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1. Abstract

This study aimed to investigate the effects of ad-
vanced glycation end products (AGEs) on the calcifica-
tion of human arterial smooth muscle cells (HASMCs)
and to explore whether AGEs can promote the calcifi-
cation of HASMCs by activating the phosphoinositide
3-kinase (PI3K)/AKT-glycogen synthase kinase 3 beta
(GSK3-03) axis. Cultured HASMCs were divided into five
groups: blank control group, dimethyl sulfoxide (vehicle)
group, AGEs group, LY294002 (AKT inhibitor) group, and

TWS119 (GSK3-4 inhibitor) group. Cells were pretreated
with either vehicle, 1.Y294002, or TWS119 for 2 hours fol-
lowed by incubation with AGEs (25 ug/mL) for 5 days,
and the expression levels of proteins in each group were
analyzed by western blotting. AGE treatment promoted
HASMC calcification, which coincided with increased ex-
pression of p-AKT and p-GSK3-0 (serine 9). Also, AGEs
upregulated the expression of osteoprotegerin and bone
morphogenetic protein, and these effects were suppressed
by LY294002 but enhanced by TWS119. In conclusion,
AGEs promote calcification of HASMCs, and this effect
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is ameliorated by inhibition of AKT activity but potenti-
ated by inhibition of GSK3-4 activity. Hence, AGEs trig-
ger HASMC calcification by regulating PI3K/AKT-GSK3-
B signaling.

2. Introduction

Vascular calcification is a progressive disease [1—
3] that is accompanied by phenotypic changes in the vascu-
lar smooth muscle cells (VSMCs) that manifest mainly as
calcification in the intimal or medial layers of the involved
arteries [4]. A growing body of evidence suggests that ad-
vanced glycation end products (AGEs) and their receptors
(receptors for AGE, RAGE) play an important role in the
initiation and progression of vascular calcification [5, 6].
Mechanistically, AGEs bind to RAGE present on the mem-
brane of VSMCs [7], which in turn promotes activation
of the Wnt/S-catenin signaling pathway to trigger vascu-
lar calcification [8, 9]. However, whether other signaling
pathways are involved in AGE-induced vascular calcifica-
tion remains largely unknown.

Protein kinase-B (AKT) is a lipid kinase that plays
an important part in the inflammatory and allergic processes
[10]. The phosphatidylinositol 3-kinase (PI3K)/AKT sig-
nal pathway and its downstream effector glycogen synthase
kinase 3 beta (GSK3-/3), the serine/threonine kinase, have
been shown to be critical mediators of multiple cellular
events such as cell proliferation, differentiation, and apop-
tosis [11, 12]. In the field of vascular calcification, one
mechanism by which AKT activation and GSK3-/ inhi-
bition promote vascular calcification is the potentiation of
Runx?2 activity [13, 14], a transcriptional factor for osteo-
genesis [15].

While the AGE/RAGE axis and Wnt/{3-catenin
signaling have been shown to collaboratively contribute to
VSMC calcification [16], little is known about any link
between AGEs and the PI3K/AKT-GSK3-5 pathway. In
the present study, we aimed to investigate the effects of
AGEs on VSMC calcification and potential involvement of
PIBK/AKT-GSK3-4 signaling in this process.

3. Materials and methods

3.1 Culture of human aortic SMCs (HASMCs)

HASMCs were obtained from ScienCell Ameri-
can and cultured in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum (FBS), peni-
cillin (100 U/mL) and streptomycin (100 U/mL) in a 37
°C incubator with humidified air containing 5% COs. The
HASMCs were previously characterized [16]. The culture
medium was replenished twice per week. First, HASMCs
were divided into the following three groups: HASMCs
were treated with vehicle (control group), AGEs (Biovision,
Japan), 8-phosphoglycerine (10 mM) (Beyotime Biotech-

nology, Shanghai, China), or AGEs + 3-phosphoglycerine
for 5 days. Also, the following five groups were designed:
(1) the blank control group, (2) the dimethyl sulfoxide
(DMSO, vehicle) group, (3) the AGEs group, in which cells
were treated with 25 pg/mL AGE:s in culture for 5 days, (4)
the LY294002 group, in which cells were pretreated with
LY?294002 (Selleck, USA), an AKT inhibitor, at 20 M for
2 hours followed by AGEs treatment, and (5) the TWS119
group, in which cells were pretreated with TWS119 (Sell-
eck, USA), an inhibitor of GSK3-4, at 10 M for 2 hours
followed by AGEs treatment. HASMCs of passages 3—-6
were used for this study.

