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1. Abstract

Objectives: To quantify the integrated levels of
ACE2 and TMPRSS2, the two well-recognized severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
entry-related genes, and to further identify key factors con-

tributing to SARS-CoV-2 susceptibility in head and neck
squamous cell carcinoma (HNSC). Methods: We devel-
oped a metric of the potential for tissue infected with
SARS-CoV-2 (“TPSI”) based on ACE2 and TMPRSS2
transcript levels and compared TPSI levels between tumor
and matched normal tissues across 11 tumor types. For fur-
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ther analysis of HNSC, weighted gene co-expression net-
work analysis (WGCNA), functional analysis, and single
sample gene set enrichment analysis (ssGSEA) were con-
ducted to investigate TPSI-relevant biological processes
and their relationship with the immune landscape. TPSI-
related factors were identified from clinical and mutational
domains, followed by lasso regression to determine their
relative effects on TPSI levels. Results: TPSI levels in
tumors were generally lower than in the normal tissues.
In HNSC, the genes highly associated with TPSI were en-
riched in viral entry-related processes, and TPSI levels were
positively correlated with both eosinophils and T helper
17 (Th17) cell infiltration. Furthermore, the site of onset,
human papillomaviruses (HPV) status, and nuclear recep-
tor binding SET domain protein 1 (NSD1) mutations were
identified as the most important factors shaping TPSI lev-
els. Conclusions: This study identified the infection risk of
SARS-CoV-2 between tumor and normal tissues, and pro-
vided evidence for the risk stratification of HNSC.

2. Introduction

Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is the pathogen causing Coronavirus dis-
ease 2019 (COVID-19) [1]. The virus has been dissemi-
nated worldwide and has severely threatened human health
since its outbreak in Wuhan, China, in late 2019 [2]. Pa-
tients with COVID-19 often experience respiratory symp-
toms characterized by fever, cough, fatigue, and dyspnea,
developing into multi-organ failure and even death in se-
vere cases [3, 4]. Although SARS-CoV-2 infection primar-
ily induces pulmonary involvement, extrapulmonary organ
manifestations such as heart failure [5], renal dysfunction
[6], and oral mucosal lesions [7] have also been observed.
Multiple clinical studies also demonstrated that cancer pa-
tients have an increased risk of SARS-CoV-2 infection [8]
and are prone to developing more complications [9].

Angiotensin-converting enzyme 2 (ACE2) and
transmembrane serine protease 2 (TMPRSS2) are two well-
recognized factors involved in SARS-CoV-2 cell entry [10–
12]. To be specific, SARS-CoV-2 infection begins with
the binding of the viral spike (S) protein to the ACE2 re-
ceptor, allowing viral adhesion to the surface of host cells
[10, 11]. This binding is followed by TMPRSS2-enabling
S-protein priming [12]. It was recently reported that ad-
ditional host molecules including a disintegrin and metal-
loprotease 17 (ADAM17), cathepsin L (CTSL), and furin
may also function as receptors for SARS-CoV-2. However,
ADAM17 and CTSL have been shown to be nonessential
for SARS-CoV-2 infection [13, 14]. Furin pre-activation
can facilitate SARS-CoV-2 entry into some cells types, par-
ticularly those with low expression of TMPRSS2 or lysoso-
mal cathepsins [15]. Several studies identified TMPRSS2
as an essential host cell factor for these respiratory viruses
and further demonstrated that inhibition of virus activat-

ing host cell proteases [16–18] (e.g., TMPRSS2) provides
a promising approach for developing therapeutics against
treat respiratory virus infections. Camostat mesylate, a
clinically proven serine protease inhibitor, can partially
block SARS-2-S-driven entry into TMPRSS2+ Caco-2 and
Vero-TMPRSS2 cells [19]. Nafamostat mesilate can inhibit
Middle East respiratory syndrome (MERS)-CoV S protein-
mediated viral membrane fusion with TMPRSS2- express-
ing Calu-3 lung host cells by inhibiting TMPRSS2 protease
activity [20]. Because the S proteins of MERS-Cov and
SARS-CoV-2 share considerable amino acid sequence ho-
mology [21], nafamostat mesilate may also inhibit SARS-
CoV-2 cell entry.

