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1. Abstract
Introduction: The molecular mechanisms under-

lying acute exacerbations (AEs) of idiopathic pulmonary
fibrosis (IPF) are poorly understood. To understand the
gene expression patterns of the AEs of IPF, we studied
gene expression profiling of AEs of IPF. Methods: The
GEO datasets included in this study are GSE44723 and
GSE10667, and in-house RNA-seq data were used. DEG
analysis used the limma package, and the STRING database
was used to construct the protein-protein interaction (PPI)
network, and its functional role was investigated through
gene ontology analysis. Results: The results of DEG anal-
ysis indicated 76 upregulated and 135 downregulated genes
associated with an AE of IPF compared to stable IPF. The

PPI network included three core modules containing 24 of
the 211 DEGs. Eleven upregulated and six downregulated
genes were evident in AEs of IPF compared with stable
IPF after validation. The upregulated genes were associated
with cell division. The downregulated genes were related to
skeletal muscle differentiation and development. Conclu-
sion: In previous studies, 17 genes were strongly associated
with cell proliferation in various cell types. In particular,
cyclin A2 (CCNA2) was overexpressed in the alveolar ep-
ithelium of the lungs presenting AEs of IPF. Aside from the
previously described CCNA2, this study reveals 16 genes
associated with AEs of IPF. This data could indicate new
therapeutic targets and potential biomarkers for the AEs of
IPF.
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2. Introduction

Idiopathic pulmonary fibrosis (IPF) is a progres-
sive fibrotic lung disease with no clear etiology [1]. Cur-
rently, antifibrotic drugs constitute the main pharmacother-
apy, with robust evidence from clinical studies [2]. Pir-
fenidone and nintedanib reportedly modestly reduce annual
lung function decline. However, the specific molecular tar-
gets of these agents in the pathogenesis of IPF are not fully
understood. Additionally, IPF presents with a wide spec-
trum of clinical phenotypes, especially during disease pro-
gression. The underlying molecular background of the var-
ious phenotypes is unknown, and molecular biomarkers of
disease progression are lacking.

Among the wide variety of individual clinical
courses, rapid acute decline in lung function, known as
acute exacerbation (AE), occurs annually in many patients
[3]. The optimal therapy for the AE of IPF has not been es-
tablished. Although randomized trial data are lacking, treat-
ment commonly involves systemic glucocorticoids [4]. Al-
though lung transplantation provides a chance of survival,
for those with acute deterioration, the perioperative risks of
transplantation are clearly greater. For individuals trans-
planted in the context of mechanical ventilation or extra-
corporeal membrane oxygenation, short- and long-term sur-
vival after lung transplantation is decreased compared with
that of stable patients undergoing lung transplantation [5].
Unfortunately, without transplantation, the median survival
following an AE of IPF is only three to four months [6, 7].

Several previous studies identified the genes
and/or pathways of IPF that are differentially expressed
in comparison with the controls; thus, providing molecu-
lar signatures for IPF [8–12]. Furthermore, the peripheral
blood profiling of IPF has suggested potential biomarkers.
While these studies indicate pathways that could contribute
to early, stable, or progressive IPF, knowledge of the path-
ways and mechanisms that contribute to the AEs of IPF
remains limited. Few studies have screened differentially
expressed genes (DEGs) associated with an AE of IPF us-
ing bioinformatics methods [13, 14]. Identifying the dif-
ferences between steadily progressing IPF and the AEs of
IPF can help in understanding the nature of the AEs. This
knowledge would likely be valuable in the development of
treatments for the AEs of IPF.

The present study investigated DEGs between
cases of stable IPF and AE of IPF through the RNA se-
quencing (RNA-seq) of lung tissue and determined the hub
genes via functional assays.

3. Materials and methods

3.1 Study population

Explanted lung tissue samples for RNA sequenc-
ing analysis were obtained from the Pusan National Univer-
sity Yangsan Hospital (PNUYH) biobank. These included

lung tissues from three patients with IPF and lung tissues
from three patients with AEs of IPF. The criteria for the di-
agnosis of IPF were those of the American Thoracic Soci-
ety and European Respiratory Society [14]. An AE of IPF
was defined as an acute, clinically significant respiratory
deterioration characterized by evidence of new widespread
alveolar abnormality according to the 2016 revised crite-
ria [4]. All cases were reviewed by expert pulmonologists
and pathologists. Detailed clinical information regarding
the subjects is provided in Table 1. The mean forced vital
capacity (expressed as a percentage of the normal expected
value; FVC%) and diffusing capacity for carbon monoxide
(expressed as a percentage of the normal expected value;
DLCO %) of patients are provided in Table 1. Lung tis-
sue acquisition and analysis were conducted with the ap-
propriate approval from the Institutional Review Board of
Pusan National University Yangsan Hospital (PNUYH IRB
No 05-2020-019).

