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1. Abstract

As primitive metazoa, sea anemones are rich in
various bioactive peptide neurotoxins. These peptides have
been applied to neuroscience research tools or directly de-
veloped as marine drugs. To date, more than 1100 species
of sea anemones have been reported, but only 5% of the
species have been used to isolate and identify sea anemone
peptide neurotoxins. There is an urgent need for more sys-
tematic discovery and study of peptide neurotoxins in sea
anemones. In this review, we have gathered the currently
available methods from crude venom purification and gene
cloning to venom multiomics, employing these techniques
for discovering novel sea anemone peptide neurotoxins. In
addition, the three-dimensional structures and targets of sea
anemone peptide neurotoxins are summarized. Therefore,
the purpose of this review is to provide a reference for
the discovery, development, and utilization of sea anemone
peptide neurotoxins.

2. Introduction

Sea anemones (Actiniaria), sometimes called the
flowers of the sea, are among the oldest surviving orders
of venomous animals that belong to the phylum Cnidaria
[1]. Fossil data and genomics evidence suggest that their
origin was prior to the Ediacaran period ~750 million years
ago [2]. Within the class Anthozoa, sea anemones form the
hexacorallian order Actiniaria. Actiniaria are divided into
two extant suborders: Anenthemonae and Enthemonae.
Anenthemonae is a suborder with fewer species, contain-
ing members of the families Actinernidae, Edwardsiidae,
and Halcuriidae [3]. The model organism Nematostella
vectensis is the most familiar and well-studied member of
this Edwardsiidae family [4]. Enthemonae contains the
preponderant majority of species and anatomical diversity
within Actiniaria, further subdivided into the superfami-
lies Actinioidea, Actinostoloidea, and Metridiodea [5]. Sea
anemones have strong adaptability and can be distributed in
various marine environments from the intertidal zone to the
abyssal sea and from tropical waters to polar seas [6]. Fig. 1
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Fig. 1. Representative sea anemone species worldwide.

shows the representative sea anemone species worldwide;
some of these sea anemones have a large biomass and play
important ecological roles [7]. Sea anemones have a sim-
ple nervous system and lack the lowest brain base or cen-
tral information processing mechanism. Without true mus-
cle tissue and visual capacity, they rely on nematocysts on
their tentacles to release venom for predation, defense, and
intraspecific competition [8, 9]. Nematocytes present in all
cnidarians produce highly complex venom-filled organelles
known as nematocysts [10]. Nematocysts are the primary
venom delivery apparatus of cnidarians, composed of a cap-
sule containing an inverted tubule capable, which are force-
fully everted and inject venom into the target organism
when stimulated mechanically or chemically [10, 11].

Previous studies have shown that sea anemone
toxins contain complex mixtures of proteins, peptides,
and nonproteinaceous compounds (Table 1, Ref. [5, 12–
31]) [19, 32, 33]. Typically, the main peptide/protein
compounds found in sea anemone venom can be divided
into three groups: (1) phospholipase A2 enzymes (PLA2)
that catalyze the hydrolysis of phospholipids and partic-
ipate in inflammatory reactions [34, 35]; (2) cytolysins,
which mainly form pores on the cell membrane and cause
cell lysis [15]; and (3) peptide neurotoxins that act on
voltage-gated sodium (NaV ) channel, voltage-gated potas-
sium (KV ) channel, acid-sensing ion channel (ASIC), and
other ion channels [24, 36–40]. These peptide neurotox-
ins thus have specific biological activities such as autoim-
mune, analgesic, and central nervous system inhibitory ef-
fects [41–44].

According to the latest published data in the
WoRMS database, 1162 species of sea anemones have been
recordedworldwide, and high-throughput transcriptome se-
quencing shows that there are more than 100 different pep-
tide sequences in each sea anemone to date [5, 45]. In par-
ticular, 612 putative protein and peptide sequences were
discovered from the sea anemone Anthopleura elegantis-
sima [46]. Owing to the small overlap of sea anemone
toxins among different sea anemone species and signifi-
cant interspecies variation (e.g., Stichodactylidae family),
there are an estimated 1,200,000 natural peptides that are
produced by sea anemones [47]. However, only 5% of the
species and approximately 378 toxins from sea anemones
are annotated in UniProtKB (https://www.uniprot.org/).
Sea anemones are a treasure trove for relatively undevel-
oped bioactive and therapeutic compounds. Therefore, the
discovery of novel sea anemone peptide neurotoxins from
sea anemone resources using combined omics methods and
high-throughput biological assays is essential for the devel-
opment of sea anemone peptide neurotoxin drugs.

3. Isolation of peptide neurotoxins from sea
anemone venom

Traditional isolation and purification of sea
anemone toxin are usually performed directly from the
crude venom. At present, there are three main methods
for extracting sea anemone crude venom: homogeniza-
tion, milking, and electrical stimulation methods [48–50].
A total of 43 sea anemone peptide neurotoxins have been
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Table 1. Representative families and pharmacological targets in sea anemone venoms [5].
Type Structure family Pharmacological group Ref.

Nonproteinaceous compounds
Purine Adenosine receptor [12]

- 5-HT3 receptor [13]

Proteins

Enzymes

CYP74 Unknown [14]

PLA2
PLA2

[15]
Type III cytolysins

Endonuclease D Unknown [5]
Serine protease S1 Unknown [5]

Cytotoxins
Actinoporins Type II cytolysins [16]

CRISP Unknown [17]
WSC domain proteins Unknown [18]

Peptide neurotoxins

ATX III NaV type 3 [19]

β-defensin-like

ASIC [20]
KV type 3 [21]
NaV type 1 [5]
NaV type 2
NaV type 4

BBH
ASIC [5]

KV type 4 [22]

EGF-like
EGF activity [23]
TRPV1 [24]

ICK
ASIC

[25]
KV type 5

Kunitz-domain
KV type 2 [26]
TRPV1 [27]

Protease inhibitor [28]

PHAB KV type 6 [29]

SCRiPs TRPA1 [30]

ShK KV type 1 [31]

Note: 5-HT3, 5-hydroxytryptamine 3; CYP74, Cytochrome P450 proteins 74; PLA2, Phospholi-
pase type A2; CRISP, Cysteine-rich proteins; WSC domain, Cell wall integrity and stress response
component domain; ATX III, Anemonia sulcate toxin III; ASIC, Acid-sensing ion channel; BBH,
Boundless β-hairpin; EGF-like, Epidermal growth factor-like; ICK, Inhibitor cystine-knot; TRPV1,
Receptor potential channel type V1; PHAB, Proline-hinged asymmetric β-hairpin; SCRiPs, Small
cysteine-rich peptides; TRPA1, Transient receptor potential channel type A1.

successfully isolated from different types of sea anemones
by traditional crude venom purification, and these peptide
neurotoxins are summarized in Table 2 (Ref. [23, 26, 30,
48, 51–76]). Among the sea anemone peptide neurotox-
ins found by traditional crude venom isolates, the most
common cysteine pattern is CXC-C-C-CC, and these tox-
ins mainly act on the NaV channel but also on ASIC, the
KV channel, and others [58–62]. Examples of neurotox-
ins with the same cysteine pattern (CXC-C-C-CC) include
APETx1, APETx2, and Anthopleurin-A. These toxins act
on the KV channel, ASIC, and NaV channel, respectively
[58, 60, 77]. Therefore, the activity of the sea anemone
peptide neurotoxins is affected not only by the cysteine pat-
tern but also by the amino acid sequence. In addition to the
main CXC-C-C-CC pattern, there are many other cysteine
patterns such as C-C-C-C, C-C-C-C-C-C, C-CC-C-C-C-C,

C-C-CC-C-C-C-C, C-C-C-C-C-C-C-C, and C-C-C-C-C-C-
C-CCC, which are found in sea anemone peptide neurotox-
ins. The cysteine patterns of sea anemone peptide neurotox-
ins can act on targets such as the KV channel and TRPA1,
and some patterns do not have known targets [30, 73, 74].
3.1 Homogenization method

The earliest report of the purification of sea
anemone peptide neurotoxin was in the 1960s [78]. At that
time, several to dozens of sea anemones were collected and
homogenized to obtain enough venom for the isolation of
one or a few sea anemone peptide neurotoxins [19, 79–81].
The crude venom obtained using homogenization was sepa-
rated and purified by gel chromatography and reverse phase
high performance liquid chromatography (HPLC) [53]. A
total of 11 kg of Condylactis gigantea from the Caribbean
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Table 2. Sea anemone peptide neurotoxins isolated from sea anemone venom.
Method Name Species Sequence Target/Activity Ref.

Homogenization

δ-TLTX-Ca1a Cryptodendrum adhaesivum VACKCDDDGPDVRSATFTGTVDLGSCNSGWEKCASYYTVIADCCRKPRG NaV [51]
δ-TLTX-Ta1a Thalassianthus aster VACKCDDDGPDIRSATLTGTVDLGSCDEGWEKCASYYTVIADCCRRPRS NaV [51]
gigantoxin III Stichodactyla gigantea AACKCDDDGPDIRSATLTGTVDLGSCNEGWEKCASFYTILADCCRRPR NaV [23]
gigantoxin II Stichodactyla gigantea GVPCRCDSGPHVRGNTLTGTVWVFGCPSGWHKCQKGSSTCCKQ NaV [23]

CgNa Condylactis gigantea GVPCRCDSDGPTVHGNTLSGTVWVGSCASGWHKCNDEYNIAYECCKE NaV [52]
AdE-1 Aiptasia diaphana GIPCRCDKNSDELNGEQSYMNGNCGDGWKKCRSVNAIFNCCQRV NaV [53]
Av2 Anemonia viridis GVPCLCDSDGPSVRGNTLSGIIWLAGCPSGWHNCKKHGPTIGWCCKQ NaV [54]
Av1 Anemonia viridis GAACLCKSDGPNTRGNSMSGTIWVFGCPSGWNNCEGRAIIGYCCKQ NaV [54]

Anthopleurin-A Anthopleura xanthogrammica GVSCLCDSDGPSVRGNTLSGTLWLYPSGCPSGWHNCKAHGPTIGWCCKQ NaV [55]
Anthopleurin-B Anthopleura xanthogrammica GVPCLCDSDGPRPRGNTLSGILWFYPSGCPSGWHNCKAHGPNIGWCCKK NaV [56]

Bg II Bunodosoma granulifera GASCRCDSDGPTSRGNTLTGTLWLIGRCPSGWHNCRGSGPFIGYCCKQ NaV [57]
Bg III Bunodosoma granulifera GASCRCDSDGPTSRGDTLTGTLWLIGRCPSGWHNCRGSGPFIGYCCKQ NaV [57]

APETx1 Anthopleura elegantissima GTTCYCGKTIGIYWFGTKTCPSNRGYTGSCGYFLGICCYPVD NaV , KV 11.1 [58]
APETx4 Anthopleura elegantissima GTTCYCGKTIGIYWFGKYSCPTNRGYTGSCPYFLGICCYPVD KV 10.1 [59]
APETx2 Anthopleura elegantissima GTACSCGNSKGIYWFYRPSCPTDRGYTGSCRYFLGTCCTPAD ASIC3 [60]

