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1. Abstract

Background: Flax is one of the eight founder
crops of agriculture. It is believed to have been domes-
ticated as a long-day plant that has since spread to sur-
vive in a wide range of eco-geographic regions extending
from the warm Indian subcontinent to the low latitude east
African highlands and to the cool and high-latitude Eurasia.
Understanding the genetic basis underlying its adaptation
and selection events throughout its dispersion is essential
to develop cultivars adapted to local environmental condi-
tions. Methods: Here we detected genetic signatures of
local adaptation and selection events of flax based on 385
accessions from all major flax growing regions of the world
using genome scan methods and three genomic datasets: (1)
a genome-wide dataset of more than 275K single nucleotide

polymorphisms (SNPs), (2) a filtered dataset of 23K SNPs
with minor allele frequency >10% and, (3) a 34K exon-
derived SNP dataset. Results: Principal component (PC)
and fixation index (F g7 )-based genome scans yielded con-
sistent outlier SNP loci on chromosomes 1, 8, 9 and 12. Ad-
ditional loci on chromosomes 3, 7, 8, 10, 11, 13 and 14 were
detected using both the PC and F g7 methods in two of the
three datasets. A genome-environment association (GEA)
analysis using the 23K dataset and the first PC of cropping
season temperature, day-length and latitude identified sig-
nificant SNPs on chromosomes 3, 7, 9 and 13. Conclu-
sions: Most of the loci detected by the three methods har-
bored relevant genes for local adaptation, including some
that play roles in day-length, light and other biotic and abi-
otic stresses responses. Such genetic signatures may help to
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select pre-breeding materials potentially adapted to specific
growing niches prior to field performance trials. Given the
current low genotyping cost and freely available environ-
mental data, the genome scans along with GEA can readily
provide opportunity to sort out materials suitable to vari-
ous environmental conditions from large set of germplasm
in gene banks and/or in situ, thereby assisting the breeding
and genetic conservation efforts.

2. Introduction

Adaptation of a species to a gradient of environ-
mental conditions is attributed to the phenotypic plasticity
and genetic variation within the gene pool of the species
[1, 2]. While phenotypic plasticity to a wide range of
environmental conditions maintains genetic homogeneity
[3], variants permit differential adaptation to local envi-
ronments via selection and prompts genetic divergence of
populations [4]. Climate factors act as major forces in the
selection of variants increasing fitness from a gene pool
and consequently drive local adaptation and genetic diver-
gence [5]. Early domesticated crops have spread to ex-
tensive eco-geographic ranges, far from where their wild
ancestors originated. Their success along latitudinal gra-
dients is usually governed by their phenological behavior
in response to spatial variations in climate and related fac-
tors, especially day-length and temperature [6]. The agri-
cultural founder crops that are believed to have been domes-
ticated in the Fertile Crescent were presumed to be adapted
to vernalization and long-day flowering [6]. These crops
are now well spread throughout the world and adapted to
a range of eco-geographic conditions; consequently, post-
domestication genetic divergence can be observed among
eco-spatially separated populations [7]. Such divergence is
presumably attributed to loci selected in specific environ-
ments with high coefficients of genetic differentiation be-
tween populations that specify the genetic basis underlying
the adaptation [8].

Understanding the genetic signatures underlying
local adaptation of landraces and/or cultivars is an essen-
tial step for developing hastened and effective breeding and
conservation schemes in crops. Recent advances in se-
quencing technologies enable the production of large ge-
nomic datasets, and their genome-wide scans enable the
detection of outlier loci that are signatures of local adapta-
tions [9-11]. Outlier loci detection based on genetic differ-
entiation without prior knowledge of the driving environ-
mental forces and genome-environment association (GEA)
have recently been used to detect and cross-validate these
outliers as important signatures of adaptation to diverse en-
vironments [12, 13]. Alleles under selection in a specific
environment experience a higher fixation rate than alleles
of neutral effects for the environment [8]. In the absence
of environmental condition records, such as climate data,
genome scan techniques can be used to discriminate loci

harboring alleles under heavy selection pressure. These
techniques along with GEA based on multi-year environ-
mental data records have become useful to study the ge-
netic basis of adaptation to climatic and other environment-
specific conditions [13, 14]. Genome scans based on out-
lier loci detection and GEA have been used to discover lo-
cal adaptation signatures in several plant species like bar-
rel clover [15], sorghum [16], barley [17], maize [18], oat
[19], common bean [20], crop wild relatives [21-23] and
Arabidopsis [24].

Flax (Linum usitatissimum L.) is one of the eight
founding crops of agriculture in the fertile crescent [25].
It is believed to have first been domesticated in present-
day Syria [26] and spread to nearly all of its current eco-
geographic distribution in the Old-World millennia ago. As
archeological and paleontological evidences show, flax was
cultivated in Mesopotamian and Egyptian irrigated fields
ca. 7000 BC [25] and Europe ca. 6000 BC [27]. It started
being used for its fiber and seeds in Western Europe ca.
5500 BC [28] and reached as far as China by 3000 BC [29].
Some of these post-domestication distributions eventually
became secondary centers of diversification [30]. Today,
the crop is grown from the warm Indian subcontinent to the
temperate zones of Europe and America and the low latitude
North-East of African Highlands. Genetic variation and
population structure of flax are majorly attributed to envi-
ronmental and anthropogenic selection pressures [31]. The
genetic variation of flax correlates with latitudinal gradient-
related variables such as the day-length during the cropping
months [31, 32]. With the assumption that such genetic
variations are attributed to loci for environmental adap-
tation, we performed two genome scans, namely princi-
pal component analysis (PCA) and Wright’s fixation index
(Fs1), and a GEA analysis to detect outlier loci for the first
principal component (PC) of cropping month temperature,
day-length, and latitude (1) to identify loci contributing to
strong variations among the populations, (2) to assess the
genetic bases for local adaptation, and (3) to identify ge-
nomic regions underlying adaptation to any of these eco-
geographic parameters.

3. Materials and methods

3.1 Plant materials

The plant materials used in this project include
385 accessions that were collected from more than 35 flax-
growing countries. Approximately 60% of the germplasm
originated from the Old-World, i.e., where flax has been
cultivated for millennia, including the postulated centers of
origin and secondary centers of diversity.

3.2 Genotyping and data quality control
Genome-wide SNP datasets were extracted from a

1.7M SNP dataset originally generated by resequencing the
flax core collection (n = 407) using the Illumina HiSeq 2000
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Fig. 1. World map overlaid with mean annual temperatures and showing the geographic locations assigned to the populations (Pop1-12).

platform [31, 33]. SNPs were filtered with a 90% call rate
and a minimum minor allele frequency (MAF) of 5%. To
reduce the number of missing SNPs, imputation was per-
formed using LinkImpute [34] implemented in TASSEL v5
[35] with default parameters, but with the maximum dis-
tance between sites set to 100 kb. Individuals with >10%
missing SNPs after imputation were omitted. The resulting
SNP dataset is referred to as the 277K dataset. A second
dataset was prepared by extracting from the 277K dataset
only the SNPs without missing data and a MAF >10%. The
resulting dataset is later defined as the 23K dataset. A third
dataset containing only SNPs located in exons was filtered
from the original SNP dataset using an 80% call rate and a
MAF >5%. This dataset was also imputed. The resulting
exon dataset was further filtered to retain only SNPs with a
90% call rate after imputation. This set is referred to as the
34K exon dataset.

3.3 Population structure and assignment of genotypes
to clusters

In order to define the appropriate number of ances-
tral populations, estimates were obtained using the pcadapt
tool [36]. Here eigenvalues were computed for 50 PCs and
visualized into scree plots. By applying the cattle rule [37],
the PC to the left of the last PC with eigenvalues that de-
viates from the smooth line is considered to be the most
appropriate number of populations. To corroborate the es-
timated number of populations, a cross validation [38] was
performed using ADMIXTURE [39] which uses a Bayesian
clustering approach. PCA was performed based on the es-
timated number of populations (K) and a neighbor-joining
(NJ) phylogenetic analysis was carried out using TASSEL
[35]. The PCA based on the first three PCs and the NJ tree
were visualized using ggplot2 [40] in R and interactive Tree
Of Life (iTOL) [41], respectively.