Table 1. Characteristics of patients with stable idiopathic
pulmonary fibrosis and patients with acute exacerbation of

IPF.
Variable Stable IPF (n = 3) AE of IPF (n = 3)

Age 64.3 ± 4.9 59.0 ± 10.0
Male 3 (100) 3 (100)
FVC % 58.7 ± 13.9 42 ± 0*
DLCO % 47.3 ± 33.6 34.0 ± 0*

Data presented as mean± standard deviation or number (%). IPF,
idiopathic pulmonary fibrosis; FVC, forced vital capacity; DLCO,
diffusing capacity for carbon monoxide.
*denotes the last before AE of IPF.

3.2 RNA extraction, library construction, and
sequencing

Total RNA from cell samples was extracted using
a TRIzol reagent kit (Invitrogen), according to the manu-
facturer’s protocol, and RNA integrity was assessed using
a TapStation RNA screentape. After total RNA extraction,
RNA libraries were independently prepared using the Illu-
mina TruSeq Stranded Total RNA Library Prep Gold Kit
(Illumina, Inc., San Diego, CA, USA). The cleaved RNA
fragments were copied into first-strand cDNA using Super-
Script II reverse transcriptase (Invitrogen, Carlsbad, CA,
USA) using random primers. Qualified libraries were se-
quenced on an Illumina NovaSeq platform (Illumina, Inc.,
San Diego, CA, USA). Total RNA concentration was calcu-
lated using the Quant-IT RiboGreen Assay Kit (Invitrogen,
Waltham, MA, USA). To determine the values of DV200
(percentage of RNA fragments>200 bp), samples were run
on the TapeStation RNA screentape (Agilent, Wilmington,
DE, USA). A total of 100 ng of total RNA was subjected
to sequencing library construction using the Agilent Sure-
Select RNA Direct kit (Agilent, Wilmington, DE, USA)
according to the manufacturer’s protocol. Briefly, the to-
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tal RNA was first fragmented into small pieces using di-
valent cations at elevated temperatures. The cleaved RNA
fragments were copied into first-strand cDNA using ran-
dom primers. This was followed by second-strand cDNA
synthesis. These cDNA fragments then underwent end re-
pair, the addition of a single “A” base, and the ligation of
the adapters. The products were purified and enriched by
PCR to create a cDNA library. To capture the human ex-
onic region, the Agilent SureSelect XT Human All Exon
v6+UTRs Kit (Agilent, Wilmington, DE, USA) was used
according to the standard Agilent SureSelect Target Enrich-
ment protocol. A cDNA library (25 ng) was mixed with
hybridization buffers, blocking mixes, RNase block, and
5 µL of SureSelect XT Human All Exon v6+UTRs cap-
ture library (Agilent, Wilmington, DE, USA). Hybridiza-
tion to the capture baits was conducted at 65 ◦C using the
heated thermal cycler lid option at 105 ◦C for 24 h in a
PCR machine. The captured library was washed and sub-
jected to a second round of PCR amplification. The fi-
nal purified product was then quantified using qPCR ac-
cording to the qPCR Quantification Protocol Guide (KAPA
Library Quantification kits for Illumina Sequencing plat-
forms) and qualified using the TapeStation DNA screen-
tape D1000 (Agilent, Wilmington, DE, USA). The indexed
libraries were analyzed using the NovaSeq system (Dae-
jeon, Korea). Paired-end (2× 100 bp) sequencing was per-
formed by Macrogen Inc. The gene expression data ob-
tained through RNA-sequencing is provided in the Supple-
mentary file 1.

3.3 Data acquisition

Expression profiling array data for IPF was ob-
tained from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/; accession numbers
GSE44723 and GSE10667). All datasets included data
related to gene expression in the lung tissue of the AE
group and/or that of the stable IPF group. The data were
downloaded for DEG analysis. The characteristics of the
included datasets are listed in Table 2 (Ref. [15, 16]).

