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Abstract

Background: Recently, single-cell RNA sequencing (scRNA-seq) technology was increasingly used to study transcriptomics at a single-
cell resolution, scRNA-seq analysis was complicated by the “dropout”, where the data only captures a small fraction of the transcriptome.
This phenomenon can lead to the fact that the actual expressed transcript may not be detected. We previously performed osteoblast
subtypes classification and dissection on freshly isolated human osteoblasts. Materials and Methods: Here, we used the scImpute
method to impute the missing values of dropout genes from a scRNA-seq dataset generated on freshly isolated human osteoblasts.
Results: Based on the imputed gene expression patterns, we discovered three new osteoblast subtypes. Specifically, these newfound
osteoblast subtypes are osteoblast progenitors, and two undetermined osteoblasts. Osteoblast progenitors showed significantly high
expression of proliferation related genes (FOS, JUN, JUNB and JUND). Analysis of each subtype showed that in addition to bone
formation, these undetermined osteoblasts may involve osteoclast and adipocyte differentiation and have the potential function of regulate
immune activation. Conclusions: Our findings provided a new perspective for studying the osteoblast heterogeneity and potential
biological functions of these freshly isolated human osteoblasts at the single-cell level, which provides further insight into osteoblasts
subtypes under various (pathological) physiological conditions.

Keywords: single-cell RNA sequencing (scRNA-seq); imputation; osteoblast heterogeneity; immune regulation; osteoclast differentia-
tion; adipose differentiation

1. Introduction take part in immunomodulation through expressing inter-
leukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-

Osteoblasts are bone forming cells, which account for 1/CCL2), and CXC Chemokine Ligand 2 (CXCL2) [6-10].

4% to 6% of the cellular content within the bone lineage [1].
Osteoblasts were differentiated from bone marrow derived
skeletal stem cells (SSCs) [2,3]. Runx2 and osterix (Sp7)
are two critical transcription factors to regulate the differen-
tiation of osteoblast [4,5]. Osteoblasts cover the active bone
surface, and their main function is to produce new bones
through the synthesis and assembly of extracellular matrix.
Although osteoblasts are mainly involved in bone model-
ing and remodeling, previous studies have shown that os-
teoblasts can also regulate immune cells and inflammation.
Specifically, osteoblasts can attract B and T lymphocytes,
monocytes, and neutrophils to the site of inflammation and

Osteoblasts and adipocytes can regulate each other through
expressing some specific genes [11,12]. The imbalance of
the ratio of adipocytes to osteoblasts in the bone marrow
may be an important factor leading to osteoporosis [13,14].

Cellular heterogeneity is an essential feature of dif-
ferent cell groups. The subpopulations of cells that cause
cell heterogeneity can be determined by differences in gene
expression profiles [15]. In bulk RNA-seq, cellular het-
erogeneity cannot be completely addressed since signals
of differentially expressed genes would be averaged across
cells. However, single-cell RNA sequencing (scRNA-seq)
technology is now becoming a powerful tool to capture
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whole cell transcripts at the single-cell level. scRNA-
seq can quantify the heterogeneity within the population
at single-cell resolution, which may reveal heterogeneous
rare cell populations in complex tissues or classical types
of cells [16—19]. In recent years, some studies have applied
scRNA-seq to mouse osteoblasts. For example, one study
identified subtypes of preosteoblasts and mature osteoblasts
based on the osteoblast transcription profiles [20], while an-
other study divided osteoblasts into three subgroups (un-
determined osteoblasts, osteogenic transdifferentiated os-
teoblasts and mature osteoblasts) [21]. Recently, we per-
formed the first scRNA-seq study on freshly isolated human
osteoblasts and identified three different osteoblast sub-
types and their differentiation relationships [22]. We found
that different subgroups have different functional character-
istics in the regulation of bone metabolism and angiogenesis
[22].

However, an important characteristic of scRNA-seq
data is the phenomenon of “dropout”, in which a gene is
observed at a medium expression level in one cell, but un-
detected in another cell [23,24]. Generally speaking, these
events occur due to the low mRNA content in some indi-
vidual single cells [24]. The low starting amount makes
some mRNAs completely lost during reverse transcription
and cDNA amplification, which then cannot be detected in
the subsequent sequencing [22]. Therefore, the actual ex-
pressed transcript may not be detected when sequencing in
some cells, which may bias downstream analysis [25,26].
To tackle this problem, several imputation methods have
been proposed [27-29]. Bulk RNA-seq measures the aver-
age gene expression. scCRNA-seq can detect gene expres-
sion at single-cell resolution [22,24]. The data fluctuation
of scRNA-seq was hence larger than that of bulk RNA-seq.
Therefore, some imputation methods are only applicable to
bulk RNA sequences, and may not be directly applicable
to scRNA-seq data [28,30,31]. The imputation method that
was more suitable for scRNA-seq, for example, the impu-
tation methods MAGIC [32] and SAVER [33] may change
the expression level of all genes, including those unaffected
by dropouts, which will introduce new bias. Recently, Li et
al. [23] developed a novel statistical method, called scIm-
pute, for accurate and reliable imputation of the dropouts
of scRNA-seq data. sclmpute can automatically identify
likely dropouts by fitting a mixture model for each cell type,
and only perform imputation on these values, without intro-
ducing new deviations to the rest data [23]. It can also de-
tect outlier cells by using the most similar linear regression
model and exclude them from imputation. Also, scImpute
has a good effect in clustering, detecting differentially ex-
pressed genes (DEGs) and improving the reconstruction of
subsequent cell development trajectories [24].

In this study, we used the scImpute method to impute
the scRNA-seq data of freshly isolated human osteoblasts.
After the imputation and recalculation, we obtained more
osteoblast clusters compared with the original data. We

then determined the different functional characteristics of
each novel osteoblast subtypes in terms of bone homeosta-
sis, the differentiation of adipocytes and osteoclasts, im-
mune regulation, osteoblast proliferation and regulation of
extracellular matrix production, which may provide a bet-
ter understanding about the heterogeneity and functions of
osteoblasts.

2. Materials and Methods
2.1 scRNA-Seq Data

The scRNA-seq data was generated from the femoral
head-derived osteoblasts of a subject with osteoarthritis
and osteopenia (GSE147390), which has been described
in detail in our previous publication [22]. In brief,
we used fluorescence-activated cell sorting (FACS) to
collect ALPLT/CD45/CD34/CD31~ cells [34] as os-
teoblasts from the femoral head bone tissue sample.
scRNA-seq libraries were prepared using Single Cell 3’
Library Gel Bead Kit V3 following the manufacturer’s
guidelines  (https://support.10xgenomics.com/single-cel
1-gene-expression/library-prep/doc/user-guide-chromiu
m-single-cell-3-reagent-kits-user-guide-v3-chemistry)
[22].  After obtained the raw sequencing data, we
used Cell ranger3.0 to demultiplex and map cell bar-
codes to the human transcriptome (GRCh38/hg38)
(https://support.10xgenomics.com/single-cell-gene-expre
ssion/software/pipelines/latest/what-%20is-cell-ranger).
Create Cell Ranger-compatible reference genomes
according to the instructions of 10x Genomics
(http://www.10xgenomics.com), and finally generate
a digital gene expression matrix [22].

2.2 Imputing Dropout and Pre-Processing of scRNA-Seq
Data

In order to deal with the dropout event, we used the
R package scImpute v0.0.9 (Los Angeles, CA, USA) [23]
and performed imputation calculations on 9801 cells using
default parameters as input. Basic algorithm of scImpute is
learns each gene’s dropout probability in each cell by fit-
ting a mixture model for each cell type. Then, scImpute
imputes the dropout values of genes in a cell by borrowing
information of the same gene in other similar cells [23,24].

For further quality control, we removed cells with less
than 150 detected genes. After that, we calculated the distri-
bution of genes detected in each cell, and removed any cells
in the top 2% quantile, as well as the cells whose transcrip-
tion volume >20% was attributed to mitochondrial genes.
The gene counting matrix was converted into a Seurat ob-
ject by Seurat R package [22,35]. We used the Normalize-
Data function in the Seurat R software package to normalize
the screened gene expression matrix. The number of UMIs
for each gene was divided by the total number of UMIs for
each cell and multiplied by 10,000 and then the result was
log transformed [22].
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Fig. 1. Osteoblasts isolation and identification. (A) UMAP dimension reduction of isolated cells, colored by different clusters. (B)

Osteoblasts were selected using known cell markers. ALPL, Runx2 and COL1A1 are specific markers of osteoblasts, while PTPRC
(CD45), CD34 and PECAM1 (CD31) are markers of endothelial and hematopoietic cells. (C) The known cell markers of each subpopu-

lation were expressed on the umap dimension reduction map. The first three markers in the first row (ALPL, Runx2, and COL1A1) were

osteogenic markers. HBB and HbA1 are markers of nucleated red blood cell clusters C5 and C6. The last four genes are markers of C8

(smooth muscle cell clusters) and C9 (neutrophil clusters).

2.3 Dimensionality Reduction and Data Visualization

In order to visualization the data, we projected
the standardized gene expression matrix onto a two-
dimensional panel. We selected the top 2000 genes with the
largest variation for principal component analysis (PCA),
and reduced the data to the first 19 PCs (according to
the standard deviation of the principal components, corre-
sponding to the platform area of the “elbow diagram™) for
unified manifold approximation and projection (UMAP) di-
mensionality reduction [22,36]. After data visualization,
we applied the clustering method based on unbiased graphs
for clustering analysis [37]. For DEGs analysis, we used
the Wilcoxon Rank-Sum test to find genes that exhibited
significantly higher expression (false discovery rate (FDR)
<0.05) in a specific cluster compared to other clusters [22].

2.4 Pathway Enrichment Analysis and Trajectory
Inference Analysis

We used the clusterProfiler to perform gene ontol-
ogy (GO) and Kyoto encyclopedia of genes and genomes
(KEGGQG) pathway analyses to enrich the significant terms
and pathways on each novel osteoblast subtypes [38]. Then
we used the Diffusion-Maps function in the destiny (v3.0.0)
to reconstruct the development trajectory of a single unit
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in pseudotime order [39,40]. The principle of this analysis
was to reorder the asynchronously differentiated cells ac-
cording to their potential development condition and clas-
sify the cells along their developmental trajectories.

3. Result
3.1 Osteoblasts Identification

The scRNA-seq data used in this study have been de-
tailed described in our previous publication [22]. It contains
9801 cells. We used the scImpute method to calculate the
dropout rate of osteoblast sSCRNA-seq data and performed
imputation only on those missing values. We obtained 9425
cells, with an average of 6659 genes detected in each cell af-
ter the QC (quality control). However, after quality control
of the data without imputation, only 8557 cells were ob-
tained, and only 2365 genes were detected on average per
cell [22]. The quality control standards we used here were
consistent with our previous analysis [22]. We used Uni-
fied Manifold Approximation and Projection (UMAP) [36],
to project high dimensional gene expression profiles onto
two-dimensional panels to visualize cellular heterogeneity
(Fig. 1A). When the clustering was completed, we obtain
nine distinct cell subsets (C1-C9) by the k-nearest neigh-
bor algorithm [35], and used Wilcoxon test to determine
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Fig. 2. scRNA- seq analysis of human osteoblasts. (A) Six osteoblast clusters. The UMAP (Unified Manifold Approximation and

Projection) of 7656 osteoblasts was shown by cluster staining. (B) Proportion of six osteoblast clusters. Colored by clustering. (C)

Cluster characteristic genes. The dot plot showed the logarithmic transformation normalized expression levels of the marker genes with
highest expression for each cluster OB1, OB2, OB3, OB4, OB5 and OB6.

their cluster-specific marker genes (Supplementary Fig.
1). Consistent with our previous study [22], we excluded
several contaminant cell types, including two erythrocyte
clusters (C5 and C6) which had a high expression levels of
HBB and HBA1, a smooth muscle cell cluster (C8) with a
high expression levels of ACTA2 and CNNI, a neutrophil
cluster (C9) with a high expression levels of S710048 and
MMPY [22], so we focused our subsequent analysis on clus-
ters C1, C2, C3, C4 and C7, which show high expression
of osteoblast-specific markers (i.e., ALPL, RUNX?2 and type
1 collagen (COL1A1)), although C7 had a high expression
levels of osteoblast-specific markers, but it also showed a
significantly high expression levels of mitochondrial genes,
suggesting that C7 was undergoing apoptosis, so C7 was ex-
cluded from the subsequent analysis (Supplementary Fig.
1).

3.2 Transcriptional Profiling of Human Osteoblasts

To further study the heterogeneity within osteoblasts,
we selected clusters C1, C2, C3 and C4 with high expres-
sion of ALPL, RUNX2 and COLI1A41 (Fig. 1B). Here, we
performed the second round of data quality control, remov-
ing the cells with >5% of the transcripts attributed to mi-
tochondrial genes [22], and obtained 7656 cells for fur-
ther analysis, after the reclustering, we identified six os-
teoblast subtypes (Fig. 2A,B,C), which were labeled: (1)

Osteoblasts 1 (OB1, 48.20%), expressing high levels of
insulin-like growth factor binding protein 2 (/GFBP2) and
lysyl oxidase like 1 (LOXLI); (2) Osteoblasts 2 (OB2,
18.39%), highly expressing osteoblasts maturation mark-
ers (bone gamma carboxyglutamic acid protein (also known
as osteocalcin, BGLAP), secretory phosphoprotein-1 (also
known as osteopontin, SPPI), integrin binding sialopro-
tein (/BSP)) and two osteoblasts differentiation transcrip-
tion factors RUNX2 and SP7 [20,41,42]; (3) Osteoblasts 3
(OB3, 16.85%), not only expressing MSC specific mark-
ers (e.g., leptin receptor (LEPR), vascular cell adhesion
molecule 1 (VCAMI) [22,43,44] but also distinctively ex-
pressing high levels of CD99 and amyloid beta precursor
protein (4PP); (4) Osteoblast 4 (OB4, 7.22%), significantly
expressed high levels of LEPR [44,45] and Forkhead box
C1 (FOXC1I), so it could be a osteoblast progenitors [46];
(5) Osteoblasts 5 (OBS, 6.06%), significantly expressing
high levels of nuclear receptor subfamily 4 members 1 and 2
(NR4A41 and NR4A2); (6) Osteoblasts 6 (OB6, 3.28%), sig-
nificantly expressing high levels of activated transcription
factor 3 (ATF3) and nicotinamide phosphoribosyl trans-
ferase (NAMPT), considering that the gene expression pat-
terns of OB1, OB5 and OB6 were different from those of
clusters OB2, OB3 and OB4, so we defined OB1, OBS5 and
OB6 as undetermined osteoblasts. Notably, the osteocytes
marker genes (SOST! and DMPI) can hardly be detected
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Fig. 3. Trajectory Inference of Human Osteoblasts. (A) Reconstructed cell differentiation trajectory of human osteoblasts, colored

by subpopulation identities. The right trajectory plot in the square indicated the direction of pseudotime. (B) Distribution of each cell

subpopulation along the pseudotime. (C) Expression levels of indicated genes in the six osteoblast subtypes with respect to their pseu-

dotime coordinates. The x-axis indicates the pseudotime, while the y-axis represents the gene expression levels. The color corresponds

to the six different osteoblast subsets. Blue lines depict the LOESS regression fit of the normalized expression values.

in this imputed transcriptomic data, suggested that the pro-
tocol of osteoblast isolation were not suitable for osteocyte
isolation.

We found that after imputation, apart from the
three osteoblast subtypes found in the previous analysis
(preosteoblasts (OB3), mature osteoblasts (OB2) and unde-
termined osteoblasts (OBS5, NR4AI1"9"/NR442"M9hY)
[22], we discovered three new unique cell sub-
groups,  including OB4  (LEPR"9"/FOXCIh9h)
and OBl  (IGFBP2"9"/LOXLI"9") and OB6
(ATF3"9"/NAMPT"9"). At the same time, the imputed
data increased the number of osteoblasts for analyses from
5329 to 7656, an increase of about 24% (Supplementary
Fig. 2 A,B). scimpute effectively imputed the missing
values in the sScRNA-seq data of osteoblasts. In the original
data without imputation, an average of 2365 genes were
detected per cell, but after the imputation, an average of
6659 genes were detected per cell (Supplementary Fig.
2C).

3.3 Dynamic Gene Expression Patterns in Different
Developmental Stages of Osteoblasts

We used diffusion maps to reconstruct the develop-
ment trajectories of the six identified osteoblast clusters
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[40]. This analysis revealed the differentiation process of
osteoblasts. In our reconstructed lineage branch, all cells
were remained in one cell lineage trajectory (Fig. 3A). We
found that osteoblast progenitors (OB4) were mainly en-
riched in the initial stage of pseudotime, and preosteoblasts
(OB3) were distributed in the early stage of pseudotime tra-
jectory, undetermined osteoblasts (OB1, OB5 and OB6)
were concentrated in the middle stage of pseudotime,
and mature osteoblasts (OB2) were mainly enriched in
the terminal stages of the osteoblastic lineage trajectory
(Fig. 3A,B). To support trajectory inference, we further an-
alyzed the transcriptional continuum of the cell lineage. By
comparing the MSCs and osteoblasts specific marker genes
expression patterns during the pseudotime trajectory, we
found that the expression of MSCs markers (e.g., LEPR and
VCAMI) decreased with the prolongation of pseudotime
and osteoblast markers (e.g., RUNX2, BGLAP, SPPI] and
IBSP) were highest in the final stage of pseudotime. This re-
sult was consistent with the results of other studies [22,47].
Interestingly, the undetermined osteoblasts (OB1, OB5 and
OB6) were mainly concentrated in the middle stage of the
pseudotime (Fig. 3C), which suggested that they may be
three subtypes of osteoblasts with different functions in the
middle stage.
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3.4 Proliferation Function of Osteoblast Progenitors

It is known that the developmental stages of os-
teoblasts have three main periods: the proliferation period,
the extracellular matrix production period, and the extra-
cellular matrix mineralization period [48]. Osteoblast pro-
genitors (OB4) are in the cell proliferation stage. Com-
pared with the other clusters, osteoblast progenitors (OB4)
showed significantly high expression of FOS, JUN, JUNB
and JUND (Fig. 4A). Studies have shown that the main
feature of the stage was the production of histones, FOS,
FOSB, JUN, and p21, etc. [48-50]. They were highly ex-
pressed in the proliferation stage, but their expression de-
clined rapidly after proliferation [51-54]. Knocking out
FOS can inhibit the proliferation of osteoblasts [55]. Next,
we used DEGs in osteoblast progenitor cells for GO en-
richment analysis. We noticed that the terms related to
cell proliferation were enriched, including “regulation of
cell cycle phase transition”, “histone modification”, efc.
(Fig. 4B). Kyoto Encyclopedia of Genes and Genomes
(KEGGQG) pathway analysis showed that two metabolic path-
ways were highly enriched, including “EGFR tyrosine ki-

nase inhibitor resistance” and “ErbB signaling pathway”
(Fig. 4C). Studies have shown that the lack of EGFR can re-
duce the proliferation of osteoblast progenitors (OB4), and
EGFR promoted the proliferation of osteoblasts by activat-
ing the phosphorylation of ERK1/2 of the downstream sig-
nal transduction ERK pathway [56,57]. Studies have re-
ported that osteoblasts proliferation maintenance was re-
lated to ErbB family signaling of receptor tyrosine kinases
[58]. In addition, GO enrichment analysis also showed
enrichment of the functional pathway of “regulation of
hematopoiesis”, which is a known function of osteoblasts.
At the same time, osteoblast progenitors (OB4) highly ex-
pressed CXCL12 and GAS6 (Fig. 4A). CXCL12 was known
to play an important role in maintaining HSC homeostasis
and hematopoiesis [20]. GAS6 positively regulated CD34+
hematopoietic progenitor cells (HPCs) [59].

3.5 Two Osteoblast Subpopulations Involved in
Osteoclastogenesis and Adipogenesis

There was evidence that osteoblasts can regulate the
production of osteoclasts [60—62]. In our previous arti-
cle [22], it has been mentioned that the high expression

&% IMR Press


https://www.imrpress.com

cosp
positive regulation of fat cell differentiation L] L] .
Parattyroid homone syhesis, secreton and
fat cell diferentiation o ° °
regulation of fat cell differentiation: . [ ] .
regulation of g metabolic process. ° L] JAK.STAT signaiing pattwa
adipose tissue development . .
response to fatty acid .
NF Happa B sgnaing pathway
brown fat cell differentiation . i o s
regulation of fatty acid metabolic process .
083 085 086
(313) (560) (969)
Cluster
wml e e e o - @ {0 0000000
51 @ © @ o ®  PercentExpressed 6:{® ® ® ® ® ® @ ® ® Percent Expressed
2 .
% s
LEE 2
o84 ° | ® s
2 ® o8 ® .o o5
H Average Expr Average Expret
o8 L4 ~ os3{ LN ] . 2
0
oB2 . . 1 0
os2{e @ © @ e L ]
o8| ® ° o .

Foatures

neutrophil activation involved in immune response| @ ®  © @

neutrophil activaion] @ © © @ ® o

neutrophil mediated immunity| @ @ e O @

positive regulation of innate immune response| ® | pomst

regulation of innate immune response| @ [ I .
immune response-activating cell surface receptor signaling pathway | @ L]

0OB2 OB5 0B6
(1254) (1204) (560) (969)
Cluster

CH25H SEMA4A

Expression Level

Identty
8 8 8 8 8
L] L]
. .
o .
L] . L] . L ]
L] L] L]
L] L] . L]
z 00s- 7
m i
3 B
H 2
Expression Level
° - N ©
F

Fig. 5. Osteoblast population regulates adipocyte differentiation. (A) Regulation of adipogenesis related GO terms enriched in clus-
ters OBS and OB6. (B) Osteoclasts development related KEGG terms enriched in clusters OB5 and OB6. (C) Immune regulation related
GO terms enriched in OB clusters. (D) Regulation of osteoclast differentiation related genes enriched in OB clusters. (E) Regulation

of adipogenesis related genes enriched in OB clusters. (F) The genes involved in immune regulation enriched in OB clusters. (G) The

expression levels of OB5 and OB6 specific surface marker genes in the OB clusters.

of NR441 and NR4A2 in the subpopulation of undeter-
mined osteoblasts (OBS) can inhibit the formation of os-
teoclasts. Interestingly, we found that OB6 may possibly
promote the formation of osteoclasts compared with other
osteoblast groups. Some cytokine produced by osteoblast,
such as CCL2, CXCL2, NAMPT and TNFSF11 (RANKL)
were highly expressed in OB6 (Fig. 5D). TNFSF 11 has been
proved to be a crucial gene in the process of the osteoclast
development [63], We found that TNFSF11 was highly ex-
pressed in OB5 and OB6. CCL2 could be regulated by
parathyroid hormone (iPTH) to promote osteoclast forma-
tion [64]. CXCL2 can be activated by NF-kappaB ligand
receptors through the JNK and NF-kappaB signaling path-
ways in osteoclast precursor cells, thereby promoting the
production of osteoclasts [65]. NAMPT secreted by os-
teoblasts promoted osteoclast recruitment by increasing the
production of RANKL [66]. The KEGG pathway analysis
showed that osteoclast development related terms of “NF-
kappa B signaling pathway”, “JAK-STAT signaling path-
way” and “Parathyroid hormone synthesis, secretion and
action” were enriched in OB5 and OB6 (Fig. 5B).

Studies have reported that osteoblasts and adipocytes
can secrete some cytokines to regulate each other’s differ-
entiation, and under certain conditions, osteoblasts could
express some adipocyte-specific genes [11,12]. We found
that OBS not only had the possible function of regulating
osteoclasts, but may also participated in adipogenesis. Af-
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ter extracting the high expression genes and performing GO
pathway analysis, we found that GO terms “regulation of
fat cell differentiation” and “regulation of lipid metabolic
process” were mainly abundant in OB5 and OB6, but not
in other subpopulations (Fig. 5A). In order to determine the
special role of the two osteoblast subpopulations in adipo-
genesis, we further checked the expression patterns of genes
related to the regulation of adipogenesis in the two clusters.

NR4A41 and NR4A2, which were highly expressed in
OBS5, acted as inhibitors for adipogenesis in adipocytes and
were induced by cAMP signal. We also found that cAMP-
responsive element modulator (CREM) was highly ex-
pressed in OBS (Fig. 5E) [67—69]. Some adipocyte function
related genes were also highly expressed in OB5 and OB6
(Fig. 5E), FOSL2 inhibited the differentiation of adipocytes
by controlling the expression of adiponectin [70]. MEDAG
can regulate the differentiation of preadipocyte and accu-
mulate lipid [71]. STEAP4 enhanced the insulin-stimulated
glucose uptake in adipocyte. KLF4, SOCSI and IN-
SIG1 were highly expressed in OB6 (Fig. 5E). Studies
have shown that KLF4 was essential for adipocytes pro-
duction in vitro and can promote adipocyte production
[72]. SOCS1 regulated the differentiation of preadipocytes
through C/EBPa and PPAR~y. The high expression of
SOCSI1 can promote the formation of adipocytes [73]. IN-
SