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1. Abstract

Objectives: Both stress and hypertension (HTN)
are considered major health problems that negatively im-
pact the cerebral vasculature. In this article we summarize
the possible relationship between stress and HTN. Meth-
ods: We conducted a systematic review of the literature us-
ing a database search of MEDLINE, PubMed, Scopus, and
Web of Science. Results: Psychological stress is known
to be an important risk factor for essential hypertension.
Acute stress can induce transient elevations of blood pres-
sure in the context of the fight-or-flight response. With in-
creased intensity and duration of a perceived harmful event,
the normal physiological response is altered, resulting in
a failure to return to the resting levels. These changes
are responsible for the development of HTN. Genetic and
behavioral factors are also very important for the patho-
genesis of hypertension under chronic stress situation. In
addition, HTN and chronic stress may lead to impaired
auto-regulation, regional vascular remodeling, and break-
down of the blood brain barrier (BBB). The effects of both
HTN and chronic stress on the cerebral blood vessels shows
that both have common structural and functional effects in-
cluding endothelial damage with subsequent increased wall
thickness, vessel resistance, stiffness, arterial atherosclero-
sis, and altered hemodynamics. Conclusion: Most of the
above mentioned vascular effects of stress were primarily
reported in animal models. Further in-vivo standardization
of pathological vascular indices and imaging modalities is
warranted. Radiological quantification of these cerebrovas-
cular changes is therefore essential for in depth understand-
ing of the healthy and diseased cerebral arteries functions,
identification and stratification of patients at risk of cardio-
vascular and neurological adverse events, enactment of pre-
ventive measures prior to the onset of systemic HTN, and
the initiation of personalized medical management.

2. Introduction

Stress is generally perceived to be an imbalance
between environmental demands and a person’s ability to
meet them. Stress cannot be merely regarded as an environ-
mental condition but as an interaction between a particular
external exigency and an individual; thus, not every person
will evaluate and react to a situation in the same way. Ac-
cording to the Medical Subject Headings (MeSH) stress is
defined as a pathological maladaptive behavioral and hor-
monal response to extrinsic factors and abnormal conditions
that affect its homeostasis. The daily events that activate
the physiological responses can consequently cause to some
extent, psychological wear and tear [1]. When emotional
stressors are overwhelming, this condition is known as psy-
chological stress. Modern lifestyles such as work-related
and familial problems, social withdrawal, financial worries,
and violence are some of the factors that can predispose or

potentiate stress [2]. The burden of stress goes far beyond
being a mental disorder with growing evidence of its po-
tential role in the pathogenesis of various health problems
like peptic ulcers, inflammatory/irritable bowel syndromes,
metabolic syndrome, immune system dysfunction, cogni-
tive dysfunction, and cardiovascular diseases including hy-
pertension [2, 3]. This review will focus on the relation of
stress to hypertension (HTN) and the possible sequelae for
the cerebral vasculature.

Stress and hypertension (HTN) are correlated and
constitute a major health risk. HTN creates risk for the non-
transmittable cardiovascular diseases generally regarded as
the major cause of death and disability worldwide. The
number of hypertensive adults will reach 1.5 billion, ap-
proximately 30% of the world’s population, by 2025. The
number of hypertension related mortalities was reported to
be over 7 million in 2002; approximately 13% of all re-
ported deaths [3]. The impact and the large magnitude of
the associated morbidities as severe cardiovascular, renal
and neurological complications are major concerns related
to HTN [4]. Despite the many known risk factors for hy-
pertension, including older age, family history, high body
mass index, sedentary life, excess salt intake, fat, alcohol
consumption, and smoking, the etiology of HTN remains
not fully understood. Indeed, the genetic and behavioral
factors known to be involved in HTN leave unexplained a
substantial portion of the variability in outcomes [4].

Many factors suggest that psychological stress is
an important risk factor for the development of essential
hypertension. The objective of this manuscript is to review
these possible links as well as the effect of both disorders
on cerebral blood flow and vasculature.

3. Relation between stress and hypertension

3.1 Acute stress and hypertension

Acute stress can induce a transient elevation of
blood pressure (BP), but it is still unclear whether this leads
to chronic BP elevation. Sympathetic activation is held re-
sponsible for the transient elevation in BP observed dur-
ing acute psychogenic stress. On exposure to an acute
stressor, the fight-or-flight response is generated: increased
heart rate, high cardiac output (COP), sodium and fluid re-
tention, and visceral vasoconstriction resulting in circula-
tory redistribution favoring muscle and brain. This hyper-
reactivity is thought to be related to the central nervous sys-
tem’s perception of threat and initiation of copying with this
threat resulting in activation of the limbic system with sub-
sequent activation of the sympathetic nervous system and
the sympathetic adrenal medullary system releasing cate-
cholamines. In addition, a normal physiological response
for stressful stimuli is activation of the hypothalamic—
pituitary—adrenal axis. This activation is characterized by
the hypothalamic release of corticotropin-releasing factor
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which in turn elicits pituitary release of adrenocorticotropic
hormone, and cortisol. The production of corticotropin-
releasing factor and adrenocorticotropic hormone is typi-
cally inhibited by negative feedback from increasing levels
of catecholamines and cortisol with subsequent decrease of
BP to its baseline levels [5]. The acutely elevated BP in
response to stress is characterized by high cardiac output
(CO) and norepinephrine levels. The CO tends to normalize
first while the plasma norepinephrine level and sympathetic
drive tend to last longer in the early phase of hypertension
(Fig. 1).

3.2 Chronic stress and hypertension

The intensity and duration of stress are the most
important factors in the determination of the risk for sus-
tained BP elevations and hypertension. The pathophysio-
logical mechanisms by which stress leads to sustained long
term HTN are poorly understood. It may be that the recur-
rent activation of this system by similar stressors or some
combination of the aforementioned factors, failure to return
to the baseline levels after the stressful events, failure to
accommodate to recurrent stressors is responsible for the
development of hypertension [6]. Some authors suggest
that the mechanism for development of HTN is attributed
to a “defeat” response rather than a “defense” response.

The defeat reaction is described as loss of territorial control
and failure to meet expectations in the event that chronic
stress leads to a depressive mode. This state is mediated
by the adrenocortical system in contrast to the defense re-
sponse which is mediated by the sympathoadrenal system
[7]. When exposed to chronic stressful stimulus, the nor-
mal physiological response is altered. The negative feed-
back mechanism is removed, and the central nervous sys-
tem centers are reset to work at a slightly higher point. At
first, the “desired” response is achieved by a potentiated au-
tonomic cardiovascular drive. Later, with increased arterio-
lar responsiveness, a continuing hypertensive state is main-
tained with less sympathetic drive, with no need for either
elevated cardiac output or for heightened norepinephrine re-
lease [8]. Contrary to the acutely elevated BP in response
to stress, in the established phase of hypertension, both CO
and norepinephrine levels are normal whereas the periph-
eral resistance becomes elevated. Although the neurogenic
aspects of the early stages of hypertension can be easily
linked to limbic activation, the association is still indetermi-
nate when we consider the conversion from a high cardiac
output to a high resistance state [8]. A potential role is likely
for higher brain centers involved both in the perception and
coping with stress and the organization of the neural and
hormonal response, e.g., hippocampus, prefrontal cortex,
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and amygdala. Chronic stress exposure results in dysregu-
lation of these structures which may lead to a disinhibition
of the HPA and augmentation of the stress hormone release
[8].

The stress induced physiological changes were the
main focus of the investigations of the relationship between
stress and HTN. The genetic predisposition plays a major
role in determination of the level of personal cardiovascular
reactivity with subsequent higher vulnerability to HTN and
cardiovascular diseases in those with higher levels of car-
diovascular reactivity in response to stress. The magnitude
of the hemodynamic response is suggested to be genetically
determined based on that it is least pronounced in normoten-
sive controls without a familial history of hypertension,
and maximal in individuals with labile hypertension with
at least one hypertensive parent [9]. The speed by which
the BP returns to its baseline levels appears to play a po-
tential role in the development of HTN even more than the
degree of reactivity. Thus, the physiological responses that
primarily aim to maintain equilibrium can become harmful
with persistent non necessary activation. Negative cogni-
tive coping patterns such as rumination; have been linked
to delayed BP recovery [9].

Generally, the intensity and the duration of the
stressor are better determinants than the type of stressor in
the development of the HTN. Chronic stress has been sug-
gested to play a causative role in HTN based on its negative
effects on the cardiovascular system including increased
BP, COP, heart rate, left ventricular mass, and delayed post-
stress BP recovery in response to variable stressors (e.g., oc-
cupational stress, social environment stressor, low socioe-
conomic standard (SES), race related discrimination) [4].

Behavioral factors are also very important for the
pathogenesis of hypertension under chronic stress situation.
Chronic psychological stress could be associated with dis-
torted lifestyle and mental distress as well as long-lasting al-
lostatic load, contributing to the maintenance of blood pres-
sure elevation [10].

4. Cerebrovascular effects of stress

4.1 The effects of acute stress on the cerebral blood
vasculature

Stress is known to have clear, primarily vasocon-
strictive effects on the peripheral vasculature, but the brain
vessels are independent to some extent. Generally, the brain
is dependent on its blood supply as the main source of en-
ergy and nutrients as it naturally lacks the ability to store in-
trinsic energy. Based on the brain’s metabolic demands, it
dynamically regulates the cerebral blood flow via a cascade
of events involving neurovascular units. The neurovascular
unit consists of the cerebral microvessels, glial cells (as-
trocytes, microglia, and oligodendrocytes), and neurons.
Maintenance of precision and harmony between the en-
dothelium and the neurons is the basis of normal cerebral

circulation regulation. Neuronal activation leads to astro-
cytes being activated which in turn generate calcium de-
pendent potassium and the release of vasodilators at the
local arteriolar smooth muscle leading to vasodilatation.
The basal cerebral vessels diameter (vascular tone) is main-
tained by the basal sympathetic nervous system discharge
which ensures that changes in BP do not lead to overstretch-
ing of the cerebral arterioles, or lead to blood-brain barrier
injury [11].

In the setting of acute psychological stresses, the
neurovascular coupling is locally potentiated to increase the
blood volume and perfusion in areas of increased neuronal
activity that is to meet the blood oxygen level demand [5].
This can be visualized using perfusion functional MRI as
an increase in cerebral blood flow in the ventral right pre-
frontal cortex and left insula/putamen area during acute psy-
chological stress. In some studies, worry induction was as-
sociated with regional greater cerebral blood flow (CBF)
in the visual cortex, thalamus, caudate and medial frontal
cortex [12]. Concurrently, acute stress has been reported
to raise the circulatory levels of proinflammatory cytokines
(interleukin-6 (IL-6) and tumor necrosis factor (TNF-a))
increasing both the vulnerability to inflammatory disease
and platelet activation [13].

4.2 The effects of chronic stress on the cerebral
vasculature

Chronic stress, particularly in animal models, has
been related to altered cerebral vasculature. Stress may
impair the neurovascular balance responsible for match-
ing the CBF to the brain metabolic demand every moment.
This results in subtle brain alterations, eventually leading to
chronic brain injury. Chronic stress is reported to affect the
neurovascular coupling at the cellular level (neuron, astro-
cytes and more recently at the level of the endothelial cells
[14]. In this review, we will focus on the chronic effect of
stress that may translate into modification of the cerebral
blood vessels.