3.4 Data preprocessing

DEGs of each dataset were identified using the
GEO2R online analytic tool provided by GEO. Adjusted p
< 0.05 and |log2FC|>0 were the cutoff criteria. For the ad-
justed p-value, false discovery rate methods were used. The
probe identifier was converted to a genetic symbol based on
the annotation file downloaded from the GEO. When mul-
tiple probes corresponded with a single gene, the average
level of the probes was calculated as the expression value
of the gene. Probes that did not correspond to the genetic
symbols were removed. PNUYH RNA-seq data were qual-
ity checked using the fastqc (v 0.11.9) tool [17]. This check
was performed after removing the sequence with a thread
score <30 and Illumina adaptor sequence. The reference
genome used for alignment was GRCH38 using the hisat2

tool (v 2.2.1) [18]. Stringtie (v 2.1.5) was used to obtain
the read count for the DEG analysis [19]. DEGs were con-
firmed using the limma R package. Data preprocessing was
performed using a voom provided in the limma package
[20]. To screen the intersectional genes that were signifi-
cantly expressed in each dataset, the R package “venn” was
used to plot Venn diagrams [21]. Among the DEGs from
the three datasets, only DEGs that commonly appeared in
all three datasets were considered as significant DEGs and
were selected for the subsequent analysis.

3.5 Protein–protein interaction (PPI) network
construction and module selection

A PPI network was constructed using the Search
Tool for the Retrieval of Interacting Genes (STRING)
database [22] to identify the relevant pathways and func-
tions of common DEGs. The minimum required interac-
tion score used to construct the PPI network was 0.4. The
molecular complex detection (MCODE) [23] was used for
optimal module selection. The parameters used inMCODE
were: degree cutoff = 2; cluster finding, node score cutoff
= 0.2; k-core = 2; and maximum depth = 100. CytoHubba
[24] was used to identify the highest-linkage hub genes in
the network. The parameters used in CytoHubba were the
top 10 nodes ranked by degree and the display option in
which the expanded subnetwork was displayed.

3.6 Functional analysis [gene ontology (GO) analysis]

GO analyses were performed using the R package
“clusterProfiler” (v 3.14.3) [25]. The common DEGs iden-
tified in each dataset were included in the GO term enrich-
ment analysis, which was performed separately for up- and
downregulated genes. Terms with five or more associated
genes and two or more DEGs in each experiment were in-
cluded. The adjusted p-values were calculated using the
Benjamini-Hochberg method. Statistical significance was
set at p < 0.05.

4. Results

4.1 Identification of common DEGs

The flowchart for this study is shown in Fig. 1.
Detailed information on the datasets is presented in Ta-
ble 1. DEG analysis of GSE10667 identified 4155 DEGs,
of which 1832 genes were upregulated and 2325 genes were
downregulated (Fig. 2). DEG analysis of PNUH RNA-seq
identified 1819 DEGs, of which 897 genes were upregu-
lated and 922 genes were downregulated (Fig. 2). DEG
analysis results for each dataset are in Supplementary files
2.1, 2.2, and 2.3. We performed GO analysis of common
DEGs and the results are in Supplementary files 2.4 and
2.5. Overlapping genes in each dataset included 76 upregu-
lated genes and 135 downregulated genes, and the included
genes list is in Supplementary files 2.6.

http://www.ncbi.nlm.nih.gov/geo/
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Table 2. Characteristics of the datasets.
GSE10667 GSE44723 PNUYH

Stable Acute exacerbation Stable Acute exacerbation Stable Acute exacerbation

Type of tissue Lung tissue Lung tissue Lung tissue

Platform
AGILENT-014850 Whole Human Genome
Microarray 4 × 44K G4112F

Affymetrix Human Genome U133
Plus 2.0 Array

Illumina NovaSeq 6000

Sample size 23 8 6 4 3 3
References Konishi K et al., 2009 [15] Sridhar S et al., 2013 [16]

Fig. 1. Flow chart of the study.

4.2 PPI network construction and module selection

To identify the PPIs of common DEGs, the
STRING network-based protein interaction assay was
used to create a PPI network. To confirm the interac-
tion between common DEGs, a PPI network was con-
structed. Three significant modules (confidence score
>7) containing 24 out of 211 genes were identified
(Fig. 3). The largest module comprising the upregu-
lated genes consisted of CCNA2, PTTG1, SKA3, SPAG5,
TROAP, KIF14, ASPM, CENPE, and E2F7 (Fig. 3C).
The second module comprising the upregulated genes con-
sisted of histone-related genes (HIST1H2AG, HIST3H2A,
HIST1H2BJ, HIST1H2BI, HIST1H2BE, and HIST1H3B;
Fig. 3D). The third module comprising the downregulated
genes contained six genes (EGR1, NR4A1, FOSB, FOS,
CYR61, and BTG2; Fig. 3E).

