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Abstract

Introduction: The electron transport chain is closely related to cellular respiration and has been implicated in various human diseases.
However, the traditional “wet” experimental method is time consuming. Therefore, it is key to identify electron transport proteins
by computational methods. Many approaches have been proposed, but performance of them still has room for further improvement.
Methodological issues: In our study, we propose a model stacking framework, which combines multiple base models. The protein
features are extracted via PsePSSM from protein sequences. Features are fed into the base model including support vector machines
(SVM), random forest (RF), XGBoost, etc. The results of base model are entered into logistic regression model for final process. Results:
On the independent dataset, the accuracy and Matthew’s correlation coefficient (MCC) of proposed method are 95.70% and 0.8756,
respectively. Furthermore, we show that the model stacking framework outperforms single machine learning classifiers statistically.
Conclusion: Our models are better than most known strategies for identifying electron transport proteins. Our model can be used to
more precisely identify electron transport proteins.

Keywords: Electron transport chain; Ensemble learning; Model stacking; Logistic regression; Transport protein

1. Introduction

Protein is a vital component of all human cells and
tissues, and it is intimately linked to life and many forms
of biological activity, such as cellular respiration. Cellular
respiration is the process by which organic matter passes
through a series of oxidative breakdowns inside cells to
form inorganic or small molecules of organic matter, releas-
ing energy and producing Adenosine triphosphate (ATP),
which is the most direct source of energy for most cellular
reactions [1]. In this process, the electron transport chain
is critical for storing and transferring electrons. Five pro-
tein complexes make up the electron transport chain and
are named complex I, II, III, IV, and V. Electron transport
proteins are made up of many electron carriers and serve
a variety of molecular functions [2–4]. In studies, electron
transporter abnormalities have been found to be associated
with diseases such as idiopathic diabetes [5–8], Parkinson’s
disease [4], and Alzheimer’s disease [9–12]. Therefore, the
identification of electron transporter proteins is helpful in
exploring the causes of human diseases and may help pre-
vent and treat human diseases. Due to the high time and
cost of identifying protein functions by traditional experi-
mental techniques, computational approaches must be de-
veloped. The construction of meaningful feature sets and
selection of appropriate classification algorithms are con-
sidered to be the two most important steps in protein classi-

fication. When constructing feature sets, some studies had
taken advantage of the biochemical properties of proteins.
Le et al. [13] extracted protein characteristics through bio-
chemical characteristics, which improving the accuracy of
identification of electron transporters. Khatun et al. [14]
developed a model for predicting anti-inflammatory pep-
tides using computational methods by using binary as the
characteristic representation of proteins. Others employed
position specific scoring matrix (PSSM) to extract evolu-
tionary information of protein. In SulCysSite [15], binary,
PSSM profiles, and pCKSAAP are combined as feature in-
formation to predict protein S-sulfenylation sites. Hasan et
al. [16] used PSSM profiles to preserve the evolution infor-
mation in proteins and developed pbPUP, a model for iden-
tifying protein pupylation sites, which had a good perfor-
mance. Le et al. [17] proposed ET-CNN, which fed PSSM
profiles into the convolutional neural networks (CNN) for
electron transport protein classification. PSSM profiles and
amino acid composition (AAC) were utilized by Chen et
al. [18] to extract protein features, which were fed into ra-
dial basis function networks. In Mishra’s study [19], fea-
tures including amino acid composition, biochemical prop-
erties, and PSSM profiles were fed into the support vector
machines (SVM) to predict transporters including electron
transporters.
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ET-GRU is a model proposed by Le et al. [20] to iden-
tify electron transport proteins. CNN is used to extract fea-
tures from PSSM matrix before using deep-gated recurrent
unit (GRU) for classification. In addition, traditional ma-
chine learning algorithms have been widely used. Gromiha
et al. [21] and Ru et al. [22] used machine learning meth-
ods, including support vector machine, logistic regression,
decision tree, random forest, and naive Bayes, to perform
functional recognition of electron transport proteins. Sin-
gle machine learning classification has both disadvantages
and advantages. For example, the random forest has good
performance on the unbalanced dataset but has high feature
requirements. WhenXGBoost is used, excellent model per-
formance can be achieved by adjusting a large number of
complex parameters, which is totally difficult. Ensemble
learning can flexibly combine various classifiers, train dif-
ferent models as base classifiers, and then combine them
with ensemble strategies for final prediction. Common in-
tegration strategies include stacking, majority voting, bag-
ging, boosting.

In our study, a model of stacking framework (MSF),
which combines multiple base models is proposed. We rep-
resent protein features using the PSSM matrix produced
by PSI-BLAST. Then, Pseudo-PSSM (PsePSSM) is used
to extract evolutionary information. These features are
fed into the base model. These base models are different
classification algorithms, such as random forest, XGBoost,
k-nearest neighbor (KNN), and SVM. These models are
loosely coupled. After combining the results of each classi-
fier, logistic regression makes the final prediction. Finally,
the experimental results prove that the model of stacking
framework (MSF), which is built by SVM, XGBoost, and
KNN, has the best effect. We compare MSF with the sin-
gle classifier and majority voting on the same independent
dataset and perform a t test, the MSF is significantly supe-
rior to other single classifiers. In addition, MSF also per-
form better than most existing methods for identifying elec-
tron transport proteins.

2. Materials and methods

2.1 Datasets

In our study, we utilize the benchmark dataset released
by Le et al. [20], which contains 1324 electron trans-
port proteins and 4569 general transport proteins. The data
were initially taken from a previous study [17], and data
from UniProt release-2018_05 (on 23-May-2018) [23] and
Gene Ontology (GO) release-2018-05-01 [24] were also
collected. Then, in order to avoid model overfitting, the
data were removed the redundant sequences with similar-
ities of more than 30%. To solve this binary classifica-
tion problem, the dataset is randomly divided into cross-
validation dataset and independent dataset in a ratio of
0.85:0.15. Table 1 shows the details of the datasets.

Table 1. Statistics of all retrieved electron transport proteins
and general transport proteins.

Original CV IND

Electron transport 1324 1125 199
General transport 4569 3884 685

2.2 Feature extraction
Using appropriate methods to extract protein charac-

teristics is an important step to complete the task of clas-
sification. PSSM, which retains the evolutionary informa-
tion of proteins in a matrix of L rows and 20 columns, is
employed as the feature extraction approach in this work.
PSSM was first introduced by Jones [25], which is a com-
monly used method in the field of bioinformatics. It has
been used in a number of bioinformatics studies with pos-
itive results [26–37]. The PSSM profiles is derived from
multiple sequence alignment and contains the evolutionary
information of each residue in the protein sequence. Elec-
tron transport proteins belong to a class of proteins with a
specific function. Compared with other protein families,
the key evolutionary information of proteins can be cap-
tured by using PSSM matrix and related feature extraction
method, and then the classifier can be used to effectively
identify electron transport proteins.

FASTA sequences are searched against the Uniprot
database to compile position specific scoring matrices
(PSSMs) for two iterations using Position Specific Itera-
tive BLAST (PSI-BLAST [38]). The options for using
BLAST+ [39] are as follows:

-num_iterations 2 -db uniprot

In our study, Pseudo-PSSM (PsePSSM) is employed
to retain information in PSSM, and its basic idea is to con-
sider the pseudo-amino-acid composition in PSSM [40].
This operation aims to get vectors that satisfy the algorithms
and involves two steps.

The first step is the process of standardizing the
PSSM. The formula is shown below:

p′i,j =
pi,j − 1

20

∑20
m=1 pi,m√

1
20

∑20
n=1

(
pi,n − 1

20

∑20
m=1 pi,m

)2
(1)

The second step is to use the standardized matrix to
generate Pseudo-PSSM (PsePSSM).

FPsePssm =


1
N

∑N
i=1 p

′
i,j ; j = 1, · · · , 20

1
N−lag

∑N−lag
i=1

(
p′i,j − p′i+lag,j

)2

;

lag = 1, · · · , 8, j = 1, · · · , 20
(2)

where lag denotes the distance between one residue and its
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neighbors.
Finally, the standardized PSSM matrix is transformed

into a 20 + 20× 8 = 180 dimensions vector containing pro-
tein characteristics.