π-AnmTX Hcr 1b-2 Heteractis crispa GTPCKCHGYIGVYWFMLAGCPNGYGYNLSCPYFLGICCVKK ASIC1a, ASIC3 [61]
π-AnmTX Hcr 1b-3 Heteractis crispa GTPCKCHGYIGVYWFMLAGCPDGYGYNLSCPYFLGICCVKK ASIC1a [61]
π-AnmTX Hcr 1b-4 Heteractis crispa GTPCDCYGYTGVYWFMLSRCPSGYGYNLSCHYFMGICCVKR ASIC1a [61]

PhcrTx2 Phymanthus crucifer ALPCRCEGKTEYGDKWIFHGGCPNDYGYNDRCFMKPGSVCCYPKYE unknown [62]
Am II Antheopsis maculata ALLSCRCEGKTEYGDKWLFHGGCPNNYGYNYKCFMKPGAVCCYPQN unknown [63]
Am I Antheopsis maculata NVAVPPCGDCYQQVGNTCVRVPSLCPS NaV [63]
ShK Stichodactyla helianthus RSCIDTIPKSRCTAFQCKHSMKYRLSFCRKTCGTC KV 1.3 [64]
AsKs Bunadosoma granulifa ACKDNFAAATCKHVKENKNCGSQKYATNCAKTCGKC KV 1.2 [65]

AETX K Anemonia erythraea ACKDYLPKSECTQFRCRTSMKYKYTNCKKTCGTC KV 1 [66]
BgK Bunodosoma granulifera VCRDWFKETACRHAKSLGNCRTSQKYRANCAKTCELC KV 1-3, KV 1.6, KCa 3.1 [67]
AeK Hteractis magnifica GCKDNFSANTCKHVKANNNCGSQKYATNCAKTCGKC KV 1 [68]

APEKTx1 Anthopleura elegantissima INSICLLPKKQGFCRARFYYNSSTRRCEMFYYGGCGGNANNFNTLEECEKVCLGYGEAWKAP KV 1.1 [26]
HCRG1 Heteractis crispa RGICSEPKVVGPCKAGLRRFYYDSETGECKPFIYGGCKGNKNNFETLHACRGICRA Serine protease inhibitor [69]
HCRG2 Heteractis crispa RGICLEPKVVGPCKARIRRFYYDSETGKCTPFIYGGCGGNGNNFETLHACRGICRA Serine protease inhibitor [69]

acrorhagin II Stichodactyla gigantea TDCRFVGAKCTKANNPCVGKVCNGYQLYCPADDDHCIMKLTFIP crab toxicity [70]
gigantoxin I Stichodactyla gigantea DVGVACTGQYASSFCLNGGTCRYIPELGEYYCICPGDYTGHRCEQMSV EGF activity [23]

Av3 Anemonia viridis RSCCPCYWGGCPWGQNCYPEGCSGPKV NaV [54]
acrorhagin I Actinia equina SSTPDGTWVKCRHDCFTKYKSCQMSDSCHDEQSCHQCHVKHTDCVNTGCP crab toxicity [70]
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Table 2. Continued.
Method Name Species Sequence Target/Activity Ref.

Electrical stimulation

δ-AITX-Bca1a Bunodosoma capense CLCNSDGPSVRGNTLSGILWLAGCPSGWHNCKKHKPTIGWCCK NaV [71]
BcIII Bunodosoma caissarum GVACRCDSDGPTSRGNTLTGTLWLTGGCPSGWHNCRGSGP FIGYCCKK NaV [48]
BcIV Bunodosoma caissarum GLPCDCHGHTGTYWLNYYSKCPKGYGYTGRCRYLVGSCCYK NaV [72]

AbeTx1 Actinia bermudensis RCKTCSKGRCRPKPNCG KV [73]
BcsTx1 Bunodosoma caissarum ACIDRFPTGTCKHVKKGGSCKNSQKYRINCAKTCGLCH KV [74]
BcsTx2 Bunodosoma caissarum ACKDGFPTATCQHAKLVGNCKNSQKYRANCAKTCGPC KV [74]
BcsTx3 Bunodosoma caissarum GCKGKYEECTRDSDCCDEKNRSGRKLRCLTQCDEGGCLKYRQCLFYGGLQ KV [75]

τ-AnmTx Ueq 12-1 Urticina eques CYPGQPGCGHCSRPNYCEGARCESGFHDCGSDHWCDASGDRCCCA TRPA1 [30]

Milking
CGTX-II Bunodosoma cangicum GVACRCDSDGPTVRGDSLSGTLWLTGGCPSGWHNCRGSGPFIGYCCKK NaV 1.1, NaV 1.5, NaV 1.6 [76]
CGTX-III Bunodosoma cangicum GVACRCDSDGPTVRGDSLSGTLWLTGGCPSGWHNCRGSGPFIGYCCKK NaV 1.1 [76]

Note: C is marked in red font to highlight cysteine.

Table 3. Representative sea anemone peptide neurotoxins discovered by gene cloning.
Name Species Sequence Target/Activity Ref.

SHTX IV Stichodactyla haddoni AACKCDDDGPDIRSATLTGTVDFWNCNEGWEKCTAVYTAVASCCRKKKG NaV [104]
δ-TLTX-Hh1x Heterodactyla hemprichii VACKCDDDGPDIRSATLTGTVDLGSCNEGWEKCASYYTVVADCCRRRRS NaV [51]
Hk2a Anthopleura sp MGVACLCDSDGPSVRGNTLSGTLWLAGCPSGWHNCKAHGPTIGWCCKQ NaV [105]
Crassicorin-I Urticina crassicornis GASCDCHPFVGTYWFGISNCPSGHGYPKKCASFFGVCCVK antimicrobial activity [106]
Acrorhagin Ia Actinia equina SLTPSSDIPWEKCRHDCFAKYMSCQMSDSCHNKPSCRQCQVTYAICVSTGCP crab toxicity [70]
HCRG21 Heteractis crispa RGICSEPKVVGPCTAYFRRFYFDSETGKCTPFIYGGCEGNGNNFETLRACRAICRA TRPA1 [40]
SHTX III Stichodactyla haddoni TEEMPALCHLQPDVPKCRGYFPRYYYNPEVGKCEQFIYGGCGGNKNNFVSFEACRATCIIPL KV [104]
Magnificamide Heteractis magnifica SEGTSCYIYHGVYGICKAKCAEDMKAMAGMGVCEGDLCCYKTPW α-amylase [107]

Note: C is marked in red font to highlight cysteine.
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Sea near Havana was collected by Standker et al. [52] and
homogenized to obtain crude venom. The venom was then
further isolated and purified to obtain the CgNa toxin [52].
Similar studies include the sea anemone peptides Av1-3
(previously named ATX I-III) with neurotoxic activity that
were isolated from 5.5 kg of wet Anemonia viridis (previ-
ously named Anemonia sulcata) [54].

To date, 33 sea anemone peptide neurotoxins have
been isolated by extracting venom from different types of
sea anemones using the homogenization method (Table 2).
Among these, important and typical sea anemone pep-
tide neurotoxins include ShK, CgNa, AdE-1, Anthopleurin-
A, and Anthopleurin-B. The most frequently studied sea
anemone toxin is the ShK toxin from the giant sun anemone
(Stichodactyla helianthus) [64]. This peptide has the abil-
ity to block the Kv1.3 channels of T lymphocytes, inhibit-
ing their activation and therefore acting as a therapeutic to
treat autoimmune diseases [82, 83]. New analogues of ShK,
with good selectivity for Kv1.3 channels, have also been
developed [84–86]. An analogue of this peptide (ShK-186)
has been developed into the first-in-class clinical candidate
dalazatide, and phase I clinical trials have been completed
for the treatment of psoriasis [87, 88]. Dalazatide (formerly
known as ShK-186) is being advanced as a treatment for
various autoimmune diseases including type 1 diabetes, in-
flammatory bowel diseases, bodymyositis, lupus, psoriasis,
multiple sclerosis, psoriatic arthritis, rheumatoid arthritis,
and ANCA vasculitis [1, 89].

3.2 Milking method

Isolation of toxins is usually performed by extract-
ing toxins from homogenates of whole animals or frozen–
thawed sea anemones or by isolation of the nematocysts fol-
lowed by purification using various methods [90, 91]. The
milking technique was first applied by Barnes to directly
collect pure venom from jellyfish, where nematocysts are
discharged through an amnion membrane [92]. Sencic and
Macek described a new and simpler purification procedure
of sea anemone toxins from the venom obtained using a new
milking method different from that reported by Barnes [92].
They obtained two lethal and hemolytic peptide toxins, car-
itoxins I and II, from the sea anemone Actinia cari using the
milking method [50].

Milking involves the gentle squeezing of sea
anemones to collect their secretions, which is similar to
stimulating sea anemones to release venom in the natural
environment [93]. This method has the advantages of not
harming the sea anemone, obtaining purer venom, and be-
ing able to extract the venom repeatedly. Therefore, milk-
ing has become an effective method to extract sea anemone
venom, after homogenization and freeze-thawing methods.
Zaharenko et al. [76] obtained the cangitoxin (CGTX) ana-
logue CGTX-II directly from sea anemone venom by milk-
ing followed by two chromatographic steps. CGTC-II in-
hibited NaV 1.1-1.6 channel action by delaying the inactiva-

tion of the NaV channel, which may be an interesting tool
to study its interaction with these channels.

3.3 Electrical stimulation method

Electrical stimulation is often used to extract ani-
mal venom from inland poisonous animals such as spiders,
scorpions, and wasps [94–96]. Malpezzi et al. [48] applied
electrical stimulation to extract sea anemone Stichodactyla
helianthus (formerly Stoichactis helianthus) venom for the
first time and successfully isolated BcI, BcII, and BcIII.
The main action of BcIII on Nav channels is a slowing of
the inactivation process of the sodium current, with no sig-
nificant effects on the activation kinetics. It is important
to emphasize that the method used to obtain the venom in
the present paper has many advantages: because it results
in less contamination with other compounds from the sea
anemone body, it simplifies the purification procedures and
keeps the animals alive, allowing them to be reused to ob-
tain more venom or return them to the sea.

BcIV, AbeTx1, BcsTx1-3, δ-AITX-Bca1a, and
Ueq 12-1 were isolated by electrical stimulation from sea
anemones Bunodosoma caissarum, Actinia bermudensis,
Bunodosoma caissarum, Urticina eques, and Bunodosoma
capense, respectively [30, 71–75]. BcIV and δ-AITX-
Bca1a have the same cysteine pattern (CXC-C-C-CC), and
both are typical NaV channel toxins [97]. Ueq 12-1 con-
tains 10 cysteine residues with an unusual distribution and
represents a new group of sea anemone peptides whose
primary and spatial structurestructures are unique among
the range of known sea anemone peptides. Since Ueq
12-1 showed moderate antibacterial activity against Gram-
positive bacteria and enhanced activity against TRPA1, Ueq
12-1 is considered to be a potential analgesic drug with an-
tibacterial properties [30].

In general, the extraction method of these ven-
oms is time-consuming and labor-intensive. It is difficult
to obtain a high amount of venom to isolate and purify
sea anemone peptide neurotoxins, especially for rare sea
anemone species. Therefore, more effective venom sepa-
ration and extraction methods are needed to speed up the
discovery of novel sea anemone peptide neurotoxins. This
section does not represent a full-scale explanation of all the
techniques used and improvements since the 1960s but in-
stead provides a brief overview of the most commonly used
techniques for sea anemone venom extractions for reference
purposes.

4. Discovery of sea anemone peptide
neurotoxins by molecular biology

4.1 Discovery of sea anemone peptide neurotoxins by
gene cloning

Gene cloning was used to discover novel sea
anemone peptide neurotoxins at the end of the 20th cen-
tury [98]. The advantage of gene cloning is that the pep-
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Fig. 2. PCR amplification strategy and cloning process of sea anemone gene. (A) PCR amplification strategy to clone sea anemone toxin precursor
genes from genomic DNA. (B) The process of gene cloning sea anemone peptide neurotoxins.

tide neurotoxin gene can be amplified from a small num-
ber of sea anemone tentacles by PCR. This method over-
comes the limitation of crude toxin purification method in
large demand for sea anemone samples, and has attracted
the attention of scientific researchers [99]. Primer design is
a key step in any experiment using PCR to target and am-
plify known nucleotide sequences of interest [100]. Ratio-
nally designed primers can not only improve PCR amplifi-
cation efficiency but can also screen target sequences with
high specificity [101]. Primers were designed and synthe-
sized based on the conserved sequence in the signal region
or the relatively conserved introns in the pro-region or un-
translated region of the 3’- or 5’-UTR of a specific known
sea anemone peptide neurotoxin precursor (Fig. 2A) [102].
Usually, cDNA is prepared by reverse transcription from
total RNA extracted from sea anemones [98]. Total cDNA
was used as a template, and PCR amplification was per-
formed with specific primers to perform 3’- and 5’-RACE
[102]. The PCR products were purified by electrophore-
sis on agarose gel, ligated to the plasmid vector, and trans-
ferred to Escherichia coli for replication, proliferation, and
sequencing (Fig. 2B) [103].

A total of nine types of sea anemone peptide neu-
rotoxins were obtained by gene cloning, as shown in Table 3
(Ref. [40, 51, 70, 104–107]). The most common cysteine
pattern in peptide neurotoxins obtained by gene cloning
is CXC-C-C-CC, and its main target is the NaV channel,
which is consistent with the results of venom isolation.
However, other types of cysteine patterns obtained by this
method, such as C-C-C-C, C-C-C-C-C-C, C-C-C-C-CC,
C-C-C-C-C-C-C-C, and C-C-C-C-C-C-C-CCC, are more
novel than the cysteine patterns of peptide neurotoxins
isolated from venom. Although gene cloning can iden-
tify novel cysteine patterns of sea anemone peptide neu-
rotoxins, the discovered toxin families are limited by the
design of the primers [70]. This is because the design
and synthesis of primers for gene cloning are based on
known sequences of superfamilies. Therefore, only a few

sea anemone peptide neurotoxins have been found through
gene cloning in recent years, and it is difficult to dis-
cover new superfamilies using this technique. For exam-
ple, a new actinoporin Hct-S4 was isolated from the trop-
ical sea anemone Heteractis crispa, and 18 new isoforms
were cloned with primers designed based on its N-terminus
conserved sequence. These isoforms and Hct-S4 belong
to the sphingomyelin-inhibited α-pore forming toxin (α-
PFT) family [108]. Compared with the traditional isola-
tion and purification of sea anemone peptide neurotoxins,
gene cloning protects sea anemone resources because one
sample is sufficient to complete the whole process of sea
anemone peptide neurotoxin gene cloning [74, 104]. How-
ever, compared with high-throughput transcriptomics and
proteomics, the gene cloning technique is low-throughput
[105, 109].

4.2 Discovery of sea anemone peptide neurotoxins by
high-throughput sequencing

Although natural crude venom purification and
gene cloning have greatly helped efforts to discover novel
sea anemone peptide neurotoxins, most of the unknown sea
anemone peptide neurotoxins have not yet been character-
ized. Therefore, there is an urgent need to develop more ef-
ficient, resource-conserving, and high-throughput methods.
Transcriptomics, proteomics, and multiomics integration
have opened a new era in the discovery of sea anemone tox-
ins, rapidly accelerating the discovery of novel sea anemone
peptide neurotoxins [1, 109].

The high throughput technologies used in ven-
omics, especially transcriptomics, has produced large data
sets that need bioinformatics support to fully explore their
potential [110–112]. Modern bioinformatics tools have
been recently developed to mine venoms, helping focus ex-
perimental research on the most potentially interesting neu-
rotoxins [113]. The number of neurotoxins unraveled by
high throughput multiomics approaches is very large, effi-
cient computational approaches are required to mine this
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massive amount of data. Computational approaches that
have been developed to help predict neurotoxins molec-
ular targets, three-dimensional structures and functions,
and identifying outstanding neurotoxins with potential new
characteristics [114–116].

General databases, such as the Protein Data Bank
(PDB) [117], UniProt [118], and NCBI Genbank/GenPept
[119], play important roles in simplifying access to infor-
mation about sea anemone neurotoxin sequences and three-
dimensional structures. However, the information about
sea anemone neurotoxins is not standardized in these re-
sources, especially the naming of neurotoxins and phar-
macological activities, and mining for sea anemone neu-
rotoxins is difficult. A recently developed resource, Ven-
omZone, is provided by the Swiss Institute of Bioinformat-
ics (SIB), and has information about the venoms from six
types of organisms, including sea anemones, cone snail,
spider, Scorpions, bees and snakes. However, Special-
ized databases, from venomous animals, are slowly emerg-
ing. ISOB (Indigenous snake species of Bangladesh) [120],
Arachnoserver [121], and Conoserver [122] provide infor-
mation on venoms from respectively.