4.2.1 The structural effects of chronic stress on the
cerebral vasculature

In contrast to the defensive and adaptive nature
of the acute cerebral vascular responses to stress, chronic
stress induces a sustained hyperactivity of the hypothalamic
pituitary axis (HPA) often referred to as “allostatic over-
load” (Fig. 1). Overstimulation of the autonomic nervous
system (ANS) and HPA will eventually result in endothe-
lial injury via a variety of downstream mechanisms. Hy-
perstimulation of the renin-angiotensin system leads to in-
creased levels of homocysteine which induces endothelial
damage. Increased cortisol levels directly decrease nitric
oxide (NO; a powerful vasodilator) levels through the inhi-
bition of endothelial NO synthase, and indirectly by reduc-
ing the production of reactive oxygen species (ROS) and
oxidative stress. Also, chronic stress decreases the adenyl
cyclase enzyme activity resulting in decrease cyclic adeno-
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sine monophosphate (cCAMP). The persistently increased
corticotropin-releasing factor results in a marked increase
in the proinflammatory mediators and cytokines (Endothe-
lin 1, TNF-q, Prostaglandin 12, IL-1 3, IL-6). All of these
factors, in combination, result in cerebral endothelial injury
and dysfunction [5]. Thus, chronic stress may contribute to
intima-media thickening, the development of arterial stiff-
ness and atherosclerosis of the cerebral blood vessels in
ways similar to what has been previously reported in pe-
ripheral blood vessels [15].

Vascular angiogenesis dysfunction is another con-
sequence of the stress induced endothelial injury. Neovas-
cularization is an intrinsic physiologic tissue response to
different stimuli through arteriogenesis (collateral remod-
eling) and angiogenesis (formation of new vessels from the
existing vasculature). Brooks et al. [16] demonstrated a
significant reduction in the density of cerebral microvessels
in male lean rats after 8 weeks of unpredictable chronic mild
stress (UCMS); however, Pearson-Leary and colleagues
found that microvessel density in the brain was higher to
provide metabolic support following increased neural ac-
tivity. These opposing results may be due to the use of dif-
ferent stress models (social defeat paradigm vs. UCMS),
with variable duration (7 days vs. 8 weeks), and the dif-
ferent animal models utilized (Lean Zucker rat vs. Sprague
Dawley rat) [17]. The process of angiogenesis is normally
maintained within the normal limits under the influence of
2 counteracting factors: vascular endothelial growth factors
(VEGF) promoting angiogenesis, and thrombospondin-1
(TSP-1) promoting capillary regression and rarefaction.
Brooks et al. [16] reported increased TSP-1 expression
with either VEGF protein expression being unchanged or
slightly elevated in obese Zucker rats. It was suggested that
this effect is mediated by stress induced oxidative stress and
free oxygen radicals [17].

The vascular endothelium also plays an impor-
tant role in BBB integrity. The stress induced glucocorti-
coids released during HPA dysfunction affects the BBB di-
rectly, or through mast cell activation leading to increased
BBB permeability evidenced by the extravasation of intra-
venous 99-Technetium glucoheptonate (°*Tc) into the brain
parenchyma [18].

4.2.2 The functional effects of chronic stress on the
cerebral vasculature

Chronic stress affects cerebrovascular functional
reactivity [5]. The UCMS model has been used by a ma-
jority of researchers to induce depression-like behaviors in
rodents by exposing them to mild daily randomized stres-
sors. After 8 weeks of UCMS, significant pathological al-
terations were observed in the proximal large cerebral blood
vessels (which represents up to 40% of the total cerebrovas-
cular resistance and their functional response is critical in
preventing pressure fluctuations from reaching the distal
regions of the cerebral circulation). This was shown by

a decrease in the middle cerebral artery (MCA) vasodi-
lation in response to acetylcholine (a potent endothelial-
dependent dilator) and an increased MCA constriction re-
sponse to serotonin (a potent cerebrovascular constrictor).
These adaptations to chronic stress were coupled with in-
creased levels of oxidative stress and reduced NO bioavail-
ability in the cerebral vessels [19].

An immobilization model has been used by re-
searchers to induce chronic stress while recording cerebral
blood volume changes in the somatosensory cortex with an
optical imaging system. Animals under stress by chronic
restraint exhibited a decrease in their hemodynamic vascu-
lar response, with dilation of the small pial arterial in the
somatosensory cortex during hind limb electrical stimula-
tion, in association with downregulation of neuronal NO
synthase and heme oxygenase-2 and enhanced inducible
NO synthase (iNOS) expression. Parvalbumin expression
in GABAergic interneurons was decreased as well as gluta-
mate receptor-1 in neurons, whereas the microglial activa-
tion was increased. [20]

Other researchers have focused on the effect of
stress on the neurovascular coupling using a 7-days het-
erotypical stress paradigm in rats. The coupling effect was
represented in amygdala brain slices after neuronal stim-
ulation by measuring the dilation of the parenchymal ar-
teriole (PA). After stress, significant reduction in the PAs
to neuronal stimulation was shown, as well as the dilation
of isolated PAs to external potassium released from astro-
cytic end feet during NVC, suggesting a dysfunction of the
smooth muscle inwardly rectifying potassium (KIR) chan-
nels. It was postulated that the chronic stress resulted in a
glucocorticoid-mediated decrease in functional potassium
channels in the parenchymal arterioles myocytes, which
rendered the arterioles less reactive to potassium ions re-
leased from astrocytic end feet during neurovascular cou-
pling, leading to impairment of this process.

As the integrity of NVC is crucial for the neurons
survival, its stress induced dysfunction may contribute to
the pathophysiology of brain disorders [21].

Chronic social defeat stress was shown to be asso-
ciated with enrichment in pathways that delineate the vascu-
lar response to injury. These pathways followed a temporal
sequence of immune responses manifested in microglial ac-
tivity, inflammation, oxidative stress, growth factor signal-
ing, and wound healing (i.e., platelet aggregation, hemosta-
sis, fibrinogen deposition, and angiogenesis) resulting in
cerebrovascular microbleeds in scattered locations, vascu-
lar pathology and blood-brain barrier breakdown visual-
ized by plasma immunoglobulins and erythrocytes within
the parenchyma and perivascular spaces of the mice brains
[22, 23].

The primary downstream effects of chronic stress
exposure on cerebrovascular dysfunction are presented in
Fig. 2.
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Fig. 2. Schematic representation of the chronic stress induced cascade of events resulting eventually in cerebrovascular dysfunction.

5. The effects of hypertension on the cerebral
vasculature

Hypertension also induces structural and func-
tional changes in the cerebrovasculature either intrinsically
or in combination with the effects of stress. It is hypothe-
sized that the cerebrovascular changes and elevated cerebral
arterial BP occur prior to the onset of systemic HTN and are
thought to be the driver of systemic blood pressure changes
[24].

5.1 The structural effects of HTN on the cerebral
vasculature

The hallmark of HTN is an increase in peripheral
resistance which is achieved by a reduction in lumen diam-
eter and/or vessel number. Hypertension induces tangential
stress on the arterial wall resulting in increased intralume-
nal pressure, arterial wall thickness, and wall-to-lumen ra-
tio with a reduction in the lumen diameter, to maintain this
stress within a physiological range. Several factors partic-
ipate to the hypertrophy of cerebral arteries and arterioles,
including: the trophic effects of the sympathetic perivascu-
lar innervation, the mechanical effects of the elevated in-
travascular pressure on the vascular wall through growth
factors, oxidative stress, and reduced availability of NO.
Hypertension also promotes the formation of atheroscle-

rotic plaques in cerebral arteries and arterioles, and induces
fibrinoid necrosis (lipohyalinosis) of penetrating arteries
and arterioles [25].

Intracranial capillary regression and rarefaction
has been reported for several models of hypertension in-
duction; more so with the renal wrap, 2-kidney 2-clip,
and deoxycorticosterone acetate (DOCA)-salt, than spon-
taneously hypertensive rats [26, 27]. Rarefaction of pial
arteries was observed only by Sokolova et al. [26]. The
arteriolar and capillary loss could result in chronic cere-
bral hypoperfusion through reduction of the cerebral blood
flow [27]. The cerebral blood vessels structure is greatly af-
fected by Hypertension. Structural and hemodynamic ves-
sels dysfunction occur as a result of the reorganized cellular
architecture and the vascular wall remodeling. Vascular oc-
clusions may result from atherosclerosis and lipohyalinosis.
The primary aim of the HTN induced vascular remodeling
effects is to maintain the cerebral blood flow within the nor-
mal limits by increasing the vascular resistance in face of
the elevated BP which is reported to be effective in the early
stages of HTN. With time progression, this will result in re-
gional blood flow reduction especially in the occipitotem-
poral, prefrontal cortex, and the hippocampus as reported
in the older hypertensive patients. HTN also increases the
BBB permeability and affects its capability of maintenance
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of the central nervous system homeostasis. Among poten-
tial mediators for the noted increased permeability are ROS,
inflammation, and vascular remodeling [28].

5.2 The functional effects of HTN on the cerebral
vasculature

Chronic HTN interferes with the local NVC mech-
anisms leading to impairment of the functional hyperemia
with failure to meet up the increased metabolic demands of
the regions of increased neuronal activity [28].

Cerebral arterial autoregulation is functioning
when the mean arterial pressures range between 60 and
150 mmHg to maintain the parenchymal perfusion at rel-
atively constant levels. Outside of these values, the control
of blood flow is lost and becomes dependent on mean ar-
terial pressure. HTN increases the cerebral perfusion pres-
sures needed for autoregulation of the CBF, i.e., shift of
the pressure-flow curve to the right. Middle cerebral artery
flow velocity monitoring by using transcranial doppler have
shown that transient changes in BP still induce adaptive
flow adjustments, indicating that the cerebral vessels are
still able to compensate for the dynamic pressure changes
despite the shift in the pressure-flow curve [29].

The increased sensitivity of the smooth muscles to
calcium accounts for the increased myogenic tone and the
shift in autoregulation. The myogenic reactivity is an innate
response of the smooth muscle to stretch that is controlled
by the endothelium through many mechanisms, such as NO,
prostacyclin, and endothelium-derived hyperpolarizing fac-
tor (EDHF). The HTN induced endothelial dysfunction re-
sults in a reduction of these mediators thus promoting in-
creased myogenic tone. Other suggested mediator of the
increased myogenic tone is the 20-hydroxyeicosatetraenoic
acid (20-HETE), which was found to be increased in the
cerebral vessels of hypertensive rats [30].

6. Quantification of the cerebral vasculature
changes

A review of the effects of both HTN and chronic
stress on the cerebral blood vessels reveals that both have
common effects. Indeed, both result in endothelial damage
with subsequent increased wall thickness, vessel resistance,
stiffness, and an atherosclerotic process that affects vessel
diameter and tortuosity. These vascular changes lead to
impaired autoregulation, regional vascular remodeling, and
BBB break down. Quantification of these cerebrovascular
changes is an essential step towards the better understand-
ing of the healthy and diseased cerebral arteries functions.
This new understanding may help to identify and stratify pa-
tients at risk of cerebral adverse events, enable preventive
measures prior to the onset of systemic HTN, and optimize
the medical management of those in need.

In this section, current and future trends in the
imaging modalities will be discussed with a greater focus

on technologies used for imaging blood vessels as a way
of evaluating vascular function rather than parenchymal as-
sessment.

6.1 Digital subtraction angiography (DSA)

DSA remains the gold standard methodology in
the quantification and visualization of the cerebrovascular
changes. However, the invasive nature of this technology
and the attendant high cost limits its use. This neuroimag-
ing modality and its post imaging processing software can
give an idea about vessel diameter, tortuosity and cerebral
hemodynamics [31]. Also, the cerebrovascular BP can be
measured by a specialized sensor at the tip of the guiding
catheter and micro catheter [32]. Intravascular ultrasound
or the more recent optical coherence tomography (OCT) are
ideal methods that provide a histopathological view of the
vessel wall and measure the intimal and medial thickness
[33].