3.2 Von Kossa staining

Brieflyy, HASMCs were seeded on glass slides
and cultured in an incubator (37 °C, 5% CO3). When
cells reached approximately 40-50% confluency, they were
fixed with 4% paraformaldehyde at 4 °C on a shaker for 15
min, followed by three repeated washes with distilled H,O.
Next, the cells were incubated with 0.5% silver nitrate (Be-
yotime Biotechnology, Shanghai, China) at room tempera-
ture under sunlight for 20 min, washed twice with distilled
H50 and visualized using a phase microscope. Calcifica-
tion was quantified using the software Motic Images Ad-
vanced.

3.3 Western blot analysis

Briefly, whole cell lysates were extracted from
cultured HASMCs with radioimmunoprecipitation assay
(RIPA) buffer (Beyotime Biotechnology, Shanghai, China),
and the total protein concentrations determined with the
Bradford method (Beyotime Biotechnology, Shanghai,
China). An equal amount of protein lysate per sam-
ple was loaded onto 10% sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis (PAGE) gel (Sigma,
USA) and then transferred to a polyvinylidene difluoride
(PVDF) membrane (Millipore, USA). The PVDF mem-
brane was blocked with 5% non-fat dried skim milk powder
for 1 hour at room temperature. The membrane was then
incubated with the primary antibody of interest, including
osteoprotegerin (OPG) and bone morphogenetic protein 2
(BMP-2) (Abcam, Cambridge, UK. Dilution 1 : 500) at 4
°C overnight, followed by another incubation with the ap-
propriate secondary antibody (dilution 1 : 2000) for 1 hour
at room temperature. The specific protein bands were vi-
sualized with an ECL Plus kit (Beyotime Biotechnology,
Shanghai, China) and quantified with the Quantity One
software (BioRad, USA).

3.4 AKT knockdown by siRNA

The initial experiments confirmed the transfec-
tion efficiency of AKT-siRNA (Ruibo Biotec, Guangzhou,
China). Briefly, HASMCs were transfected with AKT
siRNA using Lipofectamine 2000 (Invitrogen, USA) ac-
cording to the manufacturer’s instructions. After transfec-
tion, cells were cultured at 37 © in a 5% CO, atmosphere
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for another 6 hours, and then the medium was replaced with
complete medium. The efficiency of AKT knockdown was
evaluated by Western blotting.

3.5 GSK3-3 knockdown by lentiviral-mediated siRNA
expression

Lentiviral vectors expressing green fluorescent
protein (GFP) (LV-GFP) or siRNA against GSK3-3 (LV-
GSK3-3-RNAi) were provided by Shanghai Genechem Co.
Ltd (China). HASMCs were infected with LV-GFP as a
control or LV-GSK3-3-RNAI at a multiplicity of infection
(MOI) of 100. Green fluorescence was observed at 72
hours post-infection, and screening of positive cells was
performed with 4 pg/mL puromycin (Sigma, USA) for 1
week after obtaining 70-80% cell fusion. The expression
level was evaluated by Western blotting.

3.6 Statistical analysis

All data were analyzed using SPSS 19.0 statistical
software. The measurement data were expressed by means
=+ standard deviations (SDs), and single-factor analysis of
variance (ANOVA) was used for data comparison among
multiple groups, followed by q test for two-group compari-
son. Differences were considered statistically significant at
a level of P < 0.05.

4. Results

4.1 Effect of AGEs on HASMC calcification

We next examined the effects of AGEs on
HASMC calcification via Alizarin Red staining (Fig. 1A)
and Von Kossa staining (Fig. 1B). HASMCs were treated
with vehicle (control group), AGEs, S-phosphoglycerine
(10 mM), or AGEs + g-phosphoglycerine for 5 days. As
expected, no calcified plaques were observed in the con-
trol group. However, calcified plaques were observed in
both the AGEs and the S-phosphoglycerine groups, while
the highest number of calcified plaques was observed in
the AGEs + -phosphoglycerine group (Fig. 1). Collec-
tively, these findings indicated that either AGEs or (-
phosphoglycerine promote the calcification of HASMCs
and that they have synergistic effects on the calcification
of HASMCs. Hence, AGEs and PI3K cooperatively trig-
ger HASMC calcification.