4.2.1 Transcriptomics technology

The term “transcriptome” was first used by Vel-
culescu to analyze a set of genes expressed in the yeast
genome in a scientific paper in 1997 [123]. In more than 30
years of development, sequencing technology has achieved
considerable development, from the first to the third gen-
eration of sequencing technologies [124]. At present, the
second-generation short-read-length sequencing technol-
ogy still holds an absolute dominant position in the global
sequencing market, but third-generation sequencing tech-
nology has also developed rapidly in the past few years
[125]. With the rapid development of molecular biology
and the decreasing cost of sequencing nucleic acids, espe-
cially massively parallel sequencing technologies, a large
number of transcriptomic analyses of cone snail, snake, spi-
der, scorpion, and a few other animal venom glands have
been carried out [126–129].

At present, high-throughput transcriptomics has
been applied to 13 types of sea anemones: Anthopleura el-
egantissima, Anthopleura dowii, Aiptasia pallida, Anemo-
nia sulcata, Anemonia viridis, Cnidopus japonicus, Exaip-
tasia pallida, Heteractis crispa, Oulactis sp., Megalactis
griffithsi, Nematostella vectensis, Stichodactyla helianthus,
and Stichodactyla haddoni [18, 46, 130–138]. There is
a growing body of literature using transcriptomics data to
study the symbiotic relationship between sea anemones and
their symbionts or to study the mechanism of the evolution-
ary development of sea anemones [131, 139, 140]. Few
studies have reported the transcriptome sequencing of sea
anemone venom and identification of venom-related pep-
tides and proteins, which can be used for their structural
and functional analyses and venom evolution in the fu-

ture (Table 4, Ref. [18, 46, 87, 109, 135, 136, 141–143])
[132, 136]. Tentacles are ideal for transcriptomics analy-
sis because the number and level of transcripts encoded by
sea anemone peptide neurotoxins from tentacles are much
greater than those encoded by sea anemone peptide neu-
rotoxins from other tissues [132]. The transcriptomics of
sea anemone venom can describe the expression of sea
anemone toxin and provide a useful method for rapid iden-
tification of putative sea anemone peptide sequences [46].
For example, Mitchell and his team used a transcriptomic
strategy with Illumina RNA-seq sequencing platforms to
study venom from the tentacles of theOulactis sp. and com-
piled a venom-related component library of 398 putative
venom-related peptides and proteins, including one putative
actinoporin [136]. The venom composition across differ-
ent tissues (tentacles, mesenterial filaments, and columns)
in three species of sea anemone (Anemonia sulcata, Heter-
actis crispa, and Megalactis griffithsi) was used in a com-
bined RNA-seq and bioinformatic approach by Macrander
et al. [132]. Their tissue-specific transcriptome analyses
showed that there are significant variations in the abun-
dance of toxin-like genes across tissues and species, which
provides a framework for the characterization of tissue-
specific venom and other functionally important genes in
this lineage of simple bodied animals in the future. In ad-
dition, Sebé-Pedrós et al. [144] performed whole-organism
single-cell transcriptomics ofNematostella vectensis. Their
study revealed cnidarian cell type complexity and provided
insights into the evolution of animal cell-specific genomic
regulation [144].

4.2.2 Proteomics technology

The first description of proteomics dates back to
the early 1980s when Bravo and Celis developed protein
separation by exceptionally effective 2D gel electrophore-
sis followed by Edman degradation sequencing to identify
proteins and compare them to available protein sequence
databases [145]. This, together with the wider availability
of protein sequence databases, opened the door to the wide
use of proteomics [146]. With the rapid development of
analytical instruments and bioinformatics, proteomics has
become a rapidly developing field and has shown to be
applicable to many organisms and cell types [147, 148].
It has become an important tool for the study of animal
venom, enabling detailed research of venom composition
[149–152].

Venom proteomics with modern mass spectrom-
etry technology has proven to be an effective and high-
throughput method for the discovery of novel sea anemone
peptide neurotoxins [141, 153, 154]. To date, high-
throughput proteomics have been used for sea anemones
such as Bunodactis verrucosa, Nematostella vectensis, Sti-
chodactyla duerden, Anthopleura dowii, and Stichodactyla
haddoni, with an average of 321 proteins and peptide neu-
rotoxins being identified in each sea anemone (Table 4)
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Table 4. Reported transcriptomic and proteomic data from various sea anemones.

Species Sequencing platforms
Number of peptides and proteins

found by transcriptomics
MS instruments

Number of peptides and proteins
found by proteomics

Ref.

Oulactis sp. Illumina HiSeq 1500 398 [136]
Exaiptasia pallida Illumina NextSeq 500 547 [135]
Anthopleura elegantissima Illumina HiSeq 65 [46]
Bunodactis verrucosa - - MALDI-TOF/TOF 412 [141]
Cnidopus japonicus - - LC-MS/MS 27 [142]
Nematostella vectensis - - LC/MS 1135 [143]
Stichodactyla duerdeni - - MALDI–TOF MS 67 [87]
Anthopleura dowii Illumina 261 LC-MS/MS 156 [109]
Stichodactyla haddoni Illumina NextSeq 500 508 LC-MS/MS 131 [18]

Fig. 3. Multiomic approach to the discovery of sea anemone toxins.
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Fig. 4. Three dimensional structure of sea anemone toxin. (A) The structure of NaV channel toxins Anthopleurin-A, Anthopleurin-B, and ATX-IA.
(B) The structure of KV channel toxins APETx1, APETx2, and ShK. (C) The structure of the ASIC3 channel toxin Ugr 9-1. (D) The structure of the
TRPA1 channel toxin Ueq 12-1.