6.2 Computed tomography (CT) and CT Angiography
(CTA)

Conventional CT provides minimum information
about the vascular system. Its sensitivity may be increased
by contrast enhancement. CTA can be used to assess arte-
rial sizes, evaluate blood flow to diagnose vascular condi-
tions such as stenosis (narrowing of the blood vessel), oc-
clusion, and atherosclerosis. Color-coded CTA allows bet-
ter understanding of the cerebral hemodynamics, helping
in the differentiation between anterograde and retrograde
flow [34]. Micro-scale computed tomography (microCT)
and nano-computed tomography (nanoCT) provides a high-
resolution volumetric representation of vascular structures
and cerebral blood volume (CBV) measurements. CBV and
CBF can be measured using perfusion CT allowing rapid
qualitative and quantitative assessment of cerebral vascular
hemodynamics [35].

6.3 Magnetic resonance imaging (MRI), magnetic
resonance angiography (MRA) and other similar
techniques

Magnetic resonance imaging (MRI) has a major
role in the investigation of cerebrovascular diseases. Com-
pared to CT and DSA, its advantages in diagnosing cere-
brovascular pathology include its superior tissue contrast,
its ability to visualize blood vessels without the use of a
contrast agent, and its use of magnetic fields and radiofre-
quency pulses instead of ionizing radiation. In recent years,
ultrahigh field MRI at 7Tesla (7T) has shown promise in
the diagnosis of many cerebrovascular diseases. Parenchy-
mal enhancement in the dynamic contrast-enhanced MRI
(DCE-MRI) denotes BBB hyper permeability [36]. The
role of Diffusion (DWI) and perfusion (PWI) weighted MRI
in the early detection and assessment of stroke is increasing.
The advantages of Susceptibility-Weighted Imaging (SWI)
arise from its ability to detecting cerebral microbleeds, dif-
ferentiate between arteries and veins, and between calcifi-
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cation and hemorrhage [37]. Recently available Intracra-
nial Vessel Wall Imaging (IVW) modalities are used for
direct assessment of the vessel wall; therefore, providing
an upcoming field of interest to assess intracranial vascu-
lar abnormalities stemming from different pathologies [38].
Magnetic Resonance Angiography (MRA) has been used
to visualize intracranial circulation and extracranial carotid
vessels. MRA can be performed with or without contrast
enhancement. A novel MRA-based framework and seg-
mentation approach was developed to delineate cerebral
blood vessels from the surrounding tissue for the detec-
tion of changes in cerebrovascular blood vasculature [39].
Functional MRI (fMRI) is another modality that helps in
measuring changes in the regional blood flow to identify
active areas in the brain [24]. Four-dimensional (4D) flow
MRI; 2D phase contrast MRI (PC-MRI) and magnetic res-
onance black-blood thrombus imaging technique (MRBTT)
are emerging modalities for cerebrovascular hemodynam-
ics and CBF assessment [40].

6.4 Positron emission tomography (PET) and single
photon emission computed tomography (SPECT)

Recently, multimodality PET has been used to
evaluate the ischemic stroke related hypoxia and inflamma-
tion. SPECT was used as a guide for the use of antihyper-
tensive medication in the immediate post- acute ischemic
stroke period [41].

6.5 Transracial doppler

Transracial doppler (TCD) or color-coded duplex
(TCCD) are noninvasive techniques that involve the use of
2-4 MHz probe to insonate the large intracranial vessels
through specific acoustic windows and measure the CBF
velocities and pulsatility indices [42].

6.6 Photoacoustic imaging (PAI)

Pulsed laser is used to produce thermal excitation
and expansion of the tissue with subsequent generation of
ultrasonic waves, i.e., photoacoustic effect. PAI depends on
this technology to provide noninvasive visualization of the
cerebrovasculature [43].

6.7 Fast optical signals and event-related optical signal
(EROS)

Fast optical signals are recently developed imag-
ing methods whose purpose is to provide spatio-temporal
maps of the transmission of near-infrared (NIR) light
through the intact human brain. The recording of fast op-
tical signals can be time-locked to particular events (such
as stimuli or responses), hence the name event-related op-
tical signals (EROS). EROS is a new method for the non-
invasive measurement of brain function, this technique is
based on measures of the optical properties of cortical brain
tissue, which change while the tissue is active. These
changes are likely to be due to changes in light scatter-
ing, and are very rapid and localized, being related to phe-

