[Frontiers in Bioscience-Landmark, 26(12), 1537-1547, DOI:10.52586/5047]

https://www.fbscience.com

Original Research

Machine learning—-based prediction of heat pain sensitivity

by using resting-state EEG

Fu-Jung Hsiao'**, Wei-Ta Chen!?3%*  Li-Ling Hope Pan', Hung-Yu Liu*?, Yen-Feng Wang?>3,
Shih-Pin Chen'?3, Kuan-Lin Lai*?3, Shuu-Jiun Wang!%3

' Brain Research Center, National Yang-Ming Chiao-Tung University, 11221 Taipei, Taiwan, 2School of Medicine,
National Yang-Ming Chiao-Tung University, 11221 Taipei, Taiwan, 3Department of Neurology, Neurological Institute,
Taipei Veterans General Hospital, 11217 Taipei, Taiwan, *Department of Neurology, Keelung Hospital, Ministry of Health

and Welfare, 20147 Keelung, Taiwan
TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Materials and methods

3.1 Participants

3.2 HPT and psychometric measurements

3.3 Resting-state EEG recording and analysis

3.4 Feature extraction and selection

3.5 Performance evaluation of classification models

4. Results

4.1 Demographic and psychometric data
4.2 Feature selection of resting-state EEG

4.3 Classification using discriminative features of training dataset

4.4 Validation of classification models in testing dataset

5. Discussion

5.1 Discriminative features on pain sensitivity
5.2 Types of features in training accuracy

5.3 Validation of classification models

5.4 Limitations

. Conclusions
. Author contributions
. Ethics approval and consent to participate

© X N O

. Acknowledgment
10. Funding

11. Conflict of interest
12. References

1. Abstract

Introduction: The development of quantitative,
objective signatures or predictors to evaluate pain sensi-
tivity is crucial in the clinical management of pain and in
precision medicine. This study combined multimodal (neu-
rophysiology and psychometrics) signatures to classify the
training dataset and predict the testing dataset on individ-
ual heat pain sensitivity. Methods: Healthy individuals
were recruited in this study. Individual heat pain sensitivity
and psychometric scores, as well as the resting-state elec-

troencephalography (EEG) data, were obtained from each
participant. Participants were divided into low-sensitivity
and high-sensitivity subgroups according to their heat pain
sensitivity. Psychometric data obtained from psychometric
measurements and power spectral density (PSD) and func-
tional connectivity (FC) derived from resting-state EEG
analysis were subjected to feature selection with an inde-
pendent ¢ test and were then trained and predicted using
machine learning models, including support vector machine
(SVM) and k-nearest neighbor. Results: In total, 85 par-
ticipants were recruited in this study, and their data were
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divided into training (n = 65) and testing (n = 20) datasets.
We identified the resting-state PSD and FC, which can serve
as brain signatures to classify heat pain as high-sensitive
or low-sensitive. Using machine learning algorithms of
SVM with different kernels, we obtained an accuracy of
86.2%-93.8% in classifying the participants into thermal
pain high-sensitivity and low-sensitivity groups; moreover,
using the trained model of cubic SVM, an accuracy of 80%
was achieved in predicting the pain sensitivity of an in-
dependent dataset of combined PSD and FC features of
resting-state EEG data. Conclusion: Acceptable accuracy
in classification and prediction by using the SVM model
indicated that pain sensitivity could be achieved, leading to
considerable possibilities of the use of objective evaluation
of pain perception in clinical practice. However, the predic-
tive model presented in this study requires further validation
by studies with a larger dataset.

2. Introduction

The International Association for the Study of Pain
defined pain as “an unpleasant sensory and emotional expe-
rience associated with, or resembling that associated with,
actual or potential tissue damage” [1]. In addition, pain
is a subjective perceptual phenomenon that is determined
by biological, psychological, and social factors. There-
fore, quantitative characterization of pain sensitivity may
have significant clinical utility in predicting responses to
a clinical procedure [2]. Moreover, accumulated evidence
suggests that altered pain sensitivity was associated with
Alzheimer disease [3, 4], Parkinson disease [5], fibromyal-
gia [6], and migraine and tension-type headache [7]. Self-
reported quantitative sensory testing is the gold standard in
pain sensitivity measurement [8]. Thus, research focused
on the development of quantitative predictors to aid the
evaluation of pain sensitivity is of increasing importance in
the clinical management of pain and in precision medicine.