2.3 Classification algorithms
2.3.1 Support Vector Machine

Support Vector Machine (SVM) [41] is a supervised
learning algorithm for classification. As a generalized lin-
ear classifier, the purpose of the support vector machine is
to find the maximum boundary hyperplane as the decision
boundary, so as to complete the classification task. SVM
is widely used in classification, regression, and other tasks
[42–52]. Since the dataset is linearly non-separable, the
SVM with Gaussian kernel function (RBF) is employed as
the fitting algorithm. C is a crucial parameter in support
vector machines. The penalty factor, or error tolerance, is
denoted by the C. The penalty SVM receives in the case
of classification error is positively connected with the C. In
addition, gamma (γ) is also an important parameter that af-
fects the classification effect of SVM, which implicitly de-
termines the distribution of data after mapping to the new
feature space. The larger γ is, the fewer support vectors
are. To discover the best combination of C and γ so that the
model has a positive effect, the grid search method is used.

2.3.2 Random forest
Random forest (RF) [53] is an ensemble machine

learning technique that trains and predicts samples using
several trees, which has foundmany successful applications
in the field of bioinformatics [54–62]. RF consists of many
decision trees that are not related to each other. When a
sample is input into RF for the classification task, the sam-
ple will be judged by each decision tree in the forest and the
classification result will be obtained. The final output of the
RF is a combination of the results of each decision tree in
the forest. Plenty of parameters affect the RF, among which
the most influential ones include the number of subtrees to
be built, and the maximum growth depth of trees. In the
same way, grid search is used to find suitable values for
these parameters.

2.3.3 K-Nearest Neighbor
K-Nearest Neighbor (KNN) determines the categories

of input samples based on the most similar samples in the
feature space, which is one of the most commonly used ma-
chine learning algorithms. K value is the only parameter
that the KNN algorithm needs to specify, so it has a sig-
nificant effect on the result. In KNN algorithm, each sam-
ple can be represented by its nearest K neighboring values.
The smaller the k value is, the less the approximate error of
learning is, because a small k value can make the predic-
tion result of the algorithm only be affected by the training
instance that is close to the input instance. Again, we use
grid search to find the appropriate K value.

2.3.4 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is another ad-
vance machine learning model [63]. XGBoost has been
successful in a variety of machine learning competitions
[64] as well as in other fields [65–68]. It is a tool for large-
scale parallel trees boosting. XGBoost has the advantages
of higher accuracy and greater flexibility. The parame-
ters that affect the XGBoost effect mainly include learning
rate, minimum loss reduction required by leaf node split-
ting, maximum depth of the tree, and minimum weight of
the leaf node. Again, use grid search to adjust these param-
eters.

2.3.5 Model stacking

Model stacking is a strategy of ensemble learning. The
basic idea of ensemble learning is to combine multiple clas-
sifiers, and the errors encountered by one weak classifier
are highly likely to be corrected by other weak classifiers.
Combining multiple models can produce a model with bet-
ter performance and stronger generalization ability. Typical
integration strategies are bagging, boosting, stacking, and
voting [69–80]. The use of bagging as an integration strat-
egy is mainly to reduce the generalization error of models,
which is achieved by combining multiple models. Bagging
is implemented by using different bootstrap samples to train
different models. When testing the sample input, the output
of eachmodel is voted to get the final result. Boosting’s idea
is to combine a series of averagely performing models us-
ing particular cost functions. Majority voting includes both
soft and hard voting. Hard voting is to make statistics on the
predicted result label of the base model and take the result
with more occurrences as the final result, while soft vot-
ing uses the predicted probability of the base model instead
of the predicted result label to complete the voting mech-
anism. In our study, the integration strategy we choose is
stacking. In order to prevent model overfitting, we use a
simple model, logistic regression, to make the final predic-
tion. The workflow of this method is shown in Fig. 1.

2.4 Performance measures

The evaluation of the result is shown in four standard
measurements, Accuracy (ACC),Matthew’s correlation co-
efficient (MCC) [43,81–92], Sensitivity (SN), and Speci-
ficity (SP). Their formulas are as follows:

SN =
TP

FN + TP
(3)

SP =
TN

FP + TN
(4)
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Fig. 1. The MSF workflow.

MCC =
TP × TN − FP × FN√

(TP + FN) × (TP + FP ) × (TN + FP ) × (TN + FN)
(5)

ACC =
TP + TN

TP + TN + FP + FN
(6)

where TP, TN, FN, and FP denote the number of true pos-
itive, true negative, false negative, and false positive, re-
spectively.