4.2 Effects of AGEs on AKT and GSK3-3 expression

We next investigated the effects of AGEs on the
expression of AKT and GSK3-$ by western blotting. As
shown in Fig. 2A, AGEs upregulated the expression of p-
AKT and p-GSK3-£ (serine 9) in a dose-dependent man-
ner with the concentration of 25 pg/mL having the great-
est effect, while AGEs showed no significant effects on the
total levels of AKT and GSK3-5. Notably, GSK3-/ phos-
phorylation at serine 9 suppresses the ability of GSK3-4
to phosphorylate substrates [17]. Thus, we chose the con-

centration of 25 ug/mL AGEs to test the temporal effects
of AGEs treatment. As shown in Fig. 2B, after 5 min of
treatment with 25 ug/mL AGEs, the greatest effects on the
expression levels of p-AKT and p-GSK3- were observed.
Our findings suggest that AGEs activate the AKT signaling
pathway and inhibit the downstream GSK3-/ signaling.

4.3 Effects of AKT on HASMC calcification

To investigate the involvement of the AKT sig-
naling pathway in HASMC calcification induced by AGEs,
HASMCs were divided into four groups: a normal control
group, DMSO (vehicle) group, AGEs group, and AGEs +
LY294002 group (in which the cells were pretreated with
LY 294002, a specific inhibitor of AKT, followed by AGEs
treatment for 5 days. Consistent with the above observa-
tions, the expression levels of p-AKT and p-GSK3-/3 were
significantly increased by AGEs compared with the con-
trol and DMSO treatments, and these increases were atten-
uated by LY294002 (Fig. 3A). The results confirmed that
the inhibitor significantly reduced the activation of AKT.
The expression of p-GSK3-4 in the LY294002 group was
significantly reduced compared with that in the AGEs group
(Fig. 3A), further indicating that AGEs activate AKT sig-
naling and inhibit the downstream GSK3-7 signaling.

To further investigate the involvement of the AKT
signaling pathway in HASMC calcification, the cells were
pretreated with LY294002 for 2 hours and then incubated
with 25 pg/mL AGEs for 5 days. As shown in Fig. 3B,
compared with the control and DMSO groups, the AGEs
group showed significantly increased expression of OPG
and BMP-2, both of which are osteogenic factors. This up-
regulation was suppressed by LY294002 pretreatment.

AKT-siRNA treatment was used to deplete the
expression of AKT. As shown in Fig. 3C, AKT expres-
sion was significantly decreased in the AKT-siRNA group
compared with the expression levels in the control and
NC groups. Compared with the corresponding levels in
the AGEs group, the expression levels of OPG, BMP-2,
and (-catenin were up-regulated in the AKT-siRNA group
(Fig. 3D). Hence, AGEs promote the expression of os-
teogenic factors in cultured HASMCs, and this effect is al-
leviated by inhibition of the AKT signaling pathway.

4.4 Effects of GSK3-3 on HASMC calcification

Because AGEs activated the AKT signaling path-
way but inhibited the activity of GSK3-/3, we next investi-
gated the role of GSK3-5 in AGE-mediated HASMC cal-
cification. HASMCs were divided into the following four
groups: control, DMSO, AGEs, and AGEs + TWS119
groups. In the AGEs + TWS119 group, cells were pre-
treated with TWS119, which is a specific inhibitor of
GSK3-4, followed by AGEs treatment for 25 min. Com-
pared with control and DMSO groups, the AGEs group
showed significantly upregulated expression of p-GSK3-
B, which was further potentiated by TWS119 pretreatment
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Fig. 1. Effect of AGEs on calcification of HASMCs. Cultured HASMCs were treated with vehicle (control), AGEs, S-phosphoglycerin, or AGEs +
[3-phosphoglycerin. Calcification of HASMCs was observed by Alizarin Red staining (A) and Von Kossa staining (B) after 14 days of treatment. The

ratio of calcified cells was calculated using Motic Images Advanced 3.2. *P < 0.05, versus control group; #P < 0.05, versus 3-phosphoglycerin group.

(Fig. 4A). We further pretreated the cells with LY294002 or
TWS119 for 2 hours followed by treatment with 25 pg/mL
AGE:s for 5 days. The expression levels of OPG and BMP-2
were significantly reduced in the AGEs + LY294002 group
(P < 0.05) compared with the AGEs group (Fig. 4B), but
significantly up-regulated in the AGEs + TWS119 group (P
< 0.05).