[18, 109, 141, 143, 153]. The first proteomic studies on
the venom of sea anemone were performed by Zaharenko
and colleagues, who investigated the peptide mass finger-
print and some novel peptides in the neurotoxic fraction of
the sea anemone Bunodosoma cangicum venom. Their data

showed that at least 81 molecules were eluted in the neu-
rotoxic fraction and may be employed as active peptides
for prey capture and defense [155]. In addition, a combi-
nation of offline RPC-MALDI-TOF and online nano-RPC-
ESI-LTQ-Orbitrap proteomic techniques was used for Sti-
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chodactyla duerdeni by Cassoli and his team, which identi-
fied a total 67 proteins and peptides and revealed the pres-
ence of a novel O-linked glycopeptide [153]. Moreover,
proteomics has also been applied to the model sea anemone
Nematostella vectensis to more fully elucidate the molec-
ular and cellular mechanisms underlying the repair of hair
cells following trauma [156].

4.2.3 Multiomics integration technology
Multiomics has constructed a set of research

strategies for sea anemone toxins based on integrated cor-
relation analysis of transcriptomics and proteomics, which
have been proven to be effective, and high-throughput
methods to identify a large number of sea anemone toxin
sequences (Fig. 3) [139, 141]. Both transcriptomics and
proteomics benefit from the emergence and development
of bioinformatics, especially the development of bioinfor-
matics software, the improvement of algorithms, and the
expansion of searchable databases [157, 158]. Bioinfor-
matic tools such as BLAST, UniProt, PFAM, and others
have frequently been used for venom transcriptomics and
proteomics, playing an important role in raw data process-
ing, sequence recognition, protein analysis, and superfam-
ily classification [159].

Transcriptomics and proteomics are methods with
limitations. Transcriptomics does not predicate post-
transcriptional modifications or regulatory processes [28].
Proteomic techniques do not have the sensitivity to detect
proteins with low abundance [29]. Therefore, multiomics
technology combining transcriptomics and proteomics can
effectively solve their respective limitations and can enrich
the biological information from organisms. Themultiomics
techniques have enabled further exploration of the com-
ponents of venomous animal species (scorpions, spiders,
cone snails, and snakes) [160–163], as well as sea anemone
venom from a few species (Table 4) [18, 109]. Bruno Ma-
dio and colleagues used a combination of transcriptomics
and proteomics to study Stichodactyla haddoni for the first
time and identified 508 unique toxin transcripts, whichwere
divided into 63 families. However, proteomic analysis of
venom identified 52 toxins in these toxin families that might
be false positives. In contrast, the combination of transcrip-
tomic and proteomic data enabled positive identification of
23 families of putative toxins, 12 of which have no ho-
mology to known proteins or peptides [18]. In addition,
Ramírez-Carreto and his colleagues also used a transcrip-
tomic and proteomic analysis of the tentacles and mucus of
the sea anemone Anthopleura dowii. Transcriptome anal-
ysis showed that 261 peptides were identified, while pro-
teomic analysis identified 156 peptides. Some toxins identi-
fied in the tentacles andmucus proteomewere not identified
in the transcriptome [109]. In general, it was observed that
the quantity and especially the diversity of probable tox-
ins in the sea anemone transcriptome were far greater than
those in the sea anemone proteome, which was similar to
that in other venomous animals [164, 165].

Currently, transcriptomics and proteomics are
considered to be effective, resource-saving, and high-
throughput approaches for the discovery of novel sea
anemone peptide neurotoxins. The multiomics approach is
significantly more effective than the use of transcriptomics
or proteomics alone. In the future, the application of multi-
omics technology in the development and utilization of sea
anemone resources will accelerate the discovery of new sea
anemone peptide neurotoxins and will continuously enrich
and expand the database of sea anemone peptide neurotox-
ins.

5. Three-dimensional structures of sea
anemone peptide neurotoxins

At present, three experimental methods, X-ray
crystallography, nuclear magnetic resonance (NMR), and
cryoelectron microscopy (cryo-EM), are used to deter-
mine the three-dimensional structure of sea anemone tox-
ins [166–168]. The X-ray crystallography technique can
obtain high-precision protein structures. However, many
proteins, especially small molecular peptides, cannot be de-
termined by this method due to the difficulty of prepar-
ing crystals for structural analysis [166]. The advantage of
NMR and cryo-EM is that there is no need to prepare pro-
tein crystals [169, 170]. NMR is mainly used to determine
the structure of small molecular peptides, while cryo-EM is
mainly used to determine the structure of macromolecular
proteins [171, 172]. Therefore, NMR has played a promi-
nent role in determining the three-dimensional structures of
sea anemone peptide toxins because it is often used to an-
alyze the structure of small molecular peptides. The three-
dimensional structures of sea anemone peptide toxins deter-
mined by Solution NMR are summarized in Table 5 (Ref.
[20, 22, 29, 30, 167, 173–183]).

The first three-dimensional protein structures of
sea anemones were obtained in the 1980s by NMR anal-
ysis for Anthopleurin-A followed by ATX-IA [178, 184].
To date, nine unique structural folds have been identified
based on the three-dimensional structure and/or cysteine-
pattern: ShK, Kunitz-domain, ATX-III, PHAB, β-defensin-
like, BBH, EGF-like, ICK, and SCRiPs. These structural
types of sea anemone peptide toxins identified by NMR
mainly act on the NaV , KV , ASIC, TRPA1, and TRPV1
channels, respectively (Table 1) [5].

Sea anemone peptide toxins acting on the NaV
channel include ATX-III, ATX-IA, Anthopleurin-A,
Anthopleurin-B, CgNa, and Sh1 (Table 5). The ATX III
fold is named after the first toxin described by the fold,
namely, ATX III (Av3, δ- AITX-Avd2a, and Neurotoxin
III) from Anemonia viridis. ATX III has a compact
structure, including four reverse turns and two other
chain reversals, but no regular ɑ-helix or β-sheet. In
this molecule, several of the residues most affected by
aggregation on the toxin surface form hydrophobic spots,
which may form part of the NaV channel-binding surface
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Table 5. Sea anemone peptide toxins with three-dimensional structures studied by Solution NMR.
Species Toxin Type Length (AA) PDB ID Ref.