nomena occurring within or around the neuronal mem-
brane. EROS, therefore, yields images of cortical activity
that combine spatial specificity (i.e., they can be related to
patches of tissue less than a cubic centimeter in size) with
temporal resolution (i.e., they depict the time course of the
neural activity in the cortical areas under measurement). A
limitation of this technique is its reduced penetration into
the head (less than 3-5 cm). EROS appears to be a suitable
technique for studying the time course of activity in selected
cortical areas, and for providing a bridge between hemo-
dynamic and electrophysiological imaging methods [44].
Most of the above-mentioned vascular effects of stress were
primarily reported in animal models. Further in-vivo stan-
dardization of pathological vascular indices and imaging
modalities is warranted. MRA may represent a promising,
safe, convenient and cost-effective modality especially with
the presence of novel segmentation frameworks which in-
creases its sensitivity without the need of contrast enhance-
ment.

7. Risk stratification and clinical implication

There is a need for risk stratification of hyperten-
sion in order to determine the type and intensity of treatment
that is most appropriate. The current risk stratification is
holistic and subjective, based on BP level, clinical risk fac-
tors, subclinical organ damage and established cardiovascu-
lar and renal diseases. The main risk factors include systolic
and diastolic blood pressure (DBP) levels, age (males >55
years, females >65 years), smoking, hyperlipidemia, fast-
ing plasma glucose of 5.6-6.9 mmol/L, impaired glucose
tolerance test, central obesity and family history of prema-
ture cardiovascular disease (males <55 years, females <65
years) [45].

The detection of early cerebrovascular changes
prior to the establishment of systemic HTN may provide
an objective method for risk stratification which bears sig-
nificant implications for clinical management. Based on
detected changes, patients may gain access to early inter-
vention and prophylaxis. Indeed, the combination of be-
havioral modification and neuroprotective medications may
be promising in preventing HTN and subsequent complica-
tions such as vascular dementia and stroke.

8. Limitations and critical appraisal

The topic of stress is well studied and volumi-
nous. In humans the focus is often attributed to the influ-
ential early work of Richard Lazarus [46]. Individual dif-
ferences in general and specific differences in coping re-
sources typically influence the reactions to stress. An ex-
ample of such approach is the physiological and psycho-
logical distinction between reactions to an initial stressor
as more consistent with threat or challenge. Human reac-
tions are, at least, as variable to different stressors as the
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varieties noted in the review for animal studies. In ani-
mals repeated acute stress and sustained stress leads to the
physiological changes though it is difficult to show any
proof/specific mechanisms of this in humans. Longitudi-
nal studies with the requisite physiological measurements
are lacking. Mechanisms are more readily identified in the
animal studies, but the generalization of both type of stres-
sors and mechanism to humans problematic enough that
it must be discussed. Causal directions remain in doubt.
In humans, for example, the brain given its control over
blood pressure has to be at least permissive when pres-
sure rises to hypertensive levels. Correlational data relates
blood pressure -at least in middle aged individuals- to brain
function and cognitive output but it is not clear whether
central changes preceded or followed peripheral effects of
(the complex) pathophysiology of hypertension [47]. This
emphasizes the importance of quantification of these cere-
brovascular changes as an essential step towards the better
understanding of the healthy and diseased cerebral arteries
functions.

9. Summary and conclusions

Life stressors are almost experienced by everyone.
However, the perception of stress varies from one to an-
other and from a stressor to the other based on the dura-
tion and the intensity of the stressor. Chronic stress plays a
major role in the pathogenesis of HTN especially in those
with greater sensitivity of their neural pathways mediating
the cardiovascular responses to stress. Exposure to chronic
stress induces a cascade of events resulting eventually in
cerebrovascular dysfunction with structural and functional
effects similar to those induced by HTN as endothelial in-
jury with increased wall thickness, vessel resistance, stiff-
ness, arterial atherosclerosis, and impaired auto-regulation.
Early radiological quantification of these cerebrovascular
changes may predict the risk of cardiovascular and neuro-
logical adverse events even prior to the onset of systemic
HTN helping in prevention and early treatment.
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