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Adoptive cell therapy is a treatment modality that
leverages the power of the immune system to combat can-
cer. Cell-based therapies are constantly evolving, and
rapidly providing new therapeutic approaches for cancer
patients. Since the U.S. Food and Drug Administration
approved Tisageniecleucel (CTL019, Kimriah) in 2018,
chimeric antigen receptor (CAR) T cell therapy has ushered
in a new era of personalized cancer treatment, becoming a
powerful therapeutic strategy for effective cancer therapy
[1].

CAR-T cells are engineered T lymphocytes with
hybrid receptors comprising a tumor antigen-binding moi-
ety, typically a single-chain variable fragment (scFv), a
hinge region, a transmembrane domain, and various combi-
nations of intracellular signaling domains. Several genera-
tions of CAR have been developed in an effort to enhance
the immune response against programmed targets. For ex-
ample, first-generation CAR includes the endodomain of
the cluster of differentiation 3ζ (CD3ζ) but exhibited lim-
ited clinical efficacy. Second- and third-generation CARs
have one or more costimulatory endodomains, such as
CD28 and/or 4-1BB, to enhance T cell activation. More re-
cently, fourth-generation CARs are further modified to ex-
press cytokines or immunomodulatory molecules (Fig. 1A)
[2].

Various therapeutic targets in hematological tu-
mors have been validated for CAR-T cell therapy through
extensive preclinical and, subsequent, clinical trials. For
the treatment of B-cell malignancies, currently approved
CAR-T products include Tisageniecleucel and axicabta-
gene ciloleucel (KTE-C19, Yescarta). Other CAR-T prod-
ucts presently under development include lisocabtagene
maraleucel (JCAR017) and UCART19, also specifically
target the B-cell antigen CD19 [3]. Furthermore, CD20
and CD22 are other potential therapeutic targets for CAR-
T development to treat B-cell malignancies [4, 5]. More
recently, several potential therapeutic targets for treating

hematological tumors other than B-cell malignancies have
been identified. For example, B-cell maturation antigen
(BCMA) for multiple myeloma, CD30 for Hodgkin’s lym-
phoma, and CD123 for acute myeloid leukemia are promis-
ing targets for CAR-T cell development (Fig. 1B) [6, 7].

One of the persistent challenges in immuno-
oncology is targeting solid tumors. While the ground-
breaking clinical success of CAR-T cell therapy in treating
hematological tumors is clear, using this approach to treat
solid tumors has presented numerous challenges. While
preclinical and clinical studies in solid tumors have re-
vealed many potential therapeutic targets, including carci-
noembryonic antigen (CEA), human epidermal growth fac-
tor receptor 2 (HER2), mesothelin, disiaoganglioside GD2
(GD2), glypican-3 (GPC-3), CD133, epidermal growth fac-
tor receptor variant III (EGFRvIII), and interleukin 13 re-
ceptor subunit alpha 2 (IL13RA2) [8–14], CAR-T therapy
in solid tumors has yet to prove efficacious and improve
clinical outcomes for patients with solid tumors (Fig. 1B)
[15].

Another challenge to the use of CAR-T cell ther-
apy are life-threatening toxicities, such as cytokine release
syndrome and neurotoxicity. Despite limiting CAR-T cell
therapy to patients who have failed other therapeutic op-
tions, efforts to improve CAR-T cell safety profiles are cur-
rently being conducted with therapeutic antibodies specif-
ically targeting interleukin-6 or interleukin-6 receptors to
promptly mitigate such side effects. Another major limita-
tion in the CAR-T field is cost and clinical effectiveness.
In this regard, recent studies have focused on the develop-
ment of off-the-shelf CAR-T cells using an allogeneic en-
graftment approach. Simultaneously, T cell receptor (TCR)
modulation strategies, such as gene editing or knockout, are
currently being investigated to reduce TCR-mediated graft-
versus-host disease, a form of allogeneic transplantation re-
jection [2].
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Fig. 1. Schematic representation of CAR structures as well as known and potential therapeutic targets for CAR-T cell therapy in cancers. (A)
CARs consist of a monoclonal antibody-derived scFv, a hinge region, a transmembrane domain, and intracellular signaling domains containing one or
more endodomains of costimulatory molecules and/or a TCR. The four generations of CAR are shown. (B) Known, and potential, therapeutic targets
in hematological and solid cancers for CAR-T cell therapy are provided. These include B-cell maturation antigen (BCMA), carcinoembryonic antigen
(CEA), epidermal growth factor receptor variant III (EGFRvIII), the disiaoganglioside GD2, glypican-3 (GPC-3), human epidermal growth factor receptor
2 (HER2), and interleukin 13 receptor subunit alpha 2 (IL13RA2).

At present, CAR-T technology is one of the
fastest-growing markets in the field of immuno-oncology.
Although current technologies are not yet optimized to ad-
dress unmet needs in both clinical and commercial devel-
opment of CAR-T cell therapy, this cell-based therapy re-
mains a promising therapeutic approach and offers hope
for terminally-ill cancer patients. Additionally, as CAR-T
strategies and potential solutions continue to evolve, new
avenues for more effective and safer cell-baseed therapies
are likely to be identified.
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