Studies have suggested that pain sensitivity was
associated with neuronal activities and multiple functional
brain networks. The rating of individual pain using nox-
ious stimulation was linked to cortical activation [9-12],
and pain intensity to heat stimuli was related to gamma
oscillation in the medial frontal cortex [12]. In previous
studies, during capsaicin-heat pain stimulation, peak alpha
frequency over the sensorimotor region was inversely cor-
related with individual pain intensity [11, 13]. In our re-
cent study, we further confirmed that pain sensitivity is as-
sociated with the spontaneous regional oscillatory activities
and intrinsic functional network [14]. Taken together, these
findings suggest that cortical activation and functional net-
work may reflect individual pain sensitivity and cause indi-
vidual differences in pain perception. Although neural cor-
relates of pain sensitivity have been investigated, whether
these brain signatures could be used to predict individual
pain sensitivity remains elusive.

Machine learning involves the use of an algorithm
to automatically detect patterns in data and then predict or
classify future data; thus, it learns from data without the
need for previous knowledge and aims at optimizing the
performance of the model. In pain research applications,
machine learning uses pain-related data for feature map-
ping; learning the signatures of pain conditions, types, or
disorders; and constructing the prediction model, which can
be applied to new data to identify or predict pain pheno-
types. In the past decade, machine learning has been used to
assess pain elicited by noxious heat in healthy persons with
fine performance (85-94% sensitivity and 73-94% speci-
ficity) using functional magnetic resonance imaging (MRI)
data [15], and classify pain and nonpain conditions with an
accuracy of 81% by using whole-brain activities obtained
from functional MRI data [16], high and low pain intensi-
ties with an accuracy of 86.3% by using laser-evoked poten-
tial from electroencephalography (EEG) data [17], baseline
and pain threshold conditions with an accuracy of 79.29%
by using facial electromyography data [18], and healthy in-
dividuals and patients with migraine with an accuracy of
91.4% and 88.7% by using resting-state data of functional
MRI [19] and somatosensory evoked potentials of EEG, re-
spectively [20]. As a result, machine learning might have
a great potential to predict individual pain sensitivity from
pain-related neurophysiological or psychological data.

As resting-state brain activities were associated
with individual pain sensitivity in our recent study [14],
spontaneous cortical oscillations and intrinsic functional
networks might be pivotal mechanisms in the regulation
of pain processes. Therefore, this study combined mul-
timodal (neurophysiology and psychometrics) signatures,
which might better represent pain complexity, and built a
multivariate machine-learning model, which learns from
the features of psychometric scores (from demography
and questionnaires), spontaneous brain oscillatory pow-
ers (from within-electrode EEG analysis), and resting-state
functional connectivity (FC, from between-electrode EEG
analysis), to noticeably classify the training dataset and pre-
dict the testing dataset on individual heat pain sensitivity
derived from the heat pain threshold (HPT).

3. Materials and methods

3.1 Participants

This study recruited healthy individuals who did
not have a medical or family history of pain disorders and
had not experienced any significant pain condition during
the past year. All participants were right-handed, denied
having any history of systemic or major neuropsychiatric
disease, and had normal physical and neurological exami-
nation results as well as normal brain MRI results. Partici-
pants taking any medication on a daily basis were excluded.
All participants underwent scheduled pain sensitivity mea-
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surements and EEG recordings, and their degrees of psy-
chometric factors were assessed (detailed in 3.2 and 3.3).

The Institutional Review Board of National
Yang-Ming University approved the study protocol
(YM108044F), and each participant provided written
informed consent.

3.2 HPT and psychometric measurements

Pain sensitivity measurement was obtained in the
pain examination room (with a constant room temperature
of 20 °C and no windows) in the Department of Neurol-
ogy at Taipei Veterans General Hospital. Quantitative mea-
surements of HPT were defined as the lowest intensity per-
ceived as painful for participants, and HPT values were ob-
tained as follows. Standardized instructions were provided
to all participants before obtaining the measurements. Each
participant received HPT measurements at the left forehead
by using the Medoc Pathway platform (TSA-II, Medoc Ltd.
Advanced Medical Systems, Ramat Yishai, Israel) with a
thermode (30 mm x 30 mm), which provided an absolute
temperature accuracy of +0.3 °C, temperature repeatabil-
ity of £0.2 °C, and a set-Point resolution of 0.1 °C. The
thermode was applied to the skin and fastened with a hook
and loop strap. Using the stimulation method of limits, the
temperature of thermode was increased at a rate of 1 °C/sec
from its starting point at 32 °C until the participant pressed a
button to indicate that the stimulus became painful. Testing
was performed five times, and the mean of all trials was
considered the pain threshold of the participant. On the
basis of HPT values, participants were divided into low-
sensitive and high-sensitive groups. Low-sensitivity was
defined as HPT more than the median HPT value of all par-
ticipants, and high-sensitivity was defined as HPT less than
or equal to the median HPT value of all participants.