Due to the important roles of ACE2 and TM-
PRSS2 in SARS-CoV-2 cell entry, researchers have in-
vestigated their expression to identify potential target or-
gans or tissue types and predict the susceptibility to SARS-
CoV-2 infection [22, 23]. However, current studies based
on ACE2 and TMPRSS2 mainly analyze each factor sepa-
rately. For instance, a recent study suggested that HNSCs
are less likely to be infected with SARS-CoV-2 than nor-
mal tissues for the constant ACE2 but decreased TMPRSS2
[22]. Nevertheless, real individuals present unique combi-
nation of the two genes, and the heterogeneity of individual
ACE2 and TMPRSS2 expression patterns appears to be ig-
nored by this method. In particular, it is difficult to draw
an exact conclusion when they change in opposite direc-
tions. To address these issues, a novel quantitative measure
is needed to integrate both ACE2 and TMPRSS2 weights.

In 2015, Rooney et al. [24] proposed a method
to quantitatively assess immune cytolytic activity using the
geometric mean of the mRNA expression of two essential
cytolytic effectors. Based on this approach, we constructed
a metric of the potential for SARS-CoV-2 infection and cal-
culated it for thousands of human cancer and matched nor-
mal tissue samples to further determine the susceptibility
across diverse tissue types, focusing on viral entry-related
genes. As the head and neck exert an important role in
communicating with the outside world and the oral cavity
is found to be a vital site for SARS-CoV-2 infection [25],
we further performed a detailed analysis of head and neck
squamous cell carcinoma (HNSC), establishing a correla-
tion between the metric and various features including im-
mune, clinical, and genomic domains.

3. Materials and methods

3.1 Data collection and processing

The RNA sequencing (RNA-Seq) data included
in the pan-cancer analysis were acquired from The Can-
cer Genome Atlas (TCGA, http://cancergenome.nih.gov
/). Excluding tumors with less than 30 normal samples,
the resulting analyzed cohorts included 5624 primary tu-
mors and 602 matched normal tissues (Fig. 1). The can-
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Fig. 1. Distribution of both ACE2 and TMPRSS2 levels, and TPSI scores in normal and tumor tissues across 11 tumor types in TCGA. ∗p< 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

cer types consisted of breast invasive carcinoma (BRCA),
colon adenocarcinoma (COAD), HNSC, kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell car-
cinoma (KIRP), liver hepatocellular carcinoma (LIHC),
lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), prostate adenocarcinoma (PRAD), stomach
adenocarcinoma (STAD), thyroid carcinoma (THCA). For
each TCGA dataset, a total of 19597 mRNAs were anno-
tated according to Gencode V33. FPKM values were con-
verted to TPM and log2-transformed after adding a 0.01
pseudocount for intergroup comparisons.

Further analysis of HNSCwas conducted using the
TCGA_HNSC dataset as a discovery set, which included
500 tumors and 44 normal tissues. Patients’ clinical infor-
mation was retrieved from TCGA, and the human papil-
lomaviruses (HPV) status was assessed at the Broad Insti-
tute based on DNA sequencing and PathSeq algorithm [26].
We also obtained the HNSC gene-level somatic mutations
from UCSC Xena (https://xenabrowser.net/). To validate
the main correlations of clinical and mutational features
with our metric, the 500 HNSC patients were randomly di-
vided into internal validation set-1 (n = 150) and set-2 (n =
350). Additional three datasets (GSE30784, GSE107591,

and GSE41613) from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) were used as external
validation sets. Among these sets, GSE30784 contained
167 HNSCs and 45 normal samples [27], GSE107591
contained 24 HNSCs and 23 normal samples [28], and
GSE41613 had 97 tumor samples only [29]. The gene ex-
pression profiles were normalized through the normalize-
BetweenArrays function in R package “limma”.

