through the dendritic arbor
[60]. In addition, each Purkinje cell receives input from one
climbing fiber, which enwraps the dendrite and forms a vast
number of synapses [61]. Unlike pyramidal neurons, there
is no need for a vertical extension. Fig. 6B shows the logic
operations performed by the Purkinje cell. Two inputs are
given to two sections c and d along a main dendritic branch.
The presynaptic neurons are assigned to a firing rate of 200
Hz when the hidden state is on. For the relatively distal sec-
tion c, the firing rate threshold is crossed at eight synapses
and the mutual information threshold at ten; for the rela-
tively proximal section d the thresholds are exceeded at six
and seven. Namely, there is a less drastic difference in the
two sections compared with the CA1 case.

4.3 Heterosynaptic plasticity

The CA1 pyramidal neuron and the Purkinje cell
form well-established functional neural circuits that inte-
grate multiple inputs from distinct sources. In particular,
they can perform complex computation via homo and het-
erosynaptic mechanisms [50]. Heterosynaptic transmission
refers to the modification of synaptic strength by unspecific
presynaptic stimuli. The activity of a presynaptic neuron al-
ters the strength of a synapse of the postsynaptic neuron not
directly connected to the presynaptic neuron in action [62].
Unlike the homosynaptic case, there is no widely accepted
computational model for heterosynaptic transmission.

The CA1 pyramidal neuron receives inputs mainly
from two sources, one directly from the entorhinal cortex
and one from the CA3 region [63]. The processing of these
inputs is a critical step in the role of the hippocampus in
memory, which is postulated to play a comparator role [64].
Synaptic plasticity in the CA1 neuron is well studied and
exhibits rich heterosynaptic plasticity mechanisms [65, 66].
The Purkinje cell provides the sole output from the cerebel-
lar cortex. It receives inputs from parallel fibers, axons of
granule cells, and just one climbing fiber originating from
the inferior olive, which nevertheless comprises about 1500
synapses. The Purkinje cell is believed to play a key role
in motor learning, yet the synaptic mechanism remains elu-
sive [67]. It was suggested in the early theories of learning
in the cerebellum that heterosynaptic interactions between
the parallel and climbing fibers play a key role [68, 69].
These neuronal systems have in common that heterosynap-
tic interactions between multiple inputs, which can be co-
operative or competitive, play a crucial role in their com-
putations [70, 71]. To understand the processing of these
multiple inputs, we study them in our information-theoretic
framework (Fig. 5).

Fig. 7 displays the Boolean logical operations of
the neuron models at given two multimodal inputs. For
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the CA1 neuron, X; stimulates twelve synapses in sec-
tion a and X5 stimulates eight synapses in b (see Fig. 6A);
for the PF, X; stimulates five synapses in ¢ and X, stim-
ulates five synapses in d (see Fig. 6B). Varying the fir-
ing rates of the two sets of presynaptic neurons, q',,, and
q*on, we compute the mutual information H (X1; Io_;)
and H (Xs9;Io—:) and show the resulting maps in the
first and second columns, respectively. The third column
presents the total information transmitted, H (X1; Io—:) +
H (X2; In_+), with the threshold set to 80% of the maxi-
mum. For both CA1 and PF, when the coherence is low
(e = 0.1; first row), synaptic competition occurs. In case
that just one input is on, the total mutual information ex-
ceeds the threshold and the output becomes unity; in the
case of both on, the output is zero. It is remarkable that the
resulting Boolean operation is the exclusive OR (XOR) op-
eration. On the other hand, when the coherence is high («
= 0.9; first row), the two inputs exhibit cooperation, which
results in OR and AND-like operations.