Regarding psychometric measurements, we eval-
uated sleep efficiency (in %) derived from the ratio of
the total sleep time to time in bed (multiplied by 100 to
yield a percentage) using the Pittsburgh Sleep Quality In-
dex (PSQI); the extent of catastrophic thinking due to pain
according to three components, namely rumination, magni-
fication, and helplessness, determined using the Pain Catas-
trophizing Scale (PCS); the degree to which the participants
appraised situations in their lives as stressful on the Per-
ceived Stress Scale; anxiety and depression by using the
Hospital Anxiety and Depression Scale (HADS); and the
quantification of stress by analyzing life events using Re-
cent Life Changes Questionnaire.

3.3 Resting-state EEG recording and analysis

EEG recording (Brain Products GmbH, Munich,
Germany) was conducted for 5 min with a digitization
rate of 1000 Hz; participants were instructed to close their
eyes but remain awake and relaxed and perform no explicit
task, which eliminated the artifacts of eye movement and
revealed that the intrinsic cortical activities were associ-

ated with pain sensitivity in our recent study [14]. The
recording was stopped and then rerun if a participant fell
asleep. All the subjects were asked not to consume caf-
feine 48 h before the EEG assessment [21]. Electroocu-
lography activity was simultaneously acquired for offline
artefact elimination. Scalp EEG was collected from an
EEG cap housing a 64-electrode BrainVision actiCAP sys-
tem, which covered the whole brain according to the ex-
tended international 10-20 system [22]. Active circuits for
impedance conversion, achieving outstanding signal qual-
ity even with higher impedances compared with conven-
tional passive electrodes, are integrated directly in the acti-
CAP slim electrodes. All electrodes were referenced online
to an electrode placed at the Fz and a common ground set
at the FPz site. The EEG signal was amplified and dig-
itized using a BrainAmp DC amplifier linked to Brain Vi-
sion Recorder software (version 2.1, Brain Products GmbH,
Munich, Germany).

In the preprocessing stage, a bandpass filter of 1-
40 Hz was applied to all data to remove the DC drift and
60-Hz power noise. Then, to eliminate nonbrain artefacts
from the resting-state EEG data, apparent eye contamina-
tions were manually removed through visual inspection;
moreover, identified heartbeat and eye blinking events from
electro-cardiographic and electro-oculographic data were
used to define the projectors through principal component
analysis separately. The principal components meeting the
artifact’s sensor topography were then manually excluded
through orthogonal projection [23]. To obtain the electrode-
based resting-state oscillations and FC, the spontaneous ac-
tivities of each electrode were further analyzed as follows
[14, 24-26]. First, oscillatory power in each electrode was
estimated using the Welch method (window duration: 3 sec
with 50% overlap) and defined as absolute power spectral
density (PSD). Moreover, the oscillatory power was spec-
trally normalized through the division of power at each fre-
quency band by the total power, which adequately reduce
the interindividual variability of the oscillatory magnitude
[27]. Second, the amplitude envelope correlation analy-
sis [28], which orthogonalized the signals to remove zero-
lag interactions [29], was used to calculate the FC between
electrodes and then the full 63 x 63 adjacency matrix was
constructed for each frequency band. Amplitude envelope
correlation analysis is briefly described as follows. The
time-varying dynamics of bandpass filtered electrical ac-
tivity of each electrode were Hilbert transformed to obtain
the analytic signal. The absolute value of the analytic signal
was then determined in order to give the envelope of oscil-
latory power in the frequency band of interest. The Hilbert
envelopes for the EEG data were divided into N time seg-
ments of equal length (3 seconds in this study). The Pear-
son correlation coefficient between electrodes and Hilbert
envelopes was computed within each segment. This gave
N correlation values, one for each time segment. These
were then averaged across segments yielding a single av-
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Fig. 1. Pipeline of data processing and machine learning model. (a) Feature extraction of resting-state EEG data and feature selection from demo-

graphic, psychometric, and neurophysiological data. (b) Classification using training dataset and validation using testing dataset. PSS, perceived stress

scale; PCS, pain catastrophizing scale; HADS, hospital anxiety and depression scale. Demo, demographic data.

erage value which was termed Averaged Envelope Correla-
tion (for a mathematical description see [30]). Oscillatory
power and FC were categorized according to the follow-
ing frequency bands and averaged in each frequency range:
delta (2—4 Hz), theta (5-7 Hz), alpha (8-13 Hz), beta (14—
25 Hz), and gamma (2640 Hz). EEG data preprocessing
and analysis were performed using Brainstorm [31].