3. Results and discussion
3.1 Performance comparisons with the single classifiers
and using different base classifiers

We conduct two types of experiments to test model
stacking frameworks. Firstly, predictors of four single clas-
sifiers are built by RF, XGBoost, KNN, and SVM, respec-
tively. We compare their performance on the same inde-
pendent dataset, and the results are shown in Table 2. Then,
three classifiers using different combinations of base mod-
els are constructed: MSF (SVM, XGBoost), MSF (SVM,
XGBoost, KNN), and MSF (SVM, XGBoost, KNN, RF).
They employ SVM + XGBoost, SVM + XGBoost + KNN,
SVM + XGBoost + KNN + RF as the base classifiers, re-
spectively. Next, LR is employed as the last layer of the
model and the results of these base classifiers are fed into
the final prediction. The results are shown in Table 3. The
ROC curve with AUC values and PR curve are shown in
Fig. 2.

Table 2 shows that the predictor that uses SVM, which
achieves the best performance of MCC = 0.8599, ACC =
95.14, SP = 96.66, and SN = 89.79%. The RF performs
the worst results of MCC = 0.7558, ACC = 0.9186%, SP =
91.58, and SN = 93.20. The gaps of MCC, ACC, SP, and
SN between the worst and best ones are 3.28%, 0.1041, –
3.41% and 5.08%, respectively. Fig. 2 also shows that SVM
has the best performance and highest AUC values.

Table 2. The performances of single classifiers on the
independent dataset.

SN (%) SP (%) ACC (%) MCC

RF 93.20 91.58 91.86 0.7558
XGBoost 91.23 93.97 93.44 0.8057
KNN 90.50 94.75 93.89 0.8203
SVM 89.79 96.66 95.14 0.8599

Table 3. The performances using different base classifiers on
the independent dataset.

SN (%) SP (%) ACC (%) MCC

MSF (SVM, XGBoost) 91.44 95.98 95.02 0.8549
MSF (SVM, XGBoost, KNN) 91.71 96.82 95.70 0.8756
MSF (SVM, XGBoost, KNN, RF) 91.24 96.81 95.59 0.8725

Table 4. T-test analysis results of model stacking framework
and single classifiers.

p-value log (0.05/p-value)

RF 3.8458 × 10–16 14.12
XGBoost 6.1513 × 10–7 4.91
KNN 9.6691 × 10–4 1.71
SVM 7.7435 × 10–3 0.81

Table 5. The performances using majority voting-based
methods on the independent dataset.

SN (%) SP (%) ACC (%) MCC

Hard voting (SVM, XGBoost, KNN) 91.89 95.85 95.02 0.8546
Soft voting (SVM, XGBoost, KNN) 92.86 95.73 95.14 0.8576
MSF (SVM, XGBoost, KNN) 91.71 96.82 95.70 0.8756

Table 3 shows that the fourth predictor is ahead of the
others on four measures. In all evaluative measurements,
ensemble model is better than a single predictor. In Fig. 2,

4
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Fig. 2. The ROC and PR curves of different models. (A) The
ROC curves of single classifiers. (B) The PR curves of single
classifiers. (C) The ROC curves of using different base classifiers.
(D) The PR curves of using different base classifiers.

comparing the AUC values of MSF and single classifiers,
we also find that MSF has better performance. We believe
that ensemble learning performs better than single classi-
fiers because ensemble learning can combine different clas-
sifiers flexibly and make better use of the advantages of
classifiers. In addition, different base classifiers may have
different feature representations for the same data, result-
ing in the effect of mutual error correction, thus obtaining
better performance. Compared to the first predictor, the
second predictor obtain better performance by adding KNN
which performs second-best among the four single classi-
fiers. RF reduces the overall prediction performance of en-
semble model. The results show that a weak base classifier
may lead to the effect of model stacking.

3.2 T-test analysis of model stacking framework and
single classifiers

To further demonstrate the statistical significance of
MSF, we perform t-test analysis on MSF and single classi-
fiers including RF, XGBoost, KNN, and SVM.

The p-value of the t-test are shown in Table 4. In ad-
dition, log (0.05/p-value) visually shows the difference be-
tween p-value and 0.05. The larger the value is, the more
significant the difference is.

The results show that the p-values of all algorithms are
less than 0.05, indicating that the effects of stacked model
framework and single classifier are significantly different
and statistically significant. In addition, RF is the algorithm
with the most significant difference from the stack model.