3.2 TPSI construction

The potential for tissue infected with SARS-CoV-
2 (TPSI) was computed as the geometric mean of ACE2
and TMPRSS2 expression. In the TCGA_HNSC dataset,
TPM values were used to calculate TPSI, and transformed
TPSI values log2 (TPM + 0.01) were used for further com-
parisons and weighted gene co-expression network analysis
(WGCNA).

3.3 WGCNA

In TCGA_HNSC, a total of 4899 mRNAs with the
top 25% variance were selected to construct a co-expression
network by the “WGCNA” package to identifymodules and
genes most strongly correlated with TPSI [30].

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
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3.4 Functional analysis

Gene ontology (GO) biological processes (BP)
and KEGG enrichment analysis of the related genes were
conducted and visualized using ClueGO and CluePedia plu-
gins within Cytoscape software (version 3.7.2) [31]. A p-
value < 0.05 was considered enriched.

3.5 Clinical samples collection and quantitative PCR
(qPCR)

In this study, 13 pairs of surgically resected HN-
SCs and their adjacent normal tissues were collected for
qPCR from the School and Hospital of Stomatology, China
Medical University during July 2021. All samples were
confirmed by histopathology. The fresh tissues were im-
mediately snap-frozen in liquid nitrogen and stored at –80
◦C.

Tissue RNA was isolated using TRIzol reagent
(Takara) and reverse-transcribed into cDNA using the
PrimeScriptTM RT Reagent Kit with gDNA Eraser
(Takara), according to the manufacturer’s instruc-
tions. qPCR was performed with ChamQTM Universal
SYBR qPCR Master Mix (Vazyme) using a LightCy-
cler 480. 18S was used as an internal control. The
primer sequences used were as follows: ACE2 forward
5′-TTCCGTCTGAATGACAACAGCCTAG-3′, ACE2
reverse 5′-TGACAATGCCAACCACTATCACTCC-
3′; TMPRSS2 forward 5′-
ATGGTGGCGGCGAAGAAGAGAA-3′, TMPRSS2
reverse 5′-CTCATGGTTATGGCACTTGGCAATG-3′;
18S forward 5′-GCAGAATCCACGCCAGTACAAGAT-
3′, 18S reverse 5′-TCTTCTTCAGTCGCTCCAGGTCTT-
3′. The comparative cycle threshold (CT) (2−∆CT ) method
was used to calculate gene expression levels and TPSI for
each sample.

3.6 Single sample gene set enrichment analysis
(ssGSEA)

According to SARS-CoV-2 infection-related path-
ways (R-HSA-9694516) from Reactome (http://reactome
.org/) and published literature [32–34], we generated
three relevant host factor sets: (1) Other coronavirus
entry-related factors (i.e., furin, ADAM17, CTSL, CTSB,
BSG, TMPRSS4, TMPRSS11A, TMPRSS11B, ANPEP,
CLEC4G, DPP4, and NRP1); (2) Translation of repli-
case and assembly of the replication transcription com-
plex (i.e., CHMP2A, CHMP2B, CHMP3, CHMP4A,
CHMP4B, CHMP4C, CHMP6, CHMP7, MAP1LC3B,
BECN1, UVRAG, PIK3C3, and PIK3R4); (3) Replication
of the SARS-CoV-2 genome (i.e., RB1, ZCRB1, VHL,
DDX5, EEF1A1, MTHFD1). In addition, we accessed
the marker genes for 28 subpopulations of tumor infil-
trating immune cells [35]. TPM values of the genes in
TCGA_HNSC were extracted for calculation. Correspond-
ing SARS-CoV-2 infection-related and immune cell-type
signature scores for individual HNSC samples were quan-

tified using ssGSEA based on R package “GSVA” [36].
The immune cells were clustered by Euclidean distance and
ward.D2 clustering method.