3.4 Feature extraction and selection

On the basis of prior findings, which suggested
that pain perception is associated with central modulation;
distributed cortical involvement; and the interaction of sen-
sory, cognitive and affective processes, multimodal signa-
tures including the psychometric data (Psy) and functional
EEG activities within and between brain regions would ac-
curately manifest the underlying neurophysiological mech-
anism. Thus, the extraction of these features is desirable
to establish the predictive model and obtain high classifica-
tion accuracy. In our study, all individual’s data were split
into training and testing datasets, and the extracted features
were organized in three data types: Psy obtained from psy-
chometric measurements, and PSD and FC derived from
resting-state EEG analysis (Fig. 1).

Feature selection is a process of selecting a sub-
set of features from the original set of extracted features to
increase the classification performance with a compact fea-
ture subset, which might reduce computational complexity
and diminish irrelevant features. Therefore, we applied a

feature selection procedure by using the univariate analy-
sis (independent ¢ test) for the high-sensitivity versus low-
sensitivity factor to obtain the most discriminative features
for classification (Fig. 1). In this study, for Psy and PSD,
the feature index with significant difference between groups
(p < 0.05) was selected for their discriminative characteris-
tics; moreover, for FC, the discriminative feature index was
decided from the significant group difference (uncorrected
p < 0.005). Thus, the discriminative features of Psy, PSD,
and FC were used to construct training and testing datasets.

3.5 Performance evaluation of classification models

The kernel functions and parameters for all classi-
fication analyses are listed in Table 1. To avoid the over-
fitting problem, model training processes were based on a
five-fold leave-one-out cross-validation technique, which
were unbiased in the sense that the training features were
selected from each test case. The performance of each clas-
sification model was evaluated based on accuracy, sensi-
tivity, and specificity, as well as the area under the receiver
operating characteristics curve (AUC). Here, sensitivity and
specificity represent the proportion of low-sensitive and
high-sensitive participants, respectively, correctly classi-
fied.

After the reconstruction and evaluation of classifi-
cation models from the training dataset, these models were
further validated to determine whether identified features
can be generalizable across different populations. First, the
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Table 1. Models and parameters of machine classification.

SVM Kernel function Kernel scale
Linear SVM Linear auto
Quadratic SVM Quadratic auto
Cubic SVM Cubic auto

Fine Gaussian SVM Gaussian 3
Medium Gaussian SVM Gaussian 12
Coarse Gaussian SVM Gaussian 48

KNN No. of neighbors  Distance weight
Fine KNN 1 equal
Medium KNN 10 equal
Coarse KNN 100 equal
Cosine KNN 10 equal
Cubic KNN 10 equal
Weighted KNN 10 squared inverse

SVM, support vector machine; KNN, K-nearest neighbor; No.,
number.

testing dataset was correspondingly applied to preprocess-
ing and analysis, and then feature selection was performed
based on the discriminative feature index from the train-
ing dataset. The discriminative features of Psy, PSD, and
FC in the testing dataset were used in the trained classifica-
tion models to differentiate between participants with low-
sensitivity and high-sensitivity. The labels of the testing
dataset were blinded, and the classification models were ap-
plied to the discriminative features without any model train-
ing procedure. The predictive accuracy and AUC were ob-
tained for each model. Additionally, to estimate the statis-
tical significance of predictive accuracy, statistical signifi-
cance of the observed classification accuracy was estimated
using nonparametric permutation tests (1000 times).

4. Results

4.1 Demographic and psychometric data

This study included 85 healthy participants who
were divided into high-sensitivity (n = 43) and low-
sensitivity (n = 42) groups according certain criteria. De-
mographic and psychometric profiles are summarized in
Table 2. The groups did not differ significantly in terms
of age, sex, height, or weight. In terms of the psycho-
metric data, sleep efficiency, perceived stress, and recent
life changes were similar between groups. However, pain
catastrophizing (PCS), anxiety (HADS_A), and depression
(HADS_D) scores were higher in the high-sensitivity group
than in the low-sensitivity group (all p < 0.05). Notably,
the HPT of all participants is 43.1 + 3.5 °C and the me-
dian value is 43.4 °C. The demographic, psychometric and
EEG data from the last 10 subjects of each group were se-
lected as the testing dataset; therefore, all data were di-
vided into training (n = 65) and testing (n = 20) datasets
(Fig. 1). Notably, in the training dataset (n = 65), differ-
ences between groups were noted for PCS, HADS_A, and

HADS_D scores. Consequently, these three scores were se-
lected as the discriminative features of psychometric scores
(Psy type) for further classification.

Table 2. Demographics and Psychometric data.

Group

p-value
High-sensitivity =~ Low-sensitivity

N 43 42
Demographics
Age (years) 28.6 £ 7.2 30.1 +8.3 0.393
Gender 24F/19M 25F/17M 0.827
Height (cm) 166.3 + 8.8 166.6 + 7.7 0.829
Weight (kg) 65.5 + 14.4 62.7 £ 12.2 0.326
Clinical scores
EFF (%) 91.3+8.0 89.1 +11.1 0.292
PCS 75+7.8 44 +5.1 0.032*
PSS 23.7+7.8 210+ 7.7 0.11
HADS_A 4.8 +3.2 29+28 0.004**
HADS_D 33+32 1.9+ 2.0 0.022*
RLCQ 162.9 + 147.0 128.6 £ 133.5 0.263
HPT 40.4 +2.1 46.1+2.0 <0.001**

High-sensitivity, Low heat pain threshold; Low-sensitivity, High
heat pain threshold; F, Female; M, Male; EFF, Sleep efficiency;
PCS, Pain catastrophizing score; PSS, Perceived stress scale;
HADS, Hospital anxiety and depression score; A, Anxiety; D, De-
pression; RLCQ, Recent life changes questionnaire; HPT, Heat
pain threshold. *p < 0.05; **p < 0.01.

4.2 Feature selection of resting-state EEG

The spatial distribution of spectral power in high-
sensitivity and low-sensitivity groups and differences in
the statistical topographic mappings of PSD between high-
sensitivity and low-sensitivity groups in different frequency
bands are illustrated in Fig. 2. Regarding the absolute PSD
(Fig. 2a), in the alpha, beta, and gamma bands, larger spec-
tral powers were observed in the high-sensitivity group than
in the low-sensitivity group (p < 0.05), indicating that in-
dividuals with pain high-sensitivity have augmented spon-
taneous oscillations. In total, 12 electrodes exhibited a
group difference and were mainly located over the frontal,
fronto-temporal, and central regions. For the normalized
PSD (Fig. 2b), in the delta and theta bands, smaller spec-
tral powers were noted in the high-sensitivity group than in
the low-sensitivity group (p < 0.05), whereas in the alpha,
beta, and gamma bands, spectral powers were higher in the
high-sensitivity group than in the low-sensitivity group (p
< 0.05). In total, 70 features with significant power dif-
ferences were widely distributed over the frontal, fronto-
temporal, parietal, central, and occipital regions. These 70
features of normalized PSD and 12 features of absolute PSD
values were selected as the discriminative features of PSD
for further classification.
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Fig. 2. Power spectral density between groups. (a) Normalized spectral power density in low-sensitivity and high-sensitivity groups. (b) Difference

of absolute and normalized power spectral density between subjects with low- and high-sensitivity. Dashed circle indicates the electrode with significant

difference between groups (p < 0.05). High, high-sensitivity; Low, low-sensitivity.

Differences in resting-state FC between groups are
statistically illustrated with adjacency matrices from delta
to gamma bands (Fig. 3a). In general, decreased FC val-
ues in the high-sensitivity group in delta, theta, beta, and
gamma bands were observed between specific connections
in comparison with those in the low-sensitivity group, in-
dicating that decreased oscillatory connectivity character-
ized the intrinsic functional connections in participants with
high-sensitivity. By contrast, increased alpha FC values
were noted in participants with high-sensitivity. Fig. 3b
shows the consensus map of discriminative features, which
represents the significant difference between groups (p <
0.0005). The ring coded in gray level exhibits the number
of occurrences for each electrode in the consensus map. In
total, 145 discriminative features (FC type) were selected
for further classification.

4.3 Classification using discriminative features of
training dataset

Using one type of discriminative feature (Psy,
PSD, or FC), the performance of models with different
kernel functions for each type of input features is shown
in Fig. 4. With Psy, the best model (fine Gaussian sup-
port vector machine [SVM]) among all training models had

an accuracy of 55.4% and AUC of 0.63. With PSD, the
best model (medium Gaussian SVM) had an accuracy of
73.8% and AUC of 0.79. With FC, the best models (accu-
racy >85%) included the linear (accuracy = 87.7%, AUC =
0.96), quadratic (accuracy = 92.3%, AUC = 0.96) and cu-
bic (accuracy = 92.3%, AUC = 0.96) SVMs. These models
were further evaluated using the testing dataset.

Using a combination of two types of discrimina-
tive features, the classification performance was also exam-
ined in the training process (Fig. 5). Using the combination
of Psy and PSD (total 85 features), coarse Gaussian SVM
achieved the best accuracy of 73.8% and AUC of 0.79. As
for the combination of Psy and FC (148 features), linear
(accuracy = 90.8%, AUC = 0.97), quadratic (accuracy =
93.8%, AUC = 0.97), and cubic (accuracy = 92.3%, AUC
=0.96) SVM had the finest performance. For the combina-
tion of PSD and FC (227 features), the classification exhib-
ited the accuracy of >85% and AUC of >0.9 using linear,
quadratic, cubic, medium Gaussian, and coarse Gaussian
SVM models. Moreover, these nine models were further
validated using the testing dataset.

The performance of the combination of all three
types of discriminative features (total 230 features) was in-
vestigated using the training dataset (Fig. 6). SVM model
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Fig. 4. Classification using one type of features. Model performance
using psychometric, PSD, or FC features. Psy, psychometric data; PSD,
power spectral density; FC, functional connectivity; SVM, support vector
machine; AUC, area under the curve.

achieved an accuracy of >85% and AUC of >0.9 by us-
ing the kernel functions of linear, quadratic, cubic, medium
Gaussian, and coarse Gaussian. In addition, the k-nearest
neighbor (KNN) model had an accuracy of >85% and AUC
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Type Features Model Accuracy(%) Sensitivity  Specificity AUC
Psy+PSD 85 Coarse gaussian SVM 73.8 0.66 0.82 0.79
Psy+FC 148 Linear SVM 90.8 0.84 0.97 0.97
Psy+FC 148 Quadratic SVM 93.8 0.91 0.97 0.97
Psy+FC 148 Cubic SVM 923 0.91 0.94 0.96
PSD+FC 227 Linear SVM 89.2 0.84 0.94 0.95
PSD+FC 227 Quadratic SVM 89.2 0.84 0.88 0.95
PSD+FC 227 Cubic SVM 87.7 0.84 0.88 0.95
PSD+FC 227  Medium gaussian SVM  86.2 0.78 0.94 0.93
PSD+FC 227 Coarse Gaussian SVM 86.2 0.78 0.94 0.92

Fig. 5. Classification using two types of features. Model performance
using combined features using two of psychometric, PSD, or FC. Psy, psy-
chometric data; PSD, power spectral density; FC, functional connectivity;
SVM, support vector machine; AUC, area under the curve.

of >0.9 by using medium, cubic, and weighted functions.
For further validation by using the testing dataset, these
eight models were used as predictive classifiers.
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Type Features Model Accuracy(%) Sensitivity  Specificity AUC
PSD+Psy+FC 230 Linear SVM 86.2 0.84 0.88 0.95
PSD+Psy+FC 230 Quadratic SVM 87.7 0.84 0.88 0.93
PSD+Psy+FC 230 Cubic SVM 87.7 0.84 0.88 0.93
PSD+Psy+FC 230  Medium Gaussian SVM  86.2 0.78 0.94 0.91
PSD+Psy+FC 230  Coarse Gaussian SVM 86.2 0.78 0.94 0.92
PSD+Psy+FC 230 Medium KNN 89.2 0.91 0.88 0.93
PSD+Psy+FC 230 Cubic KNN 89.2 0.94 0.85 0.93
PSD+Psy+FC 230 Weighted KNN 86.2 0.94 0.79 0.94

Fig. 6. Classification using all three features. Model performance us-
ing psychometric, PSD, and FC features. Psy, psychometric data; PSD,
power spectral density; FC, functional connectivity; SVM, support vector
machine; AUC, area under the curve.