5. Approaches to designing logic backbones
of neural circuits

So far, we have discussed the characteristics and
corresponding design principles for single neuron models
and operators derived from small networks of neurons. In
this section, we discuss the strategies to implement these
models to a system of an even larger scale. Neuron models
and logic gates play a crucial role in the dynamics of neural
circuits. Algorithms inspired from neural circuits, such as
artificial neural networks and variations, are also relevant
despite its high-level representation of brain circuits, as the
individual elements are technically an abstracted version of
neuron models. As the scale and complexity increase, de-
signing a performant and efficient circuit becomes more and
more demanding. At its core, these systems can be inter-
preted as graphs with different types of nodes and edges.
Then, the problem becomes to find the optimal topology
best suited for a specific purpose. Often one might believe
that finding the optimal topology is either unnecessary or
inconsequential due to effectively no limitations available
in the software representations of these systems. But this is
not true for two reasons: First, the optimal topology is cru-
cial for hardware design. Second, our brain does have lim-
ited resources, spaces, and connections with much more ad-
vanced motifs than those a typical learning problem might
attempt to implement in software.

Optimizing the topological aspect of the model is
a difficult problem and has garnered a lot of interest in var-
ious fields for quite some time. Here, we review two dis-
tinct fields that have made progress in applying computa-
tional algorithms to the physical systems to reconstruct or
find the optimal topology. The two are the fields of sys-
tems biology and chip design: Systems biology, at its core,
studies biochemical reaction networks inside a cell com-

prised of various enzymes and ligands. A computer chip,
on the other hand, is a complex amalgamation of modules,
subsystems, and logic systems. Once visualized, both can
be represented using graphs and thus share similarities with
neural networks and circuits. Both systems can be modeled
and simulated as the basic dynamics of each type of building
block are known. Due to the scale of the model and the di-
versity of elements and possible interactions between them,
building a biochemical reaction network from scratch is dif-
ficult. Similarly, engineers have utilized various toolsets to
aid the design process due to their complexity.

Current attempts at automated network topology
design rely on one of several different techniques. Most
prevalent is the inference techniques [72], with Bayesian
inference being the most common of the bunch [73, 74].
Machine learning has become another popular choice, with
examples such as optimization of biochemical reaction
networks through machine learning [75], deep learning
for regulatory networks [76], chip design using reinforce-
ment learning [77], and sparse network identification using
Bayesian learning [78]. There are also various information-
theoretic approaches [79] using an ensemble of logic mod-
els [80], regression approaches [81], other heuristic, meta-
heuristic, and hybrid methods [82—85], and many more.

Another approach, relatively less well-adopted, is
the evolutionary algorithm (EA); it is a type of optimiza-
tion algorithm that is heuristic and population-based. At its
core, EA is characterized by concepts inspired by nature,
with processes defined in correspondence to selection, re-
production, mutation, and recombination. An adaptation of
EA may proceed as follows: (1) A population of individuals
is initialized. (2) Fitness of individuals is evaluated. (3) In-
dividuals are selected for reproduction, based on fitness. (4)
Offsprings are generated with some probability of mutation
and crossover. (5) The next generation is established with
the number of the least fitted individuals reduced. (6) Re-
peat the process until the termination criteria are met. Many
variations of the algorithm exist, most notably differential
evolution and the particle swarm algorithm. While typically
the algorithm is used for numerical optimization problems,
it can also apply to inference and topology searching prob-
lems. We believe EA may provide several benefits over
other approaches for automated designs of neural networks
and neural circuits. The algorithm has garnered a lot of in-
terest over the years on automated and optimal designs of
artificial neural networks for learning tasks [86-88]. We
suggest EA-based algorithms to be a good alternative for
topological search and output optimization of neural circuit
designs. Here, we give a short demonstration of finding
an optimal set of functions to recreate a target output sig-
nal from the given input signals, examining the feasibility
of circuit design automation via an EA-like algorithm (see
Fig. 8). Technically, this version of the problem is not look-
ing for different topologies per se but instead looking for the
optimal set of transfer functions under a given topological
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Fig. 8. The demonstration of a framework for designing logic backbones. (A) The overview of evolutionary algorithm. (B) Scenario 1, where a

sequential single-chain layer of functions akin to neural networks is used. (C) Scenario 2, where two sequences of functions (branch 1 and branch 2)

converge with a logical operator simulating a multimodal neural circuit are used. (D) Result of scenario 1, where the output of the true sequence is given

to the algorithm as the target. The top three models with the highest fitness score are shown (P1, P2, P3). The algorithm recovers the original sequence.