3.7 Statistical analysis

Differences in the distribution of ACE2 and TM-
PRSS2 expression, TPSI, and signature scores between
groups were evaluated using the Wilcox test. Chi-square
or Fisher’s exact test was used to compare categorical vari-
ables, as appropriate. Spearman’s correlation analysis was
performed to evaluate the correlation between TPSI and
other variables. The survival difference was assessed by
Kaplan-Meier analysis with the log-rank test. The inde-
pendence test was conducted with the coin package of R
for identifying significant mutations related to TPSI lev-
els. The least absolute shrinkage and selection operator
(LASSO) regression analysis was used for qualitative as-
sessment of variable importance by “glmnet” package [37].
All statistical analyses were carried out in R software. The
significance level was set at two-tailed p < 0.05 if not oth-
erwise stated.

4. Results

4.1 TPSI score based on ACE2 and TMPRSS2
expression

Considering the high prevalence of COVID-19 in
cancer patients, we explored the distribution of ACE2 and
TMPRSS2 expression in 11 cancer types and their corre-
sponding normal tissues. Compared with normal tissues,
the opposite trends in expression changes of ACE2 and TM-
PRSS2 were observed in KIRP and PRAD. Based on these
observations, we could not determine the SARS-CoV-2 in-
fection potential for the two tumor types relative to normal
tissues. Subsequently, we devised a metric named TPSI to
integrate the ACE2 and TMPRSS2 transcript levels in or-
der to compare the susceptibility to SARS-CoV-2 infection
between tumors and normal tissues. As shown in Fig. 1, the
TPSI levels were highest in the colon and kidney and low-
est in the breast. Moreover, 10 of 11 tumor types had lower
TPSI levels than their matched normal tissues; only STAD
presented the same levels for both groups.

4.2 Functional analysis of key genes associated with
TPSI in HNSC

To explore the genes highly correlated with TPSI
in HNSC, we first constructed a WGCNA network from
the TCGA_HNSC dataset. After outlier removal from 500
samples, a soft-threshold power of five was selected for
identifying co-expression modules. As a result, the genes
were classified into eight modules (Fig. 2A–C). The red
module exhibited the strongest association with the TPSI
score. It is worth mentioning that both ACE2 and TM-
PRSS2 were present in the red module. In particular, they
were among the top 25% of the genes ranked according to

http://reactome.org/
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Fig. 2. WGCNAand functional analyses in the TCGA_HNSCdataset. (A) The cluster dendrogram of genes with the top 25% variance. (B) Correlation
between module eigengenes and TPSI. (C) Scatter plot of genes in the red module; scattered points above the horizontal blue dotted line represent the top
25% genes with high GS. (D) GO and KEGG enrichment of the genes with GS >0.2.

the gene significance (GS) values used to determine how
gene levels related to TPSI (Fig. 2C). We then carried out
GO and KEGG enrichment analysis on 156 genes with GS
greater than 0.2 in the red module. As anticipated, the viral
infection-related process “regulation of viral entry into host
cell” was significantly enriched (Fig. 2D).

4.3 Validation of TPSI levels and TPSI-related
functions

Two public datasets (GSE30784 and GSE107591)
and our own clinical samples were used to verify the differ-
ences in the TPSI levels between HNSCs and normal tis-
sues. All three datasets confirmed a lower TPSI level in
the HNSCs (Fig. 3A,B). In addition, GSE41613 was used
to validate the relationship between TPSI and viral entry-

related processes. Significant positive correlations were
observed between TPSI levels and both genes expression
(Fig. 3C). The top 160 genes positively associated with
TPSI were selected for functional enrichment, and the anal-
ysis revealed a significant enrichment of “entry into host
cell” (Fig. 3D).

