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1. Abstract

Oncolytic adenovirus has been applied in can-
cer therapy because of several advantages such as cost-
effective production, high transduction efficiency and low
toxicity. Recent efforts have been focused on the mod-
ification of oncolytic adenovirus by encoding transgenes
within the viral genome to efficiently and selectively repli-
cate within cancer cells, destroy cancerous cells, induce tu-
mor cell apoptosis, and stimulate the recruitment of immune
cells to the tumor site. Nevertheless, there are still big chal-
lenges for translational research of oncolytic virotherapy in
clinical cancer management. Therefore, here we summa-
rize current status on the design and application of oncolytic
adenovirus vectors for prostate cancer therapy. In partic-
ular, we describe the main receptors associated with the
tropism and transduction of oncolytic adenovirus vectors,
and propose new directions in future studies for prostate
cancer virotherapy.

2. Introduction

Prostate cancer (PCa) is a common cancer in the
male worldwide, and most of PCa can be cured by surgery
or radiotherapy in the early stage [1]. However, up to 15%
of initial patients are diagnosed to develop metastatic le-
sions, and recurrence rate of patients after conventional rad-
ical therapy is more than 40% [2]. Androgen deprivation
therapy (ADT) has been developed for recurrent PCa, but
some patients still relapse because of the progression of
castration-resistant prostate cancer (CRPC) [3]. Since tra-
ditional therapies including chemotherapy and radiotherapy
are not highly effective and have obvious side effects of
cytotoxicity for CRPC, novel therapeutic strategies are ur-
gently needed. Oncolytic adenovirus as a new viral ther-
apy agent for CRPC has gained increasing attention due to
several advantages such as high selectivity, low cytotixicity
and oncolysis characteristics.

Adenovirus (Ad) has been the workhorse of vi-
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rotherapy since 1950s. Unfortunately, due to the rapid de-
velopment of chemotherapy and safety concern of virother-
apy, the enthusiasm for virotherapy suddenly faded away
later [4]. Only recently, virotherapy has become a hot topic
with the development of Ad and retroviral vectors for the
delivery of a variety of transgenes targeting different types
of cancers [4]. Therefore, in this review we summarize cur-
rent status on the design and application of oncolytic Ad
vectors for PCa therapy.

3. Genome structure of Ad

To develop Ad vector as a novel approach of can-
cer therapy, it is important to understand the genome struc-
ture of Ad in order to design recombinant Ad vectors. Ad is
a non-enveloped virus with double-stranded DNA genome.
Total 103 Ads can be divided into seven ‘species’ named A
to G based on their genotypes [5]. Among them, A and C
species are the most prevalent, and Ad serotype 5 (Ad5) is
mainly used in the studies on Ad [6].

There are five early transcription units (E1A, E1B,
E2, E3 and E4), two delayed transcription units (IX and
Iva2) and one late transcription unit (L1-L5) in Ad 5 coding
region [7]. E1A conserved region 2 (E1A-CR2) interacts
with retinoblastoma (Rb) in host cells to promote S-phase
entry and viral DNA replication [7]. E1B contains E1B-
19K and E1B-55K. E1B-19K is a functional Bcl-2 homo-
logue and plays a dual role in apoptosis and autophagy [8].
E1B-55K could promote virus survival in tumor cells, but is
not necessary for oncolytic effects of adenoviruses [9]. E2
region encodes polymerase, DNA binding protein (DBP)
and preterminal protein (pTP), which are important for vi-
ral transformation and replication. E3 region encodes ade-
novirus death protein (ADP), which promotes the cytolysis
of host cells and the spread of the virus to the surrounding
cells [10]. E4 region plays an important role in transition
and late viral gene expression, and is vital for viral replica-
tion and virion assembly (Fig. 1).

Ad5 is categorized into two vectors based on
oncolytic character: conditionally replicating adenoviral
(CRAd) vector which only propagates and lyse cancer cells,
and could not replicate in normal cells; and replication-
defective adenoviral (RDAd) vector with the deletion of E1,
which could not replicate in cells but can carry therapeutic
genes [11].

4. Main receptors for oncolytic adenovirus

To achieve optimal anti-tumor efficacy of Ad vec-
tor, we need develop Ad vector with improved tropism and
transduction. Therefore, we need identify cellular recep-
tors that mediate the tropism and transduction of Ad. Cell
attachment of oncolytic adenovirus is initiated by the at-
tachment of the fiber protein to CAR receptor [12]. Next,
the interaction between Arg-Gly-Asp (RGD) motifs in Ad

penton-base protein and αvβ3 and αvβ5 integrin triggers
virus internalization. Intravenous administration of Ad vec-
tors is hindered by viral neutralizing antibodies (nAbs),
other proteins in the circulating blood, inefficient transduc-
tion and hepatotoxicity [13]. It is reported that nAbs mainly
hinder systemic administration of oncolytic Ads in preclin-
ical and clinical studies [14]. In addition, Ad5 efficiently
binds to lymphocytes and erythrocytes [15, 16]. Therefore,
nonspecific tumor-selectivity and vector transduction are
the main challenges, which may cause hepatotoxicity and
low efficiency in specific tumor delivery.

Both CAR and αvβ integrin are the tropism deter-
minants of Ad5 [17]. The liver is susceptible to the hepa-
totoxicity of Ad5, which may be due to high expression of
CAR in the liver although CAR expression is low in PCa
[18]. A novel Ad5 vector containing two amino acid muta-
tions in the AB loop of the fiber-modified Ad5 fiber-knob
reduced liver tropism and increased the anti-tumor efficacy
of the vector in low CAR expression or CAR deficient can-
cer cells following intravascular delivery [19]. Therefore,
CAR-independent targeting strategy has promise for the
treatment of CAR deficient PCa.

The upregulation of αvβ6 integrin has been sug-
gested to correlate with tumor progression [20, 21]. A trial
targeting αvβ6 integrin was conducted. Ad5.HI.A20 and
Ad5/kn48.DG.A20 were generated by inserting A20 (a 20-
amino acid peptide) into penton base protein loop targeting
αvβ6 integrin, leading to 160 and 180 fold increase in the
transduction of BT-20 breast carcinoma cells with high ex-
pression of αvβ6 [22].

Coagulation factor X (FX) is an adapter for coag-
ulation factors involved in liver tropism following systemic
delivery [23]. Ad5 recognizes FX via hexon hypervariable
region, and FX then interacts with heparan sulfate proteo-
glycans (HSPGs) on the surface of liver cells [24]. Ablating
the binding of FX to Ad5 can diminish virus localization to
the liver. Warfarin pretreatment significantly reduced liver
sequestration and hepatic toxicity of Ad vectors [25].

On the other hand, Ad shows high affinity to scav-
enger receptor-A (SR-A) and scavenger receptor expressed
on endothelial cell-I (SREC-I). Kupffer cells (KCs) and
liver sinusoidal endothelial cells (LSECs) recognize Ad and
remove them from the circulation to inhibit efficient hepa-
tocyte transduction (Fig. 2). The efficiency of hepatocyte
transduction by Ad could be increased by blocking SR-A
and SREC-I [26]. Two peptides PP1 and PP2 have been de-
signed to block SR-A and SREC-I, respectively, and they
significantly improved Ad-mediated hepatocyte transduc-
tion efficiency [27].
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Fig. 1. Illustration of the structure and function of Ad5 genome. LITR and RITR indicate left and right inverted terminal repeats, respectively.
Abbreviation: E1A-CR2, E1A conserved region 2; Rb, retinoblastoma; ADP, adenovirus death protein; DBP, DNA-binding protein; pTP, precursor
terminal protein; Pol, polymerase.

Fig. 2. The ligands and receptors involved in Ad tropism and transduction. (1) Ad is picked by SR-A and SREC-I on KC and LSEC, and then is
internalized through pinocytosis and then passed to lysosome. Most Ads are released from hepatocyte by first-pass effect which reduces the tropism and
transduction and protects the hepatocytes from lysis. (2) Ad binds to FX and then FX binds to HSPGs on liver cells. Warfarin significantly reduces liver
sequestration and hepatic toxicity. (3) Ad binds to CAR on PCa cells and then is internalized via αvβ6. Ad replicates in PCa cells and induces cells lysis.
Abbreviation: Ad, adenovirus; SR-A, scavenger receptor-A; SREC-I, scavenger receptor expressed on endothelial cell-I; KCs, Kupffer cells; LSECs,
liver sinusoidal endothelial cells; FX, Coagulation factor X; HSPGs,heparan sulfate proteoglycans; CAR, coxsackievirus and adenovirus receptor; PCa,
prostate cancer.
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5. Development of oncolytic adenoviruses for
prostate cancer therapy

5.1 Incorporating or deleting special genes

To improve the potency of oncolytic adenovirus,
incorporating exogenous genes or deleting genes of aden-
ovirus backbone is the first approach. For example, p53
gene, a well-known pro-apoptosis gene, was introduced
into Ad to generate Ad-p53 to induce cell death pathways
in tumor tissues [28]. Oncolytic mutant Ad∆∆ vector with
the deletion of E1B19K and E1ACR2 exhibited potent ef-
fects to induce apoptosis of prostate cancer cells [29].