‘Null’ indicates an empty placeholder where the algorithm decides not to populate with a function. (E) Result of scenario 2, where the output of the true

sequence is given to the algorithm as the target. Three of the 23 models that fully reproduce the true output are shown. The algorithm recovers the original

sequence for branch 1 and LO but not for branch 2. ‘Null’ indicates an empty placeholder where the algorithm decides not to populate with a function.

constraint, which is imposed to make sure our example is
analogous to neural circuits or neural networks. The work-
flow can easily incorporate topology modification with the
adoption of an adjacency matrix-like representation of the
topology. In this example, various predefined functions and
logic operators are available for our algorithm to look for a
model under some topological constraint that can mimic the
output as much as possible. While we have used a set of ele-
mentary functions as the building blocks for demonstrative
purposes, in more complex applications, they can always be
replaced by more complicated classifiers, operators, layers,
or even neuron models with detailed physiology specified.
The contents of the building blocks can be of various scopes
and levels of detail as long as an appropriate fitness function
is chosen to reflect the changes.

For this study, we have created two different sce-
narios: one with a sequential single-chain layer of functions
conceptually akin to typical neural networks (Fig. 8B) and
the other with two sequences of functions converging with
a logical operator simulating a multimodal neural circuit

(Fig. 8C). In each case, we generate a synthetic model from
which the target output is collected. For the neural network
example, we use the population size N p = 200 and the num-
ber of generations N = 50. For the neural circuit example,
the population size and the number of generations are given
by Np = 500 and N = 1000, respectively. A total of ten
different functions are available (spike generation, convo-
lution, high and lowpass filters, differentiation and integra-
tion, Fourier and inverse Fourier transforms, forward and
backward shifting), together with three additional logical
operators (AND, OR, XOR) for the neural circuit exam-
ple. The length of a function sequence has a maximum but
no minimum. The algorithm could decide not to populate
the backbone with a function that is represented as ‘Null’
in Fig. 8. We use the EA-inspired algorithm illustrated in
Fig. 8A with only the input and the target output given. Our
model is represented by a vector of integers where each in-
teger corresponds to a specific building block. The fitness is
determined by the sum of the residuals. The top half of the
fittest population is selected, and offsprings are generated
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with a point mutation in such a way that a single function is
randomly chosen to be replaced by another while the other
half is discarded.

For scenario 1, we find that the algorithm recov-
ered the original model nicely and collected similar models
with comparable outputs (Fig. 8D). The multimodal neu-
ral circuit example is of particular interest since we believe
neural circuit hardware design will benefit the most from
the suggested approach. In the second scenario, multiple
different models (N = 23) reproduce the given output. Af-
ter analyzing the models, we notice that the differences are
uniquely present in branch 2 while the algorithm recovers
the correct logic operator and the sequence of functions for
branch 1. We believe this is due to the binary nature of
logical operators, where part of the information gets dis-
carded. For a topology like Fig. 8C, where a logic opera-
tor integrates outputs from multiple sources, the content of
the upstream elements might be tuned and simplified while
keeping the desired dynamics, reducing the cost, therefore
increasing the efficiency and potentially the scalability of
the hardware implementation. Instead, the fitness function
may be tweaked for parsimony, e.g., penalize a larger, more
complex model, to achieve a similar goal.

The adjustment of edges (i.e., connections) be-
tween different nodes is crucial for the circuit design. El-
ements such as skip connections are known to have a pro-
found impact on performance. A proper encoding strategy
is necessary to achieve this goal. A directed graph represen-
tation is the most conceptually straightforward, with binary
values indicating the connectivity between two nodes. For
compartmental models, where the spatial aspect of synap-
tic plasticity may be studied, a continuous variable defining
the position of synapses may be used instead. However, as
many EA-based applications to neural network optimiza-
tion for learning problems have demonstrated, a much more
compact encoding is possible and recommended, as the ini-
tialization, mutation, and crossover can be performed much
more efficiently. Support for variable-length encoding and
artificial physical constraint are few other advantages. An-
other important factor in determining the performance of
the algorithm is the evolving strategy. Crossover, in partic-
ular, is difficult to conceptualize for topology search. There
have been algorithms such as NEAT [89] to address this
problem. On top of mutation and crossover, artificially in-
creasing the evolutionary pressure through the implemen-
tation of extinction/migration of individuals may be helpful
for topological search, as the search space is discrete. On
the same note, the application of generalized island mod-
els [90] may provide another interesting perspective to the
problems with population diversity.

From the model engineering perspective, an EA-
based algorithm like this is beneficial for two reasons. First,
the algorithm, albeit optimized for the topology, is meta-
heuristic and therefore flexible enough to incorporate mech-
anistic models. Supporting mechanistic models indicates

that detailed biophysics can be implemented in the bottom-
up approach where both the models and the results are
comprehensible for further analysis. This aspect of the al-
gorithm is particularly valuable for the hardware design,
where the implementation and debugging as much more
straightforward. If an abstract byproduct of the model is
used for the fitness score, an algorithm like this can provide
a good balance between bottom-up and top-down strategies.
Second, population-based optimization raises the possibil-
ity of collecting model ensembles. With a large popula-
tion running for a long time, the algorithm can collect vari-
ous models utilizing different strategies to achieve the same
goal. Further, we can analyze an ensemble of different but
equally good models to gain insight into the system. Ad-
ditional constraints can be applied to obtain a reduced en-
semble or a single model suitable for specific use cases. An-
other benefit of population-based algorithms is scalability,
where massive parallelization is possible based on individ-
ual genealogy.

6. Discussion and conclusions

This study has investigated multiscale mecha-
nisms of neural computation via computer simulations and
information-theoretic analysis. We have first reviewed the
operation mechanisms of three representative simple math-
ematical neuron models (i.e., MP, LT, and FR models) to
introduce the basic concept of neural logic operations that
might explain simple Boolean operations such as AND and
OR gates. Next, IF models have been analyzed and the neu-
ral computations interpreted from the viewpoints of neural
dynamics and neural coding approaches. These two com-
plementary approaches allow a more comprehensive under-
standing of neural computation at the single-cell level. The
analysis has extended to the biophysically realistic multi-
compartment neuron models, which is adequate for eval-
uating versatile information processing through homo and
heterosynaptic transmissions. We have then compared two
representative multimodal neurons (i.e., the pyramidal neu-
ron in CA1 in the hippocampal circuit and PF in the cere-
bellum), and finally, investigated the logic operations at the
neural circuit level.

The simple neuron models (i.e., MP, LT, and FR
models) are indeed beneficial for understanding the basic
concepts of neural computations at the single-cell level.
They successfully reproduce the basic single neuron behav-
ior: neurons may have their own intrinsic thresholds for de-
termining whether to fire or not, and this can be described
with simple mathematical treatment. By introducing the
Heaviside step function (for MP and LT models) or a dif-
ferential equation (for FR model), these simple models can
perform the basic Boolean logic operations such as AND
and OR gates, in which the binary values 1 and 0 correspond
to “true” and “false” (Fig. 1). Next, five IF models have
been subjected to extensive simulations combined with the
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information-theoretic framework (Fig. 2). It has been man-
ifested that both neural dynamics and neural coding ap-
proaches support the computational capability of neurons
(Figs. 3 and 4). We have then investigated the role of synap-
tic transmission in neural computation through biologically
realistic multi-compartment neuron models, and analyzed
two representative computational entities, CA1 pyramidal
neuron in the hippocampus and PF in the cerebellum in the
information-theoretic framework. For single-input modal-
ities, synapses proximal to the soma have turned out to
act as OR gates whereas those distal to be closer to AND.
This is particularly relevant in the CA1 pyramidal neuron,
whose extended apical dendrites reach fibers from different
sources. We have further assessed heterosynaptic compe-
tition and cooperation of the neurons at given multimodal
inputs. Both AND/OR-like operations have been observed
in the CA1 and PF for inputs with high coherence. On the
other hand, when the coherence is low, both neurons exhibit
the linearly non-separable XOR operation. This hints that
complex computation can occur in single neurons, which
may not be properly described by the simple neuron mod-
els.