Following the PCA clustering using the 23K
dataset, individuals were assigned to one of 12 populations.
To estimate the genetic variation between populations, pair-

wise genetic differentiation between populations was esti-
mated with the fixation index (Fg7) based on population
size estimated after 10000 permutations at « = 0.05 and
0.01 using Arlequin 3.5 [42]. To quantify the contribu-
tion of each SNP to the variation, the Fgr of individual
SNPs was obtained for each dataset using the R package
LEA which performs Landscape and Ecological Associa-
tion (LEA) analyses [43]. Haplotypes were assessed using
the web-based tool SNiPlay v3 [44] based on SNPs with sig-
nificant (p < 0.05/n, where n = number of SNPs in the data
set) Fgr values at o = 0.05 from the 23K dataset for each
chromosome. Haplotypes were defined as those present in
at least three individuals within the overall germplasm col-
lection or one of its populations. To determine the distribu-
tion of private haplotypes for each population, haplotypes
observed in at least three individuals were considered for
each chromosome. To understand the effect of bottlenecks
in haplotype, the per population gene diversity was calcu-
lated for each of the 12 populations using GENEPOP v4.7.5
[45] in R package genepop [46].

3.4 Environmental data curation

The geographic region/country that best represents
the population was assigned for each population based on
the passport data, which indicates the origin of dominant
members of a population. The representative geographic ar-
eas were inferred based on the history of cultivation of flax
in each of the regions (Supplementary Table 1). There-
fore, geographic coordinates of a representative district or a
province with a long history of flax cultivation were used as
environmental data tags. To get insight into some environ-
mental factors, mean annual temperature data downloaded
from www.wroldclim.org was overlaid onto the world map
using DIVA-GIS v7.5 (LizardTech Inc, Portland, OR, USA)
[47]. The representative coordinates of each population
were positioned onto the world map along with the annual
temperature data (Fig. 1).
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The monthly mean temperature and day-length
data for each population were downloaded from 22 years
of records available in the NASA database (https://powe
r.larc.nasa.gov/). The average records of these periods
were considered. The cropping period for the selected re-
gions was determined based on the major crop calendars
from FAO (http://www.amis-outlook.org/amis-about/calen
dars/soybeancal/en/) for all populations that follow similar
northerly cropping patterns. Because flax is a Rabi crop in
some parts of the world such as India and Pakistan, differ-
ent cropping calendars (https://nfsm.gov.in/nfmis/rpt/cale
nderreport.aspx and http://namc.pmd.gov.pk/crop-calende
r.php) were used for genotypes of Indian and Pakistani ori-
gins, respectively.

3.5 Adaptive loci assessment

To detect outlier loci associated with local adap-
tation signatures, two genome-scan methods were used:
individual SNP Fgp using LEA [43] and the principal
component-based to detect local adaptation (PCADAPT) as
implemented in the R package pcadapt [36]. Each dataset
was analyzed separately using both methods and results
were compared to identify robust genetic signature loci. To
capture adaptive loci associated with specific environmen-
tal conditions, a GEA analysis was performed following
the latent factor mixed model 2 (LFMM2) using Ifmm in
R [48] based on a PC of average cropping season tempera-
ture, day-length and latitude of the representative locations
of each population for the 23K dataset. The use of a repre-
sentative PC was chosen because the environmental factors
were highly correlated (Supplementary Fig. 1). For each
population and all three datasets, allelic frequencies were
calculated and summarized for all loci detected in all the
datasets by at least two methods.

Genomic regions that consistently showed a strong
association with an environmental factor across the datasets
for both of the first two methods (PCADAPT, and Fgs7)
were retained as potential signatures of local adaptation.
For the GEA, genome association with the first PC, which
explained more than 97% of the variation of the three envi-
ronmental factors of latitude, cropping season average tem-
perature and day-length among the populations, was ap-
plied (Supplementary Fig. 2).

3.6 Candidate gene inference

Genomic regions spanning 20 kb up and down-
stream of the most significant SNP loci were examined for
the presence of candidate genes for local adaptation using
the flax reference genome annotation [33]. Linkage dise-
quilibrium (LD) between candidate genes and their associ-
ated marker was calculated using gpart package in R [49].
Candidate gene putative functions were further assessed
through the identification of their Arabidopsis orthologs
(www.arabidopsis.org) and through a literature search evi-
dencing their role(s) in adaptation.