4.4 Validation of classification models in testing dataset

We further tested the generalizability of the dis-
criminative features and trained models by using a test-
ing dataset of 10 high-sensitive participants and 10 low-
sensitive participants. Between groups, no clear difference
was observed for the factors of age (high: 28.7 4 9.6 years,
low: 27.6 £ 8.3 years), gender (high: 6F/4M, low: 5F/5M),
height (high: 164.3 4= 8.8 cm, low: 168.3 &= 8.8 cm), weight
(high: 59.1 + 10.0 kg, low: 65.3 + 13.6 kg), sleep effi-
ciency (high: 90.6 £ 6.9, low: 88.4 + 11.2), pain catastro-
phizing score (high: 7.0 & 8.5, low: 3.3 £ 6.9), perceived
stress score (high: 25.2 £+ 7.5, low: 18.9 4+ 9.4), and re-
cent life changes questionnaire (high: 126.3 4+ 69.0, low:
126.3 4+ 94.4); however, anxiety score (high: 5.5 £+ 3.0,
low: 2.4 + 2.4; p = 0.021), depression score (high: 4.1 +
3.3, low: 1.2 4+ 1.8; p = 0.026), and HPT (high: 39.7 + 2.8
°C, low: 45.8 £ 1.4 °C, p < 0.001) differed between high-
sensitive and low-sensitive participants. Among different
feature types and training models, an accuracy of 80% was
achieved using cubic SVM with the combined features of
PSD and FC or all features from Psy, PSD, and FC (Fig. 7).
Specifically, the validation of PSD and FC in cubic SVM
revealed a significant level of accuracy (p = 0.001, permu-
tation test). Moreover, the AUC was 0.8 with 70% sensi-
tivity and 90% specificity, indicating good generalizability
in a testing dataset.

5. Discussion

In this study, we identified the resting-state oscil-
lations and functional networks that can serve as brain sig-
natures for the classification between patients with high-
and low-sensitivity to heat pain. Using the machine learn-
ing algorithms of SVM with different kernels, we obtained
an accuracy of 86.2%-93.8% in classifying individuals with
thermal pain high-sensitivity or low-sensitivity; moreover,
using the trained model of the cubic SVM, an accuracy of
80% was achieved in the prediction of the pain sensitivity of
an independent dataset consisting of PSD and FC features
obtained from resting-state EEG.

5.1 Discriminative features on pain sensitivity

In feature selection, traditional procedures of the
independent ¢ test were performed to obtain discriminative
features used in classification and validation models. Re-
garding psychometric scores, individuals with pain high-
sensitivity had augmented anxiety and depression scores
consistently in prior studies, suggesting a correlation of pain
perception threshold with emotional factors [32, 33]. More-
over, heighted PCS was noted in high-sensitive individuals,
echoing the notion that catastrophizing might have a signif-
icant impact on pain perception [34, 35]. With regards to
the features of PSD and FC, differences in oscillatory power
and FC distributed among cortical regions had frequency-
specific characteristics. This finding was corroborated with
oscillations at different frequencies to the routing of infor-
mation flow of pain processes in the brain [36]. Further-
more, individual pain sensitivity might result from the inte-
gration of sensory, affective, and cognitive states, implying
that oscillatory connectivity in the multiple functional net-
works could underpin pain sensitivity [14].

5.2 Types of features in training accuracy

In pain sensitivity classification, using one type of
feature, the discriminative features of FC exhibited better
accuracy and AUC compared with those of Psy and PSD,
indicating FC within multiple networks effectively repre-
sent the underlying central pain process mechanism [14].
Moreover, pain sensitivity might involve sensory, affective,
and cognitive processes [37]. Features from Psy or PSD
could reflect the partial processing of the central pain per-
ceptual mechanism and lead to unsuitable classification of
performance. As for the combination of two types of fea-
tures from psychometrical scores and oscillatory powers,
the performance was still unsatisfactory (accuracy of 73.8%
and AUC of 0.79), which supported our notion that not the
local neuronal oscillatory activities but synchronizations
between multiple brain regions were engaged in the under-
lying mechanism of pain sensitivity. In addition, these find-
ings suggested that emotional factors might not play a dom-
inant role in the regulation of pain sensitivity. Correspond-
ingly, as all the types of features were used in the classi-
fication model, the performance was comparable with that
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(a)
Accuracy of trained model using testing dataset
Types of features Model Accuracy (%)
Psy Fine gaussian SVM 60
PSD Medium gaussian SVM 55
FC Linear SVM 65
FC Quadratic SVM 65
FC Cubic SVM 65
Psy+PSD  Coarse gaussian SVM 60
Psy+FC Linear SVM 65
Psy+FC Quadratic SVM 65
Psy+FC Cubic SVM 65
PSD+FC Linear SVM 70
PSD+FC Quadratic SVM 75
PSD+FC Cubic SVM 80
PSD+FC  Medium gaussian SVM 65
PSD+FC  Coarse Gaussian SVM 60
PSD+Psy+FC Linear SVM 70
PSD+Psy+FC Quadratic SVM 75
PSD+Psy+FC Cubic SVM 80
PSD+Psy+FC Medium Gaussian SVM 65
PSD+Psy+FC Coarse Gaussian SVM 60
PSD+Psy+FC Medium KNN 65
PSD+Psy+FC Cubic KNN 75
PSD+Psy+FC Weighted KNN 75

(b)
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Fig. 7. Validation of trained models using testing dataset. (a) The accuracy of all trained model using independent testing dataset. (b) Permutation

test of accuracy (80%) using cubic SVM (p = 0.001) and the receiver operating characteristic curve (ROC) with AUC of 0.8. Psy, psychometric data;

PSD, power spectral density; FC, functional connectivity; SVM, support vector machine; KNN, k-nearest neighbor; AUC, area under the curve; low,

low-sensitivity; high, high-sensitivity.

of PSD and FC. Notably, in the classification models using
two types of features, the SVM model with different ker-
nel functions had satisfactory accuracy and AUC, whereas
using all types of features for classification, both SVM and
KNN exhibited good performance. These findings could
postulate that the SVM model is recommended for estab-
lishing the algorithms in identifying pain sensitivity. Taken
together, we suggested that pain sensitivity might be clas-
sified from the SVM model, particularly using the features
of resting-state brain oscillations and FC.

5.3 Validation of classification models

Machine learning is vulnerable to overfitting and
may cause confounding with noise or irrelevant features.
Hence, in addition to successfully learning the features and
classifying the actual data, the models should be used to
predict new datasets. Remarkably, in this study, the trained
SVM model with PSD and FC features was validated us-
ing an independent testing dataset, and the results revealed
satisfactory performance (accuracy of 80%) in identify-
ing whether the patient was high-sensitive or low-sensitive.
In accordance with the training classification results, this

study further confirmed that the features of PSD and FC
with cubic SVM algorithm could predict pain sensitivity,
and the neurophysiological data could be the pivotal signa-
tures of pain perception processes [14]. Furthermore, this
finding is in line with the increased attention of brain-based
biomarkers in predictive modeling [38]. Combining mul-
timodal parameters for prediction was suggested to be a
compelling approach to pain prediction in clinical practice
[39]. In general, the pain sensitivity classification and pre-
diction model established in this study could eventually be
applied in clinical practice and could objectively evaluate
pain sensitivity without the presence of subjective ratings.
Furthermore, although satisfactory accuracy (80%) of the
validation, future investigations including the genetic fac-
tors [40, 41] or vital signs (heart rate variability or respira-
tion) [42—44] might further improve the performance.

5.4 Limitations

This study has several limitations. First, this study
confirmed that machine learning algorithms could clas-
sify and predict individuals with high-sensitivity and low-
sensitivity. On the basis of these findings, in future, the
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regression learning model might be used to examine var-
ied degrees of pain sensitivity in larger samples other than
just the classification of high- or low-sensitivity. Second,
the generalizability of the present findings to pain sensi-
tivity with respect to other sensory modalities (e.g., cold
pain, punctate pain, or pressure pain) remains undeter-
mined, which could be further investigated using a com-
parative study across sensory modalities. Third, the future
investigations of this classification technique on the clini-
cal applications are warranted including the discrimination
between those experiencing from not experiencing actual
pain, and the evaluation of pain severity. Finally, the pre-
dictive model presented in this study must be validated us-
ing a large dataset, eventually working toward clinical ap-
plication.

6. Conclusions

Neural oscillations and intrinsic functional con-
nectivity from resting-state EEG data could represent the
underlying signatures of pain sensitivity. Accurate classifi-
cation and prediction of pain sensitivity by using the SVM
model led to considerable possibilities of objective evalua-
tion of pain perception in clinical practice.
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