4.3 Validation of the genes included in significant
modules through GSE44723 expression data.

To validate the genes included in significant mod-
ules, the independent cohort GSE44723 was used. Eleven
upregulated genes (ASPM, CCNA2, CDC25B, CENPE,

CLSPN, KIF14, PTTG1, RECQL4, SKA3, SPAG5, and
TROAP) and six downregulated genes (BTG2, CYR61,
EGR1, FOS, FOSB, and NR4A1) were significantly al-
tered in the cases presenting AEs of IPF compared to those
presenting stable IPF (Fig. 4). Interestingly, the histone-
associated genes and E2F7 gene were not significantly in-
creased in AEs of IPF patients.

4.4 Functional analysis of the 17 genes in GSE44723

To investigate the functional role and the associ-
ated signaling pathways of the commonDEGs, GO analysis
was performed. The total significantly enriched GO terms
from the up- and downregulated common DEGs are shown
in Fig. 5. The top biological processes (BPs) of the eleven
upregulated and six downregulated genes associated with
the AEs of IPF were nuclear division, organelle fission,
skeletal muscle cell differentiation, skeletal muscle tissue
development, skeletal muscle organ development, response
to mechanical stimulus, regulation of neuron death, and
neuron death, respectively. The top cellular components
of the upregulated and downregulated genes were spindle
and transcription regulator complexes. The top molecu-
lar functions were microtubule binding, tubulin binding,
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Fig. 2. Analysis of the differentially expressed genes. (A) Venn diagram of upregulated genes. (B) Venn diagram of downregulated genes. (C) Volcano
plot of each cohort. In the plot, genes that met the p-value and log2 fold change cutoff value are denoted in red; genes that passed only the p-value are
denoted in blue; a gene that passed only the log2 fold change is denoted in green; and genes that passed both the p-value and log2 fold change are denoted
in black. (D) Heatmap of common DEGs for each cohort. The common upregulated genes are denoted in red and the common downregulated genes are
denoted in green.

Fig. 3. Protein-protein interaction (PPI) network construction and significant module selection involving the common differentially expressed
genes (DEGs). (A) PPI network of upregulated genes. (B) PPI network of downregulated genes. (C) The module with the highest confidence score
among the PPI network of upregulated genes. (D) Module with the second-highest confidence score among the PPI network of upregulated genes. (E)
The module with the highest confidence score among the PPI network of downregulated genes.
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Fig. 4. Boxplots of 17 genes with statistically significant differences in expression values in GSE44723 among 24 genes included in significant
modules. (A) Upregulated genes. (B) Downregulated genes. The blue boxplot indicates stable IPF and the red boxplot indicates acute exacerbation of
IPF.

Fig. 5. Gene ontology assay of 17 genes identified through protein–protein interaction network and module selection. (A) Upregulated genes. (B)
Downregulated genes. The gene ontology analysis result is composed of biological process (BP), cellular component (CC), and molecular function (MF)
terms. The top 10 of each term is shown. The size of the circle indicates the number of genes corresponding to each term. The closer to red, the lower the
p-value.

and RNA polymerase II-specific DNA binding transcrip-
tion factor binding for upregulated proteins, and DNA bind-
ing transcription factor binding for downregulated proteins.

5. Discussion

The AE of IPF is a fatal disease phenotype, for
which, there is presently no effective treatment. Annually,
10% to 15% of IPF cases have a potential risk of AE and
the fatality rate exceeds approximately 90% [7]. To under-
stand this refractory disease, genome-wide transcriptional
profiling of different phenotypes of IPF may be carried out,
which would further provide knowledge that could lead to
an effective therapy for the AE of IPF.