4. Results

4.1 SNPs and genetic structure

Filtering of the datasets yielded a total of 277,399,
23,592 and 34,451 SNPs for the two genome-wide (277 and
23K) and the exon-based (34K) datasets, respectively. The
former two contained 385 genotypes, while the exon-based
dataset included 393. The estimated number of populations
[36] was 12 (Supplementary Fig. 3) which is also consis-
tent with the result from cross validation technique where
the lowest error was obtained at K = 13 (Supplementary
Fig. 4). The populations tended to follow geographic gra-
dient where Pop1-5 were dominated by Eurasian accessions
(Supplementary Table 1. Pop6, Pop10 and Pop12 con-
tained mostly Canadian, Abyssinian and Mediterranean ac-
cessions, respectively, whereas the majority of the South
Asian accessions grouped into the remaining three popula-
tions (Fig. 2A,B). The NJ phylogenetic analysis clustered
the accessions slightly differently, i.e., reflecting both geo-
graphic and historical-use patterns of variation (Fig. 2C).
Accessions from Old-World flax-growing regions tended
to have longer branches compared to those from the New-
World regions. In addition, the majority of the fiber types
clustered in the single clade Pop1_FIB (Fig. 2C).

Pairwise population differentiation was significant
(p < 0.01) for all comparisons except between one of the
temperate populations (Pop4) and a population dominated
by Canadian cultivars (Pop6). Most populations dominated
by Eurasian and Canadian accessions displayed low differ-
entiations (Table 1). Populations with the strongest (Fg1 =
0.76) differentiation were the fiber-dominated Pop1 and the
South-Asian Pop11 (Table 1).

Pop1 and Pop2 harbored the most common haplo-
type from each of the 15 chromosomes (Table 2). All ac-
cessions considered, chromosome 1 displayed the lowest
percentage of common haplotype with ~19% while chro-
mosome 4 had the highest with 78%. Some populations,
such as Pop8, 9 and 11, contained very few common hap-
lotypes while others, such as Popl, 2, 4 and 6, comprised
a large proportion of individuals with common haplotypes
across all chromosomes (Table 2).

Private haplotypes are those found in a single pop-
ulation. Based on this definition, 30 private haplotypes
were observed in seven of the populations (Supplementary
Table 2). The South Asian (Pop11) and Abyssinian (Pop10)
populations contained 48% and 20% of the private hap-
lotypes, respectively (Fig. 3). The most frequently ob-
served private haplotype was Chrl4: Hapl which was
present in 97% of the accessions of the South Asian
population (Pop11) representing 8.6% of all accessions
(Supplementary Table 2). The highest gene diversity was
in Pop12 followed by Pop5 which putatively originated
from Mediterranean Portugal and Turkey regions respec-
tively (Supplementary Table 1). In contrast, Pop7 and
Pop10 displayed no diversity (Table 2).
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Fig. 2. Population genetic structure based on the 23K SNP dataset. (A) and (B) principal component analysis (PCA) clustering of the accessions

based on the first three principal components (PC1, PC2 and PC3). (C) Neighbor-joining (NJ) phylogenetic tree where accessions from the Old-World

flax growing regions tended to have longer branches. Accession names in NJ indicate the type (O, oil; F, fiber; U, unknown), the country of origin, the

breeding status (C, cultivar; B, breeding material; L, landrace) followed by the accession name.

4.2 Adaptive SNP detection and their linked genes

A total of 19 outliers were detected, includ-
ing six on chromosomes 1, 8, 9 and 12 that were de-
tected in all three datasets with both PCADAPT and
Fgr methods (Fig. 4 and Supplementary Table 3).
The allele frequencies at outlier loci detected in all the
three datasets differed among populations and where the
frequencies were higher in populations from old flax
growing regions for either of the two alleles at a lo-
cus (Fig. 5). Candidate gene searches revealed sev-
eral genes with putative function in ecological adapta-
tion. For example, the Chr9:9310330 locus harbors gene
Lus10006147, an ortholog to Arabidopsis AT4G15530,
which encodes a pyruvate orthophosphate dikinase. The
locus marked by Chr1:5466653 harbors the predicted flax
gene Lus10011967, whose ortholog AT4G18130 encodes
a phytochrome E (PHYE). The other locus on chromo-
somel (Chr1:10413007) includes two genes: Lus10022627

and Lus10022628, which are orthologs of AT2G36800
and AT2G36780, encoding URIDINE 5’-DIPHOSPH
(UDP)-GLYCOSYLTRANSFERASE 73C5 (UGT73C5)
and UDP-glycosyltransferase 73C3 (UGT73C3), respec-
tively. The Chr8:2932993 locus contained the tandemly
repeated genes Lus10012356, 7 and 8, orthologous to the
Arabidopsis gene AT3G07870 that encodes the F-BOX
PROTEIN92 (FBX92). The Chr7:10407650 locus, one of
the most significant SNPs of the 277K (p~3.48E-52 for
PCADAPT; p < 8.1 x 107224 for Fg7) and 23 K (p~6. 7
x 10728 for PCADAPT; p~1.94 x 10~ for F57) datasets
contains the predicted flax gene Lus10000371, which is or-
thologous to the early flowering gene AT1G17455 encoding
ELF4-LA4.

PC-based genome scan of the 34K dataset detected
several significant SNPs on chromosome 1 between posi-
tions 3612570 and 3671655 (Fig. 4) with p-values between
2.1 x 10716 and 6.9 x 1072, This locus contains six genes



Table 1. Genetic differentiation (F s7) among populations.

Population  Popl  Pop2  Pop3 Pop4 Pop5 Pop6 Pop7 Pop8 Pop9 Popl0 Popll
Pop2 0.09

Pop3 0.35 0.13

Pop4 0.05 0.05 0.22

Pop5 0.24 0.06 0.06 0.14

Pop6 0.06 0.03 022 0.02ns 0.13

Pop7 0.22 0.13 0.23 0.21 0.18 0.17

Pop8 0.63 0.38 0.24 0.48 0.29 0.49 0.39

Pop9 0.54 0.33 0.30 0.45 0.31 0.42 0.27 0.32

Pop10 0.72 0.51 0.38 0.69 0.43 0.62 0.75 0.53 0.69

Popll 0.76 0.61 0.51 0.67 0.55 0.67 0.62 0.34 0.48 0.68
Pop12 0.53 0.27 0.18 0.38 0.19 0.38 0.34 0.23 0.32 0.54 0.48

ns, non significant variation at p < 0.05 and 0.01. All other pairs are significant at p < 0.01.

Table 2. Frequency distribution of the most common haplotype of each chromosome in the overall population and in each of the

12 populations and population gene diversity.

Chr! Overall Popl Pop2  Pop3 Pop4 Pop5 Pop6  Pop7 Pop8 Pop9 Popl0 Popll Popl2
Chrl 18.96 40.83 1552  0.00 11.11 0.00 25.00 28.57  0.00 0.00 0.00 0.00 0.00

Chr2 64.68 97.50  70.69 40.00 88.89 30.77 9545 57.14 0.00 1429  28.57 0.00 0.00

Chr3 29.09 54.17 2241  0.00 66.67 56.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Chr4 78.18 99.17 94.83 7143 100.00 9231 9091 7143 11.11  0.00 0.00 0.00 28.57
Chr5 75.06 100.00 81.03 45.71 100.00 92.31 9091 14.29  0.00 0.00  100.00 0.00 57.14
Chr6 51.43 94.17 5862 14.29  55.56 30.77 5227 1429  0.00 0.00 0.00 0.00 0.00

Chr7 51.95 56.67 6897 37.14  77.78 7436 6591  0.00 0.00 0.00 85.71 0.00 14.29
Chr8 64.42 55.83 7414 9714  77.78 100.00 70.45 0.00 4444 1429 100.00 5.88 85.71
Chr9 49.61 56.67  65.52 2571  88.89 64.10  75.00  0.00 0.00 0.00 0.00 0.00 28.57
Chr10 59.22 56.67  81.03 48,57  88.89 97.44 7500 0.00 44.44  0.00 0.00 0.00 57.14
Chrl1 35.32 54.17  43.10  0.00 83.33 10.26  61.36  0.00 0.00 0.00 0.00 0.00 0.00