To further investigate the effects of GSK3-5 on
HASMC calcification, GSK3-5 was knocked down by
adenovirus-mediated siRNA expression, and Ad-GFP was
used as a control. The adenoviral infection efficiency af-
ter 72 hours of infection in either group was over 90%
(Fig. 5A). As expected, GSK3-3 expression was signifi-
cantly decreased in the Ad-GSK3-3-RNAi group compared
with normal control (Ad-GFP) group (Fig. 5B). Cells of
the blank control group, Ad-GFP group, and Ad-GSK3-/3-
RNAI group were co-cultured with 25 pug/mL AGEs for
5 days. The expression levels of OPG, BMP-2, and -

catenin in the GSK3-/ knockdown group were significantly
up-regulated compared with those in the control and Ad-
GFP groups (Fig. 5C). These results indicated that AGEs
promoted HASMC calcification, and this process was en-
hanced by inhibiting GSK3-/3. Thus, GSK3-/ may play a
key role in AGE-induced HASMC calcification.

To further validate the role of the PI3K/AKT-
GSK3-[ signaling pathway in AGE-triggered HASMC cal-
cification, the cells were divided into the following four
groups: control, AGEs, AGEs + LY29002, and AGEs +
TWS199. Except for cells in the control group, those in the
other three groups were treated with 25 ug/mL AGEs for 14
days. Von Kossa staining was used to detect calcification
in each group. As shown in Fig. 6, the amount of calcified
plaques was significantly lower in the AGEs + LY294002
group but higher in the AGEs + TWS119 group compared
with the AGEs group (Fig. 6).
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Fig. 2. Effects of AGEs on AKT and GSK3-[ expression. (A) Effects of different concentrations of AGEs on the expression levels of p-AKT and
p-GSK3-4. (B) Effects of AGEs on the expression levels of p-AKT and p-GSK3-4 at different time points as indicated.

5. Discussion

The major findings from this study included the
following: (1) AGEs promoted HASMC calcification,
which coincided with increased AKT activity and decreased
GSK3-4 activity; (2) inhibition of AKT activity attenu-
ated AGE-induced HASMC calcification; (3) suppression
of GSK3-4 activity potentiated AGE-induced HASMC cal-
cification; and (4) AGEs increased Wnt/3-catenin activity.
Thus, we conclude that AGEs promote HASMC calcifica-
tion, at least in part, by mediating PI3K/AKT-GSK3-/ sig-
naling.

Vascular calcification is a pathological change in-
volved in a variety of cardiovascular diseases. It increases
arterial stiffness, which causes systolic hypertension, and is
associated with increased morbidity, mortality, stroke, and
amputation rates [18]. Initially, vascular calcification was
considered to be a passive pathological process, but recent
studies have shown that it is an active but controllable pro-

cess regulated mainly by the phenotypic transformation of
VSMCs [19-21]. The initiation and progression of calcifi-
cation are governed by multiple factors, including an abnor-
mal inflammatory response and lipid metabolism. During
the calcification process, the SMCs, macrophages, and fi-
broblasts in vascular media undergo a bone-like phenotypic
transformation to form matrix vesicles, which increases the
expression of calcification-related genes such as alkaline
phosphatase, leading to calcium deposits in blood vessels
and vascular calcification [22, 23]. Indeed, in the present
study, we observed increased expression of OPG and BMP-
2 in calcified HASMCs, further supporting the above find-
ings.

AGEs are stable and irreversible end products,
which are derived from non-enzymatic reaction of reducing
sugars with amino acid components. The levels of AGEs
are significantly elevated in patients with some diseases
such as diabetes mellitus [22]. Previous studies showed
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that AGEs regulate the biological behavior of VSMCs in  concentration (1~10 pg/mL), while a high concentration of
a concentration-dependent manner. Li et al. [24] found  AGEs over 40 mg/L significantly impairs cell proliferation
that AGEs promote rabbit VSMC proliferation at a low  and migration, which is accompanied by increased apop-
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expression of osteogenic factors, BMP-2 and OPG, in HASMCs. Western blotting was performed using whole cell lysates purified from cultured HASMCs
that were divided into control, DMSO (vehicle), AGEs, AGEs + LY294002, and AGEs + TWS199 groups. In the AGEs + LY294002 and AGEs + TWS199
groups, cells were pretreated with LY294002 or TWS199 for 12 hours followed by AGE stimulation for 30 min. *P < 0.05, versus control group; #P <

0.05, versus AGEs group.

tosis and calcification. Similarly, a high concentration of
AGE:s in the serum of diabetic patients induces apoptosis
and calcification of VSMCs [25]. Through the induction
of medial arterial calcification and the formation of calci-
fied plaques, AGEs significantly contribute to the patho-
genesis of diabetes-linked atherosclerosis [26, 27]. Our pre-
vious study also showed that AGEs induce the expression
of their receptor, RAGE, and in combination with RAGE,
AGEs promote calcification of HASMCs by activating the
Wt/3-catenin signaling pathway [28]. Consistent with these
previous findings, in the present study, AGE treatment
significantly increased the number of calcified plaques in
HASMC:s in a dose-dependent manner and acted coopera-
tively with S-phosphoglycerine to promote HASMC calci-
fication.

It has been well established that AGEs and RAGE
play a key role in arterial calcification. However, after the
binding of AGEs to RAGE, it remains unclear how ex-
actly the signals are transmitted from the cell membrane
to the nucleus to activate downstream signal transductions,
thereby leading to changes in cellular activities. Increasing
evidence suggests that the PI3K/AKT signaling pathway is
involved in artery calcification. Okazaki et al. [29] studied
human vascular smooth muscle dells (HVSMC) calcifica-
tion induced by inflammatory mediators and found that the
PI3K/AKT axis promotes HVSMC calcification by regulat-
ing the expression of alkaline phosphatase (ALP). Also, a
recent study suggested that the PI3K/AKT signaling path-

way is implicated in the osteoblast differentiation [30]. In
line with previous reports, in the present study, AGE treat-
ment increased p-AKT levels but did not alter the level of
total AKT. Moreover, the increased AKT activity was func-
tionally involved in AGE-mediated HASMC calcification,
as evidenced by the observation that suppression of AKT
activity by LY294002 attenuated the calcified plaque for-
mation caused by AGEs. We also observed that LY294002
pretreatment significantly reduced the expression levels of
OPG and BMP-2, both of which may synergize to promote
calcification [31]. Moreover, AKT is required for BMP-
2-promoted osteogenesis and vascular calcification [32].
Thus, our findings further confirmed the functional link be-
tween AKT and BMP signaling in the pathogenesis of vas-
cular calcification.

On the other hand, previous studies implicated
GSK3-4 in vascular calcification. For instance, suppres-
sion of GSK3-3 was shown to be involved in lithium
chloride-promoted calcium deposition of VSMCs and in de-
layed fracture healing observed in connexin 43-null mice
[33]. In agreement with these findings, we also found in
the present study that AGEs potentiated HASMC calcifica-
tion, which coincided with decreased GSK3-/3 activity.

Our previous observations regarding the role of
GSK3-4 in AGE-mediated HASMC calcification were fur-
ther supported by the application of TWS119, a GSK3-
S inhibitor, and by Ad-GSK3-3-RNAi-mediated GSK3-
B knockdown, which showed that the suppression of
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GSK3-3-RNAi. NC, Ad-GFP group. *P < 0.05, versus NC group. (C) Western blot showing that GSK3-3 knockdown promoted the expression of
osteogenic factors, 3-catenin, BMP-2 and OPG, in HASMCs. *P < 0.05, versus NC group.

GSK3-£ activity significantly increased the calcification of
HASMCs. Taken together, these findings support the no-
tion that GSK3-4 is also involved in the HASMC calcifica-
tion induced by AGEs.

In conclusion, we demonstrated in the present
study that AGEs promote HASMC calcification by acti-
vating PI3K/AKT signaling and suppressing GSK3-3 ac-
tivity. We also showed that the activated Wnt/3-catenin
signaling contributes to AGE-induced HASMC calcifica-
tion. Our findings suggest that regulation of the above-
mentioned pathways may provide a potential novel strategy
for the prevention and treatment of the vascular calcifica-
tion that occurs in a number of cardiovascular diseases.
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followed by AGEs stimulation for 14 days. Calcification was detected by Von Kossa staining. *P < 0.05, versus control group; #P < 0.05, versus

3-phosphoglycerin group.
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