3.3 Performance comparisons with majority voting-based
methods

In order to further verify that model stacking is an
appropriate integration strategy for protein classification
problems, the majority voting-based method using SVM,
XGBoost, and KNN is tested on the independent dataset.
It contains two types of hard voting and soft voting. The
results can be found in Table 5.

The gaps ofMCC, ACC, SP, and SN between the Hard
voting and Soft voting are 0.12%, –0.97%, –0.003%, and
–0.12%, respectively. On the same independent dataset,
MSF ranks first except for the SN measurements.

3.4 Stability comparisons with the single classifiers and
using different base classifiers

When the model is applied, the results of the system
may fluctuate due to changes in the data. In order to judge
the severity of themodel changes, we conduct stability tests.
We conduct five times of 5-fold cross-validation to test the
stability of the algorithm, and calculate the mean and stan-
dard deviation of four metrics including SN, SP, ACC and
MCC, as shown in Table 6.

The results show thatMSF achieves the best mean per-
formance except that the SN value is worse than that of RF.
In stability, MSF’s four metrics rank 2,5,3, and 3 respec-
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Table 6. The means and standard deviations for the 5 × 5-fold cross-validations.
SN SP ACC MCC

RF 92.96 ± 0.036046 91.48 ± 0.002203 91.70 ± 0.005477 0.7514 ± 0.017186
XGBoost 90.65 ± 0.016817 94.25 ± 0.004943 93.53 ± 0.004603 0.8090 ± 0.014010
KNN 89.06 ± 0.012900 95.22 ± 0.004504 93.91 ± 0.003070 0.8223 ± 0.009366
SVM 89.41 ± 0.008326 96.57 ± 0.003200 94.98 ± 0.001693 0.8554 ± 0.005167
MSF (SVM, XGBoost, KNN) 91.50 ± 0.010614 96.63 ± 0.008257 95.50 ± 0.004375 0.8697 ± 0.013990

Table 7. Performance comparisons to existing methods.
SN (%) SP (%) ACC (%) MCC

ET-CNN 80.3 94.4 92.3 0.71
ET-GRU 79.8 95.9 92.3 0.77
MSF (SVM, XGBoost, KNN) 91.7 96.8 95.7 0.88

tively among all classifiers.

3.5 Comparisons of existing methods
To further test our method’s sophisticated and superior

performance, we compare other existing works under the
same data set. These models include ET-CNN [17] and ET-
GRU [20].

Table 7 shows results of comparisons between our
model and other approaches. It is easy to observe that MSF
(SVM, XGBoost, KNN) ranks first with ACC = 95.7, MCC
= 0.88, SN = 91.7%, and SP = 96.8%.

We believe that the main reason why ET-MSF per-
forms better than ET-CNN and ET-GRU may be that our
algorithm ismore suitable for the task. Due to the character-
istics of the neural network, only a large number of samples
can make the network better fitting. However, the dataset
of electron transport protein is relatively small, which lim-
its the growth of neural network model size and leads to
poor model effect. Therefore, using the ensemble strategy
to combine machine learning classifiers can have a better
effect.

3.6 Web server development
We provide a simple web server that can be freely ac-

cessible at http://82.156.89.65/ to allow readers to evaluate
and use our approaches online. The online version of ET-
MSF uses the Java language and the Spring Boot frame-
work. ET-MSF can be used by biologists to identify elec-
tron transport proteins online. Biologists can obtain the
model’s prediction probability by simply entering the pro-
tein’s amino acid sequence(s) in a standard FASTA file for-
mat. Biologists can also download our public datasets and
models at https://github.com/Kinkou626/ET-MSF and run
them on own computer.

4. Conclusions
In our study, a model of stacking framework is pro-

posed to extract the features of protein sequences and iden-

tify electron transporter proteins by integrating multiple
classifiers. Previously, the model of stacking framework
has not been applied to electron transporter protein recog-
nition tasks. We use an independent dataset to evaluate
model. Model of stacking frameworks using different base
model combinations are compared experimentally. Com-
prehensive experiments show that the model of stacking
framework via SVM,XGBoost, andKNN is the best model,
which achieve the ACC and MCC values of 95.70% and
0.8756 respectively. Compared with existing methods,
MSF also achieves significant improvements in all mea-
surements. Our method will be an effective bioinformatics
tool. And it can also be used to recognize protein functions
in other types of proteins.
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