4.4 Analysis of other SARS-CoV-2 infection-related
signatures

In addition to ACE2 and TMPRSS2, other coro-
navirus invasion-related molecules (e.g., furin) and virus
replication may influence SARS-CoV-2 infection. There-
fore, we investigated the relationship between relevant sig-
natures and whether there are tumors or not. For the
TCGA_HNSC dataset, ssGSEAwas carried out to generate
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Fig. 3. Validation of TPSI levels and TPSI-related functions. (A) Distribution of TPSI levels in normal tissues and HNSCs in GSE30784 and
GSE107591. (B) Distribution of TPSI levels in normal tissues and HNSCs in our clinical sample sets. (C) Correlation between TPSI and both ACE2 and
TMPRSS2 in GSE41613. (D) GO and KEGG enrichment of the top 160 genes positively associated with TPSI in GSE41613.

individual signature activity scores based on three SARS-
CoV-2 infection-related gene sets. The results showed
that “Other coronavirus entry-related factors” and “Trans-
lation of replicase and assembly of the replication transcrip-
tion complex” were significantly downregulated in HNSCs
compared to normal tissues, while there was no significant
difference in “Replication of the SARS-CoV-2 genome” be-
tween the two groups (Fig. 4).

4.5 Correlation between tumor immune infiltration
and TPSI in HNSC

Given the crucial roles that immune cells play in
combating SARS-CoV-2 infection [38], we explored the
potential associations between TPSI and tumor-infiltrating
immune cells in HNSC. Based on the ssGSEA scores, 500
patients with HNSC were clustered into two immune infil-
tration subgroups: low (n = 175) and high (n = 325). The
high immune infiltration group generally showed a higher
abundance of 28 immune cell populations (Fig. 5A). The
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Fig. 4. Distribution of ssGSEA scores of other SARS-CoV-2 infection-related signatures in normal tissues and HNSCs in the TCGA_HNSC
dataset. (A) Other coronavirus entry-related factors. (B) Translation of replicase and assembly of the replication transcription complex. (C) Replication
of the SARS-CoV-2 genome.

consistency of the abundance between immune cells exert-
ing anti-tumor activity (e.g., activated CD8+T cells) and re-
pressing such reactivity (e.g., regulatory T cells) might be
partially ascribed to a feedback mechanism that anti-tumor
inflammation promotes the recruitment or differentiation of
immunosuppressive cells [39].

HPV is a pathogenic factor for HNSC. HPV+
and HPV- HNSCs are regarded as two radically different
cancers, exhibiting distinct immune landscapes [40]. We
found that the proportion of HPV+ or TPSI-high HNSCwas
higher in the high immune infiltration group. To further
clarify the relationship between TPSI levels and immune
infiltration, we compared the TPSI scores of the two im-
mune infiltration subgroups in the HNSC cohort stratified
by HPV status. Increased TPSI levels were observed in the
high immune infiltration group for the HPV+HNSCs; how-
ever, the differencewas not significant for the HPV-HNSCs
(Fig. 5B). These results indicated that there were no strong
associations between overall immune infiltration and TPSI
levels. We then measured TPSI correlations with different
immune cells, and found that both T helper 17 (Th17) cells
and eosinophils, known to mediate inflammation [41, 42],
were positively correlated with TPSI levels in HNSC, with-
out being affected by HPV stratification (Fig. 5C).

4.6 Identification of clinical and mutational features
related to TPSI in HNSC

According to a number of clinical COVID-19
studies, clinical factors such as age and gender might be
related to infection and disease severity [43]. Thus, we ex-
plored the correlations between various clinical features and
TPSI levels in TCGA_HNSC. The leading causes of HNSC
include long-term smoking, alcohol consumption and HPV
infection [44–46]. In recent years, the role of HPV has be-
come increasingly prominent [46]. In this study, the evalu-
ated clinical variables fell into three main categories: basic
(gender, age, and subsite), etiological (smoking, drinking,

and HPV infection), and tumor progression-associated (sur-
vival status, grade, tumor (T) stage, node (N) stage, metas-
tasis (M) stage, and TNM stage). People over the age of
65 are more susceptible to infection [47]. Thus, we divided
the patients into two groups: old (≥65 years old) and young
(<65 years old). Based on site of onset, the HNSCs were
sorted into larynx and hypopharynx (LH), oral cavity (OC),
and oropharynx (OP) groups.

