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1. Abstract

The heart, like most mammalian organs, is influ-
enced by circadian patterns. The suprachiasmatic nucleus
in the hypothalamus has a key role in this influence, via var-
ious neurohumoral factors, particularly the autonomic ner-
vous system. In addition, a local cardiac peripheral clock
might drive a circadian rhythm related to the expression
of ion channels. Several myocardial functions are influ-
enced by these circadian cycles including activity/rest, re-
generation, nutrient storage, growth, and myocardial re-
pair. Numerous circadian genes have been identified in ba-
sic studies, and both biological factors and environmental
features (including epigenetic) influence the human circa-
dian rhythm. A normal circadian rhythm is important to
maintain a normal heart rhythm and circadian rhythm dis-
turbances can predispose to the development of cardiac ar-
rhythmias. The normal heart rate presents a daily variability
with a morning peak and nocturnal bradycardization. Ven-
tricular arrhythmias and sudden death are more likely to oc-
cur in the morning after waking, while atrial fibrillation and
heart blocks most commonly occur at night. Drugs such as
beta-blockers might modify the chronobiology of some of
these arrhythmias. On the other hand, drugs that influence
circadian rhythm, like the circadian hormone melatonin,

have demonstrated pleiotropic properties and show promis-
ing results as antiarrhythmics. This review is focused on the
current understanding of the basic mechanism and clinical
implications of the association circadian rhythms-cardiac
arrhythmias/sudden death. The close relationship between
circadian patterns and arrhythmias may provide us with the
possibility of novel interventions to decrease the arrhythmic
risk in some patients.

2. Introduction

Cardiovascular functions are greatly influenced by
internal and external modulators, including the autonomic
nervous system, hormonal factors, epigenetic, lifestyle, and
others that are not yet fully understood [1]. In recent
years there is a growing interest in the impact of circadian
rhythms on the cardiovascular system. Humans, like all
mammalians, have a biological clock. Circadian rhythms
might play a role in some cardiovascular events, such as
myocardial infarction or aneurism rupture. Moreover, the
biological clock has a key influence in the risk of cardiac
arrhythmias and sudden cardiac death [1].
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3. Circadian rhythm and cardiovascular
function

A central clock is located in the suprachiasmatic
nucleus of the hypothalamus [2] and most organs and tis-
sues, including the heart, have peripheral clocks [3] (Fig. 1).
The light stimuli through the retina reach the central ner-
vous system, are integrated and transformed into output sig-
nals to peripheral clocks, aiming to regulate basic physio-
logic functions: sleep/wake, fasting/feeding, and inactiv-
ity/activity [3, 4]. However, there is growing evidence that
some peripheral clocks could, at least partially, have au-
tonomous activity [3]. The local cardiac clock is located at
the level of the working myocardial cells and the cardiac
conduction system [5, 6]. Molecular mechanisms of circa-
dian rhythms are complex [7, 8]. Circadian specific genes
(“clock genes”) [1] have been described, that influence nu-
merous regulatory mechanisms since the intrauterine pe-
riod [7]. The autonomous nervous system with the sym-
pathetic/parasympathetic balance is also influenced by the
central suprachiasmatic clock, acting as a communication
link that transmits information to peripheral clocks [9, 10].
Glucocorticoids [11] and mineralocorticoids are also part of
this signaling communication chain [9].

In healthy individuals, circadian clocks act like
a pacemaker with sequential activation and inhibition cy-
cles. These cycles are due to positive and negative feed-
back mechanisms that are present throughout the 24 h [1, 6].
Phases of enhanced contractile activity alternate with others
of nutrient storage, growth, and myocardial repair during
the resting period. The influence on cardiac electrophysiol-
ogy is notorious, as circadian rhythms influence heart rate
and other electrocardiographic parameters [12]. Heart rate
daily variability, with the characteristic nocturnal brady-
cardization [13], is not entirely due to the action of the auto-
nomic nervous system [5]. This can be seen in heart trans-
plant recipients, that also have daily heart rate oscillations
[12, 14]. Cardiac cells are influenced by the autonomic ner-
vous system on one hand, and by the local circadian clock
on the other. Circadian clocks remodel ion channel expres-
sion within cardiac conduction tissues over 24-hour cycles.
Some ion channels show a circadian expression pattern that
is different in healthy and failing hearts. The electrical
remodeling is performed by the regulation of ion channel
properties that govern excitability [15]. Natural light expo-
sure increases resting heart rate [16], a proof that circadian
pacemakers regulate heart rate.

4. Circadian rhythm and cardiac
arrhythmias

4.1 Bradyarrhythmias

Night rest produces lengthening of the PR and QT
intervals, as well as a prolongation of QRS [12, 17]. Table 1
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Fig. 1. Representation of the influence of circadian rhythms in cardio-
vascular physiology.

shows the most common electrocardiographic changes dur-
ing the night. These changes are mainly explained by mod-
ifications in the electrical properties of cells located in sinus
node, atrioventricular (AV) node, His-Purkinje system, and
ventricular muscle. Nocturnal bradyarrhythmias are com-
mon in the general population [18] and it may be difficult
to determine their clinical relevance. In patients with si-
nus node dysfunction, an early loss of circadian heart rate
variability has been described [19]. Clinically significant
bradyarrhythmias also follow a clearly circadian pattern,
with an increase in frequency during the night [18] (Fig. 2).
For instance, the incidence of paroxysmal atrioventricular
block is highest between 2:00-4:00 AM [20]. It is im-
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Fig. 2. Representation of the circadian pattern of the most common arrhythmias. All cardiac arrhythmias might be seen at any moment but have

different peaks that are represented in this image.

Table 1. Common rhythm changes seen in healthy subjects
during the night.

e Sinus bradycardia

e Sinus pauses (<2 seconds)

e First degree atrioventricular block

e Second degree atrioventricular block (Wenckebach)

portant to consider that pathological nocturnal bradycardia
can sometimes be caused by respiratory or systemic disor-
ders, such as sleep-disordered breathing. An improvement
in bradyarrhythmic episodes has been described in patients
with sleep apnea and sinus node dysfunction when they are
treated with continuous positive airway pressure treatment
[21].

Among the mechanisms underlying nocturnal
bradycardization, the slowing of the conduction velocity of
the myocardial cells and a lower rate of firing of the intrin-
sic pacemaker of the sinus node stand out [12]. Among the
ionic channels, special mention should be made of Hyper-
polarization Activated Cyclic Nucleotide gated potassium
channel 4 (HCN4), which regulates the pacemaker current
I; in the sinus node and establishes the local clock of the
sinus node [5]. In healthy individuals, the modifications
in electrical properties will translate into a lower nighttime
heart rate, but in those with conduction system abnormali-
ties, situations such as AV block or significant pauses may
become apparent.

4.2 Supraventricular tachyarrhythmias

Supraventricular tachycardia episodes are more
frequent during daytime [12], with the exception of atrial
fibrillation [22]. Paroxysmal supraventricular tachycardia
occurrence is more common during the afternoon [23, 24].
On the other hand, paroxysmal atrial fibrillation episodes
occur more commonly at night [25]. Circadian variations
in autonomic tone could act as a trigger by affecting the
arrhythmogenic substrate. It has been suggested that an in-
creased nocturnal vagal tone might explain the higher fre-
quency of paroxysmal and persistent nocturnal atrial fib-
rillation episodes [25, 26]. Circadian oscillations are also
observed in patients with permanent atrial fibrillation, as
their ventricular response rate presents daily variability, in
a similar way to subjects in sinus rhythm [27]. In addi-
tion, treatment with betablockers and some antiarrhythmic
drugs changes the circadian pattern of atrial fibrillation, as
patients treated with these drugs do not present the typical
circadian variation of atrial fibrillation episodes [25]. In pa-
tients with inappropriate sinus tachycardia a higher average
heart rate has been observed, compared to individuals with
normal sinus rhythm, but without changes in the normal di-
urnal variation [28]. It has been hypothesized that these
patients may have an intrinsic sinus node abnormality that
results in a higher set-point for the 24-hour mean heart rate
[28].

For supraventricular tachyarrhythmias, the molec-
ular mechanisms are highly variable and depend on the spe-
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cific type of arrhythmia [12]. In the case of atrial fibril-
lation, nocturnal parasympathetic activity on the IK [in-
termediate conductance K (+)] and acetylcholine channels
causes a shortening of the refractory period and predisposes
to reentry mechanisms [29].

4.3 Ventricular arrhythmias and sudden cardiac death

Ventricular arrhythmias and sudden cardiac death
risk increases during the early morning [12, 30] (Fig. 2).
The studies that have analyzed this issue are mainly based
on cardiac devices recordings. Therefore, most studied pa-
tients have structural heart disease or an underlying arrhyth-
mic substrate. Probably several mechanisms explain this
morning peak, including an increase in repolarization dis-
persion and in the activity of the sympathetic nervous sys-
tem that promote calcium overload, early afterdepolariza-
tions and reentry [12, 31]. L-type calcium channels exhibit
circadian rhythms in both expression and function. The cir-
cadian variance in L-type calcium conductance promotes
early afterdepolarizations in the morning, that may trigger
fatal arrhythmias [32].

Ventricular premature complexes might be
tachycardia- or bradycardia-related [33]. In addition, de-
termining the circadian pattern of presentation of premature
ventricular complexes can be useful to locate their origin,
essential to the ablation procedure [34]. Tachycardia-
enhanced ventricular premature complexes tend to be more
frequent during the morning, and bradycardia-enhanced at
night [34]. The circadian pattern has also been related with
the inducibility of premature ventricular complexes during
electrophysiological study and with ablation procedure
outcome [35]. Ventricular tachycardia episodes follow a
similar trend, with the aforementioned morning peak [36].

It has been observed that, in patients with severe
ventricular systolic dysfunction, the circadian variability of
ventricular arrhythmias may be absent, which has been as-
sociated with an increased activity of the sympathetic ner-
vous system that disrupts the circadian pattern [37]. How-
ever, some neurohormonal treatments for heart failure, es-
pecially beta-blockers, can modify or attenuate the circa-
dian pattern [38, 39]. This underscores the role of the sym-
pathetic system as an exogenous predisposing factor for
ventricular arrhythmias [39]. Observational registries of
sudden cardiac death have also found a predominant morn-
ing peak [40, 41] and studies performed in patients with
implantable cardioverter defibrillator have shown that ap-
propriate shocks are more common in the early morning
hours [37]. The morning peak of sudden cardiac death in
the general population has been correlated with episodes of
myocardial ischemia [42], but other factors such as cortisol
release or the predominance of sympathetic system activity
and its increase in the arrhythmic risk could have an impor-
tant role [43]. In patients with structural heart disease, the
presence of coronary artery disease had no impact on the
circadian pattern of ventricular arrhythmias [44]. This cir-

cadian pattern is not always the same, for instance ventricu-
lar arrhythmias associated with some channelopathies such
as Brugada syndrome, tend to have a nocturnal distribution
peaking from midnight to early morning [45]. In the case
of long QT syndrome, circadian variations are determined
by genotype. In type 3, ventricular arrhythmias are more
frequent at rest or during sleep, and therefore occur mainly
at night [46]. For types 1 and 2, arrhythmic events most
commonly occur during sympathetic stimulation, predomi-
nantly in the morning [46]. All these data confirm that the
activity of the sympathetic/parasympathetic nervous system
exerts an important influence as a predisposing or trigger-
ing factor for ventricular arrhythmias, however, depending
on the cardiac arrhythmogenic substrate, the effect might
be stronger in different time periods.