For more complex circuits, algorithms that can de-
sign the optimal models for given requirements and con-
straints would be highly beneficial. For systems like neu-
ral circuits and neural networks, the optimization is per-
formed in only a few orthogonal search spaces, e.g., param-
eter, dynamics, and topology. Network topology optimiza-
tion is often overlooked, although it can have a profound
impact on how the circuit performs. Note that in general
different fields and subjects have different goals and limi-
tations requiring different strategies. Systems biology, for
example, is often bottlenecked by experimental limitations.
Thus, constructing and validating against sparse data often
presents a big challenge for systems biologists. We have
demonstrated an example of an automated network design
algorithm based on EA with two distinct design scenarios,
and shown that despite the same algorithm and building
blocks in both cases, the specificity of the ensemble dif-
fers vastly. While the linear chain example simply recovers
the original model, the branched example demonstrates that
multiple versions may satisfy our criteria in reconstructing
the output from the given input. The population-based na-
ture of EA can create an ensemble of equally good choices,
from which the best is chosen based on the overall priority
of the design principle.

The information-theoretic analysis used in this
study is based on the method originally proposed by Denéve
and colleagues [37—41], which measures the mutual infor-
mation between a hidden state triggering presynaptic in-
puts and the postsynaptic output spike train. This frame-
work provides an ideal means to measure the information
processing of a single neuron. Extending the method, we
have included two hidden states to characterize the compu-
tation performed by a neuron receiving inputs from two in-

formation sources [29, 50, 51]. Since the seminal work of
MacKay and McCulloch in 1952 [91] that first quantified
the information contained in a spike train, numerous mea-
sures based on the classical information theory [21] have
been devised to quantify information processing in single
neurons and between neurons through synaptic transmis-
sion. Mutual information is a fundamental and versatile
measure for the overlapping information between two quan-
tities (e.g., presynaptic input and postsynaptic output) [17].
In our extended framework, two mutual information values
are calculated for each input modality, allowing us to assess
synaptic competition and cooperation.

The multiscale approach to neural computations
presented in this study may provide a starting point for the
design of biologically plausible neuron and synapse mod-
els in AT technologies. While most existing neuron mod-
els are designed as simple integrators of unimodal synaptic
inputs based on the “dumb” neuron concept in the 1940s
and 50s, recent experiments have hinted towards develop-
ing “smart” neuron models with potential applications in
artificial neural network algorithms. In particular, linearly
non-separable functions such as the XOR operation were
traditionally thought to require multiple neuron layers and
summing junctions [92]. A recent experimental study has
shown that damping behaviors of the dendritic action po-
tential in the neocortical layer 2/3 pyramidal neuron can
perform XOR operations [15]. This result supports theo-
retical work that argued for complex computations at the
level of single neurons [93, 94]. Moreover, there is grow-
ing evidence that such nonlinear functions at the single neu-
ron level may provide an essential computational resource
in neural networks [95-98]. Large-scale deep learning al-
gorithms have begun to explore complex operations at the
single neuron level, such as the mirror neuron (for Mirror-
Bot) [99], and multimodal neurons in the CLIP (Contrastive
Language-Image Pre-training) algorithm [100].

In conclusion, this study describes simulations to-
gether with information-theoretic treatment of the multi-
scale logic operations in the brain. Both neural dynamics
and information processing in biophysically realistic neu-
ron models and phenomenological IF type models have
been successfully mapped to the Boolean logic computa-
tion. Remarkably, neuronal information maps not only
to basic AND/OR functions but also to the linearly non-
separable XOR function, depending on the neuron type.
Computational analysis on the multiscale nature of neural
computation may be beneficial for understanding the com-
putational principles of the brain and lay the foundation for
developing brain-inspired advanced computational models.
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