We assigned HNSC patients to the TPSI-high
and TPSI-low groups based on the median value of TPSI
and then investigated whether there was a difference be-
tween both groups for each factor. For tumor progression,
only survival status showed a correlation with TPSI levels.
Fewer deaths were observed in the high-TPSI group than in
the low-TPSI group (Fig. 6A). From these data, we identi-
fied the prognostic performance of TPSI in HNSC. How-
ever, there was no significant difference in overall survival
(OS) between TPSI-high and TPSI-low groups (Fig. 6C).
Given the correlation of ACE2 or TMPRSS2 with the pro-
gression of some tumors [48, 49], we determined the prog-
nostic role of each gene. The results showed that neither
ACE2 nor TMPRSS2 expression appeared to influence the
OS of HNSC patients (Supplementary Fig. 1). The two
groups did present different proportions of subsites and
HPV+ rates (Fig. 6B). Further comparison of TPSI distri-
bution among the three subsites showed significantly higher
TPSI levels in LH and OP than in OC. Because of this find-
ing, the subsites were classified into two types, OC and oth-
ers (LH and OP), for the subsequent analysis of variable
importance. We also found that TPSI levels had an HPV+
subtype preference (Fig. 6D).

We subsequently analyzed the possible relation-
ship between TPSI levels and gene mutations in HNSC
from a genomic standpoint. To screen which gene mu-
tations were most significantly associated with the TPSI
score, we filtered out genes with a mutation rate of less
than 10% and then performed the independence test. As
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Fig. 5. Immune landscape ofHNSCand its correlationwith TPSI in TCGA_HNSC. (A)Heatmap of ssGSEA scores of 28 immune cell subpopulations.
(B) Distribution of TPSI scores in low and high immune infiltration groups in HNSCs by HPV stratification. (C) Correlations between immune cells and
TPSI in HNSCs by HPV stratification.

Fig. 6. Clinical factors and gene mutations related to TPSI in TCGA_HNSC. (A) Tumor progression-associated characteristics of HNSC patients by
TPSI. (B) Basic and etiological characteristics of HNSC patients by TPSI. (C) Kaplan-Meier curves for OS. (D) Distribution of TPSI scores in HNSC
patients stratified by subsite and HPV status. (E) Gene mutations significantly associated with TPSI levels. (F) Distribution of TPSI levels in HNSCs with
mutant NSD1, TP53, or CASP8 and their wild-type counterpart. wt, wild type; mt, mutation type. (G) Lasso regression reflecting variable importance.

presented in Fig. 6E, NSD1, TP53, and CASP8 mutations
were the most significant mutations correlated with TPSI
levels (p < 0.01). Exactly, high TPSI levels were accom-
panied by frequent NSD1mutations and decreased frequen-
cies of TP53 and CASP8mutations. Compared to wild-type
tumors, TPSI levels were significantly higher in HNSCs
with mutant NSD1 while lower in TP53 or CASP8 mutant

HNSCs (Fig. 6F). These results suggested that mutations in
NSD1, TP53, or CASP8 might affect TPSI in HNSC.

4.7 Variable importance evaluation by lasso regression
in HNSC

Based on above observations, we sought to iden-
tify the potential key features shaping varying TPSI levels
in HNSCs. Samples with missing values were excluded
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from the TCGA_HNSC dataset, and 487 HNSCs were in-
cluded in this additional analysis. Lasso regression was
conducted to measure the relative importance of two clini-
cal variables (subsite and HPV status) and three mutational
variables (NSD1, TP53, and CASP8 mutations) on influ-
encing TPSI levels. According to the changing trajectory
of the coefficient of each independent variable, the order
of importance was ranked as follows: subsite, HPV sta-
tus, NSD1 mutations, CASP8 mutations, TP53 mutations
(Fig. 6G). Among the five features, the top three (subsite,
HPV status, NSD1 mutations) were considered key factors
contributing to HNSC TPSI levels, with the site of HNSC
onset being the most important. The effects of these three
key factors on TPSI levels were further verified by both
TCGA internal validation sets (Supplementary Fig. 2).