5.2 Prostate-specific promoter

The incorporation of prostatespecific pro-
moter/enhancer leads to virus replication and the induction
of the expression of exogenous genes only in prostate
cancer cells [8]. Prostate specific antigen (PSA) promoter
has been utilized in Ad mediated gene therapy against
PSA-positive PCa. For example, Ad/PSAP-GV16-βG
vector was developed for combined use with prodrug
DOX-GA3 to kill LNCaP cell xenograft tumor in nude
mouse model [30].

Prostate specific membrane antigen (PSMA) is
primarily expressed in PCa cells and highly expressed dur-
ing PCa metastasis [31–33]. PSMA promoter based Ad
vector Ad-PSMA (E-P)-CD drove the expression of cyto-
sine deaminase and efficiently kill PSMA-producing CL-1
xenograft tumor with combined use of prodrug 5fluorocy-
tosine [34].

PB promoter as a prostate-specific promoter was
also utilized. Ad-ARR2PB-Bax vector contained PB pro-
moter and two androgen response elements (ARR). PB pro-
moter drove the expression of pro-apoptotic Bax and in-
duced apoptosis in LNCaP xenograft tumor. Therefore, PB
promoter based Ad vector has potential to target AR posi-
tive PCa [35].

Prostate cancer gene 3 (PCA3/DD3) is a PCaspe-
cific marker identified recently. Hao et al. [36] designed
OncoAd.mK5.DD3 vector to drive the expression of mK5
(the mutational kringle5 of human plasminogen) by DD3
promoter specially in PCa cells and the results showed
that OncoAd.mK5.DD3 was able to inhibit PCa efficiently.
Taking advantages of the sensitivity and specificity of DD3
as PCa marker, a test kit Progensa™ (Gen-Probe Inc. San
Diego, CA, USA) was developed for the detection of PCa
cells in urine [37].

5.3 Enhance the tropism and transduction of Ad

Ad5 recognizes coxsackievirus and adenovirus re-
ceptor (CAR) on host cells via fiber protein. Therefore, the
modification of fiber could change virus tropism [38]. The
incorporation of RGD motif in fiber protein into AdRGD-
PGp53 led to enhanced transduction in PCa cells and upreg-
ulation of p53 expression, with effective anti-tumor activity

both in vitro and in vivo [39]. On the other hand, Ad.5/3-
CTV oncolytic virus was engineered with the change of
Ad.5 fiber knob to Ad.3 fiber knob, and it facilitated virus
infection in a CAR independent manner, showing higher ef-
ficiency in human PC cells with low CAR expression [40].

5.4 Enhance immunotherapy

Since anti-tumor effect of Ad is partially mediated
by virus induced immune response, oncolytic immunother-
apy gains more attention recently. An oncolytic Ad (Ad5-
yCD/mutTKSR39rep-mIL12) was designed to express pro-
inflammatory cytokine IL-12 and suicide gene, the high
anti-tumor efficacy provided the support for further devel-
opment of this approach in clinical trials [41].

GM-CSF (Granulocyte-macrophage Colony Stim-
ulating Factor) is an immune-modulatory cytokine that
induces the activation of monocytes and macrophages,
and promotes T-cell mediated anti-tumor response [42].
Ad5∆24/3-RGD-GM-CSFwith the expression ofGM-CSF
exhibited potent anti-tumor effects in PCa, and it induced
tumor cell death and activated T-cells in response to anti-
gen presentation by the exposure of tumor antigen [43]. A
replication-selective Ad vector Ad5/3-∆24-GM-CSF was
designed and applied in 21 patients with advanced solid tu-
mors refractory to standard therapies. All patients had no
severe adverse events. Virus activity was observed in 13/21
patients and 8/12 patients showed clinical benefit based on
the evaluation with Response Evaluation Criteria In Solid
Tumors (RECIST) criteria [44].