Chrl2 32.47 51.67 37.93  0.00 77.78 7.69 50.00  0.00 0.00 14.29 0.00 0.00 0.00

Chrl3 60.00 100.00 58.62 1429  88.89 28.21 9773 1429  0.00 0.00 0.00 0.00 14.29
Chrl4 65.19 57.50 8448 97.14  88.89 89.74 7500 0.00 33.33 14.29 100.00 0.00 57.14
Chrl5 62.86 62.50 84.48 77.14  55.56 9231 7273 28.57  0.00 0.00  100.00 2.94 42.86
Div 0.096 0.189 0444 0209 0.3914 0.206 0.000 0.222 0.286  0.000 0.337  0.571
No.Ind 385 120 58 35 18 39 44 7 9 7 7 34 7

1 Chr, Chromosome; Div, gene diversity; No.Ind, number of individual.

of which five were orthologous to AT2G30140 encoding
UDP-GLUCOSYL TRANSFERASE 87A2 (UGT87A2),
and one was orthologous to AT2G30150 encoding UDP-
GLUCOSYL TRANSFERASE 87A1 (UGT87A1). All
UGT genes at this locus were in strong LD with their as-
sociated SNPs (Supplementary Fig. 5).

GEA based on PC1 associated with latitude, aver-
age day-length and temperature during the cropping season
performed using the assigned coordinates of the population
resulted in significant SNPs on chromosomes 3, 7, 9 and
13 (Fig. 6). The significant locus at Chr3:16799360 har-
bored multiple candidate genes for flowering time regula-
tion, including the AT2G29950 ortholog Lus10040667 that
is predicted to be an EARLY FLOWERING LOCUS-LIKE1
(ELF4-L1) gene (Table 3). The locus Chr7:16799360 con-
tains AT1G67170 ortholog Lus10015495 that is predicted
to encode a FLOWERING LOCUS C EXPRESSOR-LIKE 2
(FLL2) gene (Table 3).

5. Discussion

Understanding the adaptation of genotypes to en-
vironmental gradients is important for breeding and con-
servation [50]. Natural selection in a wide-range of en-
vironmental gradients leads to genetic divergence and se-
lection of adapted variants [51]. Environmental variations
along the latitudinal gradient are major forces of selection
that lead to genetic divergence in plants [52]. Phenolog-
ical variations are some of the better known patterns in
plants along the latitudinal biosphere [53]. Flax is a species
that spread through nearly the full span of crops’ latitudi-
nal range, being grown from the low latitude of the East
African highlands to the high latitude of temperate regions,
as well as from the warm South Asian to the cool Eurasian
climates. Apart from natural selection, anthropogenic in-
fluences, such as selection and germ introduction into new
niches, also play major roles in the success and spread of
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Table 3. Outlier loci associated with the first principal component (PC) of latitude, temperature and day-length of the cropping
seasons and their candidate genes proposed based on the annotation of their Arabidopsis orthologs.

Outlier SNP p value Candidate gene Gene position Arabidopsis ortholog ~ Gene annotation

Chr3:6169770 5.4 x 10711 Lus10040667 6206833-6207246 AT2G29950 ELF4-L1

Chr3:9175844 1.0 x 10710

Chr7:16799360 4.0 x 10710 Lus10015495 16806888-16808239 AT1G67170 FLL2

Chr7:16798937 4.1 x 10710

Chr9:11962263 4.4 x 10712 Lus10028960 1178447-1180169 AT5G57280 RID2

Chr9:11798402 5.3 x 10711

Chr13:878058 5.1 x 1078

Chri3:10377859 4.1 x 10~ Lus10010694 1019336-1020295 AT2G02540 HB21/ZFHD4
Lus10010693 1025094-1025489 AT2G02540 HB21/ZFHD5

Pop3 mPop5 mPop8 mPop9 mPop10 =Popi1 Pop12
Fig. 3. Frequency distribution of private haplotypes by population.
Only seven of the 12 populations had private haplotypes.

crop plants, including flax [31]. This study provides in-
sights into genetic signatures of global scale adaptation of
flax across its wide range of habitats.