5. Discussion

SARS-CoV-2 is highly contagious and transmitted
from person to person mainly through respiratory droplets
[2]. The head and neck play a key role in the transmission
of SARS-CoV-2. The head and neck include the oral cavity,
oropharynx, laryngopharynx and other sites that communi-
cate with the external environment. They may also serve
as a gateway to infection due to the widespread expression
of ACE2 and TMPRSS2 [50–52]. Moreover, SARS-CoV-2
infection has been confirmed in the oral cavity [25]. Dur-
ing the COVID-19 pandemic, many aspects of the surgical
pattern and nursing care of patients with HNSC, which ac-
counts for around 90% of all head and neck cancers were
altered [53, 54]. Therefore, exploring the susceptibility
to SARS-CoV-2 in HNSC was particularly important. In
this study, we designed a quantitative method for measur-
ing the potential for SARS-CoV-2 infection (“TPSI”) based
on ACE2 and TMPRSS2 transcript levels, and performed a
pan-cancer analysis of TPSI levels across 11 tumor types
and the corresponding normal tissues. Furthermore, we in-
vestigated the factors that could influence TPSI levels in
HNSC and attempted to identify the key contributors among
them.

The lungs are the organs most affected by SARS-
CoV-2 infection [55]. However, we observed that although
the lungs were rich in ACE2 and TMPRSS2, they were not
the richest among the normal organs, consistent with previ-
ous studies [56]. Accordingly, the expression of viral entry-
related genes could not simply be used to compare different
infection risks among different tissue types, and the spe-
cific location should also be considered. Organs such as
the lungs, which are in direct contact with the outside, are
more likely to come in contact with the virus and become
targets for invasion. Our results showed that TPSI could re-
veal the internal infection potential of tissue from the level
of gene expression. Thus, we recommend using TPSI in
specific types of tissues rather than across different types to
compare the susceptibility to SARS-CoV-2 infection or to

identify predisposing factors. Pan-cancer analysis of TPSI
showed that almost all (10/11) solid tumors presented lower
integrated levels of ACE2 and TMPRSS2 than normal tis-
sues, suggesting that tumor tissues are less susceptible to
SARS-CoV-2 invasion. However, cancer patients are more
likely to have higher morbidity and mortality of COVID-19
than the general population [8], mainly because malignancy
and anticancer therapy result in immunosuppression [57].
Accordingly, the cancerous tissues are less prone to become
targets of SARS-CoV-2 than the corresponding normal tis-
sues for cancer patients when infected with this virus.

In our evaluation of HNSC, we validated lower
HNSC TPSI levels in two public datasets and one of
our own. Furthermore, in both the TCGA_HNSC and
GSE41613 datasets, the ACE2 and TMPRSS2 expression
levels were positively correlated with TPSI, and functional
analysis of the TPSI-related genes showed significant en-
richment of viral entry-related processes. Thus, TPSI ex-
hibited a robust correlation with virus invading into host
cells. Our results also indicated the accuracy of the TPSI
signature in HNSC. Consistent with the difference in TPSI,
other coronavirus entry-related host factors, translation of
replicase and assembly of the replication transcription com-
plex were more active in normal tissues than in HNSCs,
suggesting that HNSC tissues are less likely to be infected
with SARS-CoV-2 from the perspective of viral entry and
virus replication.