Here, we selected cohorts from the GEO database
(GSE10667 andGSE44723) to identify and validate the dis-
tinguishing molecular patterns associated with the AEs of

IPF. The DEGs identified from the microarray data may be
incorrect for reasons that include a lack of reproducibil-
ity and lack of prediction accuracy because of the small
sample size [26]. To avoid possible problems, differen-
tial expression analysis was performed using the GSE10667
dataset and PNUYH RNA-seq data. The GSE44723 co-
hort was used to verify gene expression. Seventeen genes
were potentially related to AEs of IPF after validation. The
functional and signaling pathways of these genes were an-
alyzed. In GO analysis, the upregulated genes were sig-
nificantly enriched in cell division, such as mitotic sister
chromatid segregation, nuclear division, and theG2/M tran-
sition of mitotic cell cycle. Several studies have demon-
strated the respective upregulated genes to promote cell cy-
cle progression and contribute to cell proliferation. SKA3
promotes cell proliferation and activates the phosphoinosi-
tide 3-kinase/Akt signaling pathway in cervical cancer [27].
Centrosome-associated protein E promotes cell prolifera-
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tion in lung adenocarcinoma [28]. Kinesin family member
14 promotes cell proliferation via the activation of Akt [29].
In vitro, knockdown of trophinin associated protein signif-
icantly inhibits cell proliferation and the ability to transi-
tion from G1 to S phase [30]. Pituitary tumor transforming
gene 1 overexpression enhances proliferation and upregu-
lates the expression of cyclin B1, cyclin-dependent kinase
1, and c-Myc at both the protein and mRNA levels [31].
Claspin reportedly displayed a significantly higher relative
increase in its levels than Ki67 in tumor samples compared
with normal tissues, and was suggested as a marker of ab-
normal proliferation [32]. RecQ like helicase 4 and Sperm
associated antigen 5 are essential for cell proliferation, cell
cycle progression, and mitotic stability in human cells and
promote DNA repair [33, 34]. Knockdown of cyclin A2
(CCNA2) inhibits colorectal cancer cell growth by impair-
ing cell cycle progression and inducing apoptosis [35]. In
particular, a prior study described that CCNA2 was over-
expressed during AEs of IPF, unlike other genes, and ap-
peared locally in the alveolar epithelium, but not in fibrob-
lasts or myofibroblasts [14]. CCNA2 upregulation in AEs
of IPF was confirmed in the present study. Eleven upregu-
lated gene expression signatures, including CCNA2, could
be potential biomarkers for evaluating patients with IPF.

The downregulated genes associated with AEs of
IPF were FOS, BTG2, FOSB, CYR61, and NR4A1. GO
analysis confirmed that they were most significantly en-
riched in skeletal muscle cell differentiation, development,
and regulation of neuronal death. All downregulation was
confirmed in previous studies to directly or indirectly af-
fect cell proliferation when tumor suppressors are down-
regulated. Cysteine-rich angiogenic inducer 61 and nu-
clear receptor subfamily 4 group A member 1 inhibit cell
proliferation as tumor suppressors in non-small cell lung
cancer cells and triple-negative breast cancer, respectively
[36, 37]. FOS and FOSB, also known together as “G0/G1
switch regulatory protein 3” in the FOS family, have been
implicated as regulators of cell proliferation, differentia-
tion, and transformation [38, 39]. BTG anti-proliferation
factor 1 (BTG1) peaks in the G0/G1 phase of the cell cycle
and decreases dramatically during the G1/S phase transi-
tion. This indicates that the overexpression of BTG1 nor-
mally inhibits cell growth [40]. Consistent with the results
of the upregulated genes, the downregulated genes may af-
fect cell proliferation.

6. Conclusions

Recently, many studies have addressed genomic
alterations in specific diseases. Accordingly, tissue or
blood sample RNA-seq, or single-cell RNA-seq data are
providing a new paradigm for IPF research. However,
RNA-seq data for AEs of IPF face some limitations. One of
the main limitations is that it is very difficult to obtain tis-
sue samples for tissue RNA-seq. In general, patients with

AEs are critically ill, and tissue biopsy is not indicated,
since it would further imperil the patients. In this study,
we obtained whole Pleuroparenchymal fibroelastosis sam-
ples from explanted lungs after lung transplantation. This is
a very rare and precious material for basic research on AEs
of IPF. Because there were a limited number of samples,
a pooled analysis was performed along with pre-existing
dataset from other studies on AEs of IPF. To our knowl-
edge, this is the first report of 17 genes involved in the AEs
of IPF. The involvement of CCNA2 has been described pre-
viously. The remaining 16 genes described in this study are
novel. It is essential to verify these genes through addi-
tional experiments. Pending these results, these genes may
prove to be new therapeutic targets and potential predictive
biomarkers for AEs of IPF.
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