Anemonia viridis BDS-1 KV channel 43 1BDS [173]
Bunodosoma granulifera BgK KV channel 37 1BGK [174]
Stichodactyla helianthus ShK KV channel 35 1ROO [175]
Actinia tenebrosa Ate1a KV channel 18 6AZA [29]
Oulactis sp OspTx2b KV channel 36 6BUC [167]
Anthopleura elegantissima APETx1 KV channel 42 1WQK [176]
Anthopleura elegantissima APETx2 KV channel 42 1WXN [20]

ASIC channel
Antopleura cascaia AcaTx1 KV channel 32 6NK9 To be published

ASIC channel published
Stichodactyla helianthus ShPI-1 Kunitz type 55 1SHP [177]

proteinase
inhibitor

Anemonia viridis ATX-IA NaV channel 46 1ATX [178]
Anemonia viridis ATX-III NaV channel 27 1ANS [179]
Anthopleura xanthogrammica Anthopleurin-A NaV channel 49 1AHL [180]
Anthopleura xanthogrammica Anthopleurin-B NaV channel 49 1APF [181]
Condylactis gigantea CgNa NaV channel 47 2H9X [182]
Stichodactyla helianthus Sh1 NaV channel 48 1SH1 [183]
Urticina grebelnyi Ugr 9-1 ASIC3 channel 29 2LZO [22]
Urticina eques Ueq 12-1 TRPA1 channel 45 5LAH [30]

[179]. The three-dimensional structures of Anthopleurin-
A, Anthopleurin-B, and ATX-IA consist of an antiparallel
β-sheet composed of four β-strands and a highly flexible
loop (Fig. 4A) [178, 180, 181]. The highly flexible loop
has been named the ‘Arg14 loop’ because Arg14 is the
most conserved residue [38]. For example, the ATX-IA
structure consists of a four-stranded β-sheet connected
by two loops, and there is an additional flexible loop
consisting of 11 residues [178]. Site-directed mutagenesis
of Anthopleurin-B revealed that the flexibility of this
loop is important for the binding and selectivity of these
toxins to NaV channels [185]. It is worth mentioning that
Anthopleurin-A is selective for cardiac channels, while
Anthopleurin-B has no selectivity for neuronal and cardiac
sodium channels. This difference in selectivity between
Anthopleurin-A and Anthopleurin-B is associated with the
replacements at positions 12 and 49 [186].

APETx1, APETx2, BDS-1, BgK, ShK, Ate1a, Os-
pTx2b, AcaTx1, and ShPI-1 are examples of toxins that
inhibit the KV channel (Table 5). APETx1, classified as
belonging to the disulfide-rich all-β structural family, has a
three-stranded antiparallel β-sheet, containing the only sec-
ondary structure and being the first Ether-a-go-go effector
discovered to fold in this way and to contribute to the elec-
trical activity of the heart [176]. The structures of the KV

channel toxins APETx1 and APETx2 are structurally quite
different from the ShK family of the KV channel toxins but
similar to the NaV channel toxin Anthopleurin-A (Fig. 4B).
This evidence clearly shows that sea anemones are capa-
ble of using different scaffolds (all-β in APETx1 vs. all-
α in ShK) to block similar channels (hERG and KV 1, re-

spectively), while also using a common structural scaffold
to create blockers of distinct targets, e.g., Anthopleurin-A,
APETx1, and APETx2 act on the NaV channel, hERG, and
ASIC channels, respectively [32].

The ASIC3 channel toxin Ugr 9-1 with an uncom-
mon β-hairpin-like structure was isolated from the venom
of the sea anemone Urticina grebelnyi. Ugr 9-1 does not
share any sequence homology to another ASIC3 inhibitor,
APETx2, previously isolated from the sea anemone Antho-
pleura elegantissima, but they are close structural homo-
logues (Fig. 4C) [187]. NMR spectroscopy revealed that
structure of Ugr 9-1 is stabilized by two S-S bridges, with
three classical β-turns and a twisted β-hairpin without in-
terstrand disulfide bonds [22]. Although the authors sug-
gested that this represents a novel peptide spatial structure,
which was suggested to be named BBH, other sea anemone
toxins with a similar disulfide framework have in fact been
reported previously [188, 189].

Ueq 12-1 isolated from sea anemones acts on the
TRPA1 channel, and its three-dimensional structure has
been determined by NMR spectroscopy, which represents
a new stable disulfide fold, namely, SCRiPs (Fig. 4D). The
three-dimensional structure of Ueq 12-1 shows that SCRiPs
are organized into a peculiar W-shaped structure, the core
of which is formed by a three-stranded antiparallel β-sheet,
a small two-stranded parallel β-sheet, and one turn of a 3-
10 helix. The surface of the peptide is polar without pro-
nounced clusters of positively or negatively charged side
chains [30].
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6. Conclusions

In this review, we described the discovery meth-
ods for novel peptide neurotoxins from various sea
anemones. The traditional methods of crude venom pu-
rification and gene cloning can only discover a few known
or novel sea anemone peptide neurotoxins in a low-
throughput way. However, the transcriptomic, venom
proteomic, and multiomic methods have high efficiency,
resource-conserving, and high-throughput advantages and
have opened a new era of novel sea anemone peptide neu-
rotoxin discovery. Finally, the three-dimensional structure
types and corresponding action targets of sea anemone pep-
tide neurotoxins were summarized, which provide a theo-
retical basis for marine drug research and development.
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