We further found that the initial infiltration of
two kinds of inflammatory cells (i.e., eosinophils and
Th17) increased with higher TPSI levels. Th17 can se-
cret interleukin (IL)-17, promoting the production of pro-
inflammatory cytokines (e.g., IL-6 and tumor necrosis
factor-α [TNF-α]) [58] and contributing to the progression
of inflammation. In addition, granule proteins released by
activated eosinophils can induce tissue damage [59]. Based
on these observations, we speculated that HNSC tissues
with high TPSI levels might be more vulnerable to SARS-
CoV-2 infection and injury.

Previous studies demonstrated that ACE2 exerts
antitumor effects by inhibiting tumor angiogenesis [49] and
promoting tumor immune infiltration [60]. TMPRSS2 is
highly prostate specific due to androgen receptor regula-
tion, which is beneficial for selective activation of EMT
signaling, facilitating the metastatic process [48, 61]. How-
ever, we found that ACE2 or TMPRSS2 expression had no
prognostic significance in HNSC. Moreover, TPSI, which
represents their average levels, was neither related to OS
nor the clinicopathologic features of HNSC. Thus, HNSC
progression might not affect its susceptibility to SARS-
CoV-2 infection. We also found no evident relationships
between TPSI levels with gender, age, and smoking; the
TPSI levels were lower in oral squamous cell carcinoma
(OSCC) and HPV-HNSC.

In the analysis of genemutations, we observed that
HNSCs with mutant TP53 or CASP8 were associated with



749

lower TPSI levels, while those with mutant NSD1 HNSCs
were associated with higher TPSI levels in TCGA_HNSC.
The results indicated that TP53 or CASP8 mutations might
reduce the expression of ACE2, TMPRSS2, or both of these
genes. In contrast, NSD1 mutations might increase the
expression of one or both of these genes. Mutations in
the TP53 tumor suppressor gene are the most frequently
detected genetic alterations (about 70–80%) reported in
HNSC [62]. Depletion of mutant p53 proteins was found
to increase TMPRSS2 expression in HNSC cell lines [22],
which supports our hypothesis. CASP8 is a protease in-
volved in the extrinsic apoptotic pathway and also a nega-
tive modulator of programmed cell necrosis [63]. Mutant
CASP8 HNSCs had distinctive characteristics of genes as-
sociated with inflammation and the immune response and
were rich in immune cell infiltration [64]. It has been
reported that inactivating mutations of NSD1 define an
HNSC intrinsic subtype with significant DNA hypomethy-
lation [65]. The “NSD1 subtypes” present an immuno-
logically cold phenotype characterized by low-infiltrated
tumor-associated leukocytes [66]. Although the gene mu-
tations we evaluated were closely related to TPSI in the en-
tire TCGA dataset, further lasso regression revealed that
NSD1 mutations, together with lesion site and HPV sta-
tus, were relatively important factors impacting TPSI lev-
els. This finding was verified with two internal validation
sets. Taken together, our data indicated that HNSCs aris-
ing outside the oral cavity, HPV+ HNSCs, or HNSCs with
NSD1 mutations were more prone to SARS-CoV-2 infec-
tion.

6. Conclusions

In summary, we developed a quantitative measure
called TPSI to facilitate the comparison of the integrated
ACE2 and TMPRSS2 expression levels among same-type
tissues or organs and to study the potential influencing fac-
tors for SARS-CoV-2 infection. We provide evidence that
cancer tissues were generally less susceptible to SARS-
CoV-2 infection than the corresponding normal tissues in
terms of viral invasion due to the generally lower TPSI lev-
els. Thus, it is reasonable to think that the high suscepti-
bility of cancer patients to SARS-CoV-2 infection is caused
by other factors, such as immunosuppression rather than vi-
ral entry-related genes. For HNSC, tumors occurring out-
side the oral cavity, positive for HPV, or containing NSD1
mutations are key factors increasing the average ACE2 and
TMPRSS2 expression. These data could be used to evalu-
ate the infection risk of cancerous lesions of HNSC patients
complicated with COVID-19 and take preventive measures
accordingly.
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