The combination of Ad with CD40L-based cos-
timulatory molecule induced both humoral and cellular im-
munity against many types of cancer. Ad-PL-PPT-E1Awas
constructed with the fusion of PSA andCD40L and it exhib-
ited enhanced anti-tumor activity, which could be a promis-
ing approach for gene therapy of advanced PCa [45].

Combination therapy with immune checkpoint
blockade efficiently kills tumor [46]. PD-L1 inhibits T cell
function against solid tumors, which may decrease anti-
tumor effect of chimeric antigen receptor-modified T cells
(CAR T-cells) [47]. Therefore, Ad vector engineered to ex-
press PD-L1 blocking antibody has become a strategy to
enhance anti-tumor efficacy of CAR T-cells [48].

5.5 Autologous cells as carriers

To avoid the destruction of virus particles by the
immune system and enhance systemic delivery of virus par-
ticles, the use of autologous cells as carriers has been ex-
plored recently [49]. Mesenchymal stem cells (MSC)medi-
ated delivery of Ad vector overcame the barrier to systemic
delivery of Ad vector, and improved intratumoral dissemi-
nation of Ad vector [50].

5.6 Combination of virotherapy and chemotherapy

Oncolytic Ads are often combined with other ther-
apies. The combination of virotherapy and chemotherapy
has shown synergistic response in PCa cells to effectively
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kill tumor cells and reduce side effects [51]. The com-
bination of Ad∆∆ (E1B19K-and E1ACR2-deleted) and
AdE1A12S enhanced mitoxantrone-induced apoptosis of
PCa cells [52]. Onyx-015 was the first oncolytic Ad for
clinical trial, and has been evaluated for combined use with
topoisomerase II inhibitor etoposide or mitoxantrone [53].
The results showed that tumor growth inhibition was im-
proved when suboptimal doses of chemotherapeutic and Ad
vector were combined.

5.7 Combination of virotherapy and radiotherapy

Acute single high dose rate (HDR) radiation of
PCa cells 24 h before the infection with Ad vector con-
taining PSA enhancer and PB promoter led to significantly
enhanced virus replication and cell lysis [54]. In addi-
tion, the uptake of radioiodine by injecting Ad carrying
the hNIS gene linked to PSMA (Ad. PSMApro-hNIS) had
been estimated. The anti-tumor efficacy of radioiodine was
significantly improved in C81 cell xenograft model [55].
The results based on 125I nuclide labelled 125I-RSOAds-
hTERT/PSA could provide new options for the treatment of
PCa [56].

5.8 Combined modality therapy

Interleukin (IL)-24 exerted inhibitory effects on
various cancer cells by enhancing immune regulation and
inhibiting tumor growth, angiogenesis and metastasis [57].
Recently, we reported that the combination of Ad vec-
tor ZD55-IL-24 with chemotherapy or radiotherapy sig-
nificantly inhibited the growth of androgen-independent
PCa cells and activated the apoptosis of these cancer cells
xenografts in vivo [58, 59]. These data suggest that the
combination of chemotherapy or ionizing radiation and on-
colytic Ad vector expressing IL-24 leads to synergistic anti-
tumor effect on PCa.

6. Conclusions and prospect

Elucidating the molecular mechanism of virus-
host interactions of oncolytic adenovirus is essential to the
development of better therapy for PCa. The identifica-
tion of FX, αvβ6, SR-A and SREC-I receptors increases
our understanding of tropism and transduction of Ads. A
loop in the penton base protein incorporated by a 20-amino
acid peptide (A20) reveals a possibility for PCa virother-
apy following systemic delivery [60]. Further optimization
of Ads with enhanced tropism and transduction is impor-
tant to achieve high efficacy and specificity to PCa with
low toxicity. It is also important to develop synergistic
therapy strategies based on oncolytic adenovirus and other
treatments such as chemotherapy and radiotherapy.

On the other hand, we should pay attention to the
variety in the phenotypes and surface receptors in PCa cells.
Although primary cancer cell culture is a golden standard of
in vitro model, it could not mimic in vivo situation of PCa

perfectly. A patient-derived xenograft (PDX) model was
developed based on direct engraftment of patient tumor into
immunocompromised mice, and it retained most character-
istics of primary tumor [61]. The design of novel PCa in
vivo model will hope realize personalized therapy for PCa
patients in near future.
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