5. Cardiovascular drugs and circadian
rhythm

Circadian variability also influences drug
metabolism and treatment efficacy. Therefore, one way to
optimize the effect of cardiovascular drugs is to carefully
program the administration regimen [47]. On the other
hand, some drugs can interfere with the normal circadian
rhythm or with the chronobiology of cardiac arrhythmias
[12]. Ivabradine reduces the average daily heart rate in
sinus rhythm patients but also attenuates daily heart rate
variability, suggesting a local effect at the local sinus
node clock [5]. As previously mentioned, beta-blockers
attenuate the circadian pattern and the morning peak of
ventricular arrhythmias [38, 39]. Patients with implantable
cardioverter defibrillator treated with beta-blockers have
an almost even distribution of appropriate shocks [39].
The Cardiac Arrhythmia Suppression Trial (CAST) found
an excess of deaths in patients treated with class IC antiar-
rhythmics, and these patients also showed the conventional
circadian pattern with the morning peak [48]. Amiodarone
reduces heart rate variability, suggesting a suppression of
autonomic control on the heart [49]. Among the mecha-
nisms by which antiarrhythmic drugs affect the circadian
pattern of arrhythmias interactions with the autonomic
nervous system are one of the potential explanations.
Amiodarone has bradycardia and hypotensive effects
resulting from increased vagal tone [50]. In addition, it
has been observed that moricizine (an off-patent Class I
anti-arrhythmic) regulates circadian and cardiac channel
gene expression and is able to modulate the circadian
clock, particularly by lengthening the circadian period
[51].

Melatonin is a circadian hormone, which can be
supplemented exogenously due to its pleiotropic cardiopro-
tective [52, 53] and antiarrhythmic effects [52, 54]. These
effects include up-regulation of connexin-43, a protein
of intercellular channels at the gap junctions that ensures
electrical signal propagation throughout the myocardium
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[52, 55-57]. Melatonin also lowers heterogeneity in the re-
polarization of myocardiocytes, therefore reducing the pos-
sibility of reentry circuits [52, 55]. Furthermore to electrical
remodeling, melatonin has antifibrotic properties [57] and
has a protective effect against ischemia/reperfusion injury
[54, 58]. Interestingly, it is known that melatonin produc-
tion decreases with age and this could be one of the main
causes of the age-related increase in arrhythmias [53]. Fu-
ture studies are needed to test the hypothesis that chronic
melatonin supplementation may be helpful in preventing
cardiac arrhythmias.

6. Clinical implications and conclusions

The maintenance of a normal sinus rhythm is
linked to a state of cardiovascular health and its disruption
can be the cause or the consequence of cardiovascular dis-
eases [1, 59]. Circadian disruptors, such as shift-work or
jet lag might cause misalignments in the regulation of cir-
cadian clocks [60, 61]. A reduced heart rate variability and
a higher rate of premature ventricular beats have been de-
scribed in shift workers [62—64] and in those with sleep de-
privation states [65]. Shift-work or jet lag causing circa-
dian rhythm dyssynchronization and autonomic stress [65]
have been associated with an increased risk of cardiovas-
cular events [3, 9]. Exposure to sunlight allows the natural
re-synchronization of circadian rhythms but his effect is not
observed with artificial light [66].

The regulation of transcription through methyla-
tion as the most common epigenetic mechanism has gained
importance in explaining the circadian pattern of arrhyth-
mias. There are cyclic changes in DNA methylation, which
increases at night [67]. Importantly, environmental factors
such as lifestyle, eating and sleeping habits exert epigenetic
modifications in the expression of the genes responsible for
circadian rhythms [68]. It has been observed that chronic
stress in a murine model induces a methylation of adrener-
gic signaling of cardiomyocytes genes and that they lead to
the development of arrhythmias [69].

A better understanding of the mechanisms and the
impact of circadian rhythms on the cardiovascular system
would allow the development of therapeutic targets or pre-
ventive measures aimed at correcting disruptions in the bi-
ological clock of patients with cardiovascular conditions
[9, 70]. Chronotherapy could guide pharmacological treat-
ments and determine the best time to administer specific
drugs to achieve the highest efficacy and a better tolera-
bility [9, 71]. In addition, circadian rhythm might guide
patient monitoring, focusing in moments in which arrhyth-
mic events are most likely to occur. Moreover, knowing the
peak of presentation of malignant ventricular arrhythmias is
of public health interest, for better resource planning [42].

In conclusion, circadian rhythms influence cardiac
arrhythmias and sudden death. A better knowledge of the
chronobiology of arrhythmias will allow the development

of more specific and effective treatments, as well as preven-
tive strategies to reduce the impact of the disruption of bio-
logical rhythms. More studies are needed on this promising
topic. One of the goals of personalized medicine could in-
clude an individualized analysis of the disruptions of the
circadian rhythm, with the intention of restoring a normal
circadian pattern.
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