5.1 Genetic structure and differentiation

The genetic structure observed in this experiment
is consistent with what was establish in previous works,
which demonstrated the clustering of accessions attributed
to their eco-geographic origin [31, 54]. The relatively high
differentiation and high concentration of private haplotypes
in populations dominated by South Asian accessions may
suggest the adaptation of the crop to warm regions [55, 56].
This is unlike the cool and/or temperate habitats where flax
is widely grown [57]. Flax in this warm South Asian region
might also be adapted to short-day photoperiod given that
flax accessions from this region differ from the common
flax adapted to grow under the long-day seasons of most
cooler regions [56, 58]. In a similar way, the higher rate
of private haplotypes in the Abyssinian population may be
attributable to adaptation of the crop to the equatorial re-

gion, with equinox effects, elevation-induced cool temper-
ate climate and windstorms [31, 59]. Despite the high pri-
vate haplotype concentration, the low gene diversity in the
Abyssinian population may suggest effect of genetic drift
[60]. The lack of private haplotypes in some populations
such as Pop1, 2, 4, and 6, dominated by Eurasian and Cana-
dian accessions, can be due to introduction of materials of
different origins, selection of dual flax types (both fiber
and oil) or through hybridization with wider germplasm in
breeding programs [31, 61].

5.2 Adaptive loci and their linked genes

The outlier loci harbored genes of known roles for
local adaptation. Most loci detected using the PCADAPT
and F g7 methods are linked to genes that mediate responses
to stresses. The flax genes Lus10011967, Lus10022627 and
Lus10022628 that are predicted to encode UGT73Cs might
be involved in Fusarium oxysporum wilt tolerance in flax
[62—64] and other plant species [65-67]. Dmitriev et al.
[68] demonstrated the up regulation of UGT73C3 in flax
in response to Fusarium infection. By and large, UGTs
play an important role in Fusarium wilt resistance [69] in-
cluding in flax [62, 64]. Fusarium fungi are the most com-
mon diseases in many crop plants and can cause devastat-
ing losses. Fusarium wilt in flax is one of the most severe
biotic stresses and may lead to a complete loss of flax pro-
duction [70]. Hence, Fusarium diseases can be one of the
natural selection forces that result in genetic divergence in
many crops [71], including flax [72]. The consistent out-
lier SNP Chr1:10413007, that marks the locus harboring
both UGT73C3 and UGT73CS5, is likely an important ge-
netic signature for local adaptation [73, 74]. The other locus
marked by Chr1:5466653 included a gene predicted to en-
code PHYE. This gene was hypothesized to be involved in
regulating responses to light quality and temperature [75].
As such, this locus may be an essential genetic signature of
divergent adaptation to different eco-geographic regions.

The ELF4-L4 gene at Chr7:10407650 locus plays
a significant role in circadian clocking [76] and flowering
time [77], which are both affected by day-length, and con-
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and after the hyphen indicate the chromosome number and the outlier SNP as listed in Supplementary Table 3, respectively.

sequently, latitude. The tandemly repeated FBX92 genes
at Chr8:2932993 locus can also be important signatures of
adaptation of flax to varying environmental factors along its
latitudinal gradient. FBX92 mediates responses to different
abiotic stresses including light [78]. The FBX92 protein af-
fects leaf sizes in Arabidopsis [79], which may contribute to
adaptation to latitude-induced abiotic stresses such as tem-

perature [80]. The multiple copies of the UGT87A gene
at locus Chr1:3612570 and Chr1:3671655 might also play
an important role in flowering time regulation and abi-
otic stress response. In Arabidopsis, UGT87A2 mutants
overexpressing the flowering repressor FLOWERING LO-
CUS C (FLC) had delayed flowering times regardless of
the duration of the day-length [81]. UGT87A2 is also in-
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volved in plant adaptation to osmotic stresses, including
drought and salinity, via regulation of multiple genes medi-
ating responses to these stresses [82]. The Chr1:3612570-
3671655 locus harbors multiple copies of the UGT87A2
gene which may suggest its involvement in flax adaptation
through regulation of stress responses [81, 82]. Other out-
lier loci also harbored genes of importance for local adap-
tation. For example, Lus10042995 and Lus10042996 were
predicted to be orthologous to ethylene response factors
ERF106 (AT5G07580) and ERF105 (AT5G51190), respec-
tively. The former is DECREASE WAX BIOSYNTHESIS2
(DEWAX?2) that negatively regulates cuticular biosynthesis
[83], and, as such, adversely impacts cuticular wax-related

tolerance to abiotic stresses such as drought [84]. In con-
trast, the latter (ERF105) is a transcription factor involved
in freezing tolerance [85]. Moisture availability and tem-
perature are among the major factors that shaped the genetic
structure of flax, and they constitute major determinants of
the success of the crop in its current eco-geographic regions
[31], which span the warm semi-arid Indian subcontinent
[55, 86] to the relatively cool and humid temperate Eurasian
regions [87].

Most of the outlier SNP loci that are associated
with the PC1 of major environmental factors such as crop-
ping season day-length, temperature and latitude, also har-
bored important genes with known roles in adaptive di-
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vergence of plants along eco-geographic gradients. The
ELF4-L1 orthologous gene at Chr3:6169770 locus is pre-
dicted to regulate circadian rhythm and flowering time
[88, 89], suggesting the adaptive signature of this locus in
flax. Chr7:16799360, which marks the locus harboring the
predicted FLOWERING LOCUS C EXPRESSOR-LIKE 2
(FLL2) gene, is another crucial latitudinal gradient adap-
tation signature. FLLs have been reported for their role
in the regulation of FLOWERING LOCUS C (FLC) and
vernalisation [90, 91]. The AT2G02540 orthologous genes
Lus10010693 and Lus10010694 at the Chr13:10377859 lo-
cus also mediate flowering time via positive regulation of
FLC [92, 93]. Flax is a “long-day” plant whose flowering
time can be determined by both photoperiod and vernali-
sation [94]. The strong association between loci harboring
genes that regulate flowering time and vernalisation sug-
gests the importance of these loci for genetic divergence,
which allowed flax to expand to vast geographic regions.
Since GEA was performed based on representative puta-
tive locations, validation using materials of known and pre-
cise geographic coordinates and associated site factors such
as climatic, edaphic and biodiversity records, remains war-
ranted.

6. Conclusions

The Fgpr- and PC-based genome scans and
GEA have captured important genetic signatures of eco-
geographic adaptations of flax to abiotic and biotic factors.
Genome regions that harbor genes responding to light and
important flax diseases such as Fusarium wilt have con-
tributed in shaping the genetic structure and successes of
the crop into its current diverse eco-geographic regions.
However, given the putative nature of the genes discussed
herein, further investigation is warranted to validate them.
Precise original collection site information of each acces-
sion, including the geographic coordinates of the sampling
sites, would strengthen the GEA analyses. The inclusion of
additional local landraces would also be beneficial because
it would increase the number of individuals in small pop-
ulations and because landraces are good representatives of
local adaptation. However, some limitations to the study
need to be mentioned in view of the interpretation of the
data and for consideration in future research avenues. Here,
we use PC as a surrogate or proxy variable for latitude,
temperature and day-length. This was justified because of
the high correlation between them but, as such, their ef-
fects ended up being confounded. Plants’ mechanisms of
recognition of the photoperiod and temperature environ-
mental cues can differ [95-97] but there is mounting evi-
dence of complex interactions among them. Indeed, pho-
toperiod sensitivity genes that may trigger flowering re-
sponse can be intricately-linked to temperature shifts, such
as in winter wheat, where they work in concert with ver-
nalization (cold response) genes [98]. In Arabidopsis, pho-

toperiod and temperature synchronize flowering [99]. Be-
cause of these complex interactions, it is difficult to tease
apart the role(s) of temperature versus day-length, even in
controlled experiments. Here, we could only infer the cues
based on the known role(s) of the putative genes which was
somewhat restricted to knowledge from the Arabidopsis or-
thologs. This was beyond the scope of the research here but
may have implications for breeders attempting to introduce
foreign germplasm into their breeding program because the
foreign germplasm may be poorly adapted to the different
photoperiod and temperature regime. In brief, genetic sig-
natures captured using genome scan and GEA may help to
select pre-breeding materials potentially adapted to specific
growing niches without prior field performance trials. With
the current low genotyping cost and freely available envi-
ronmental data, this approach can readily provide predic-
tions regarding the suitability of large flax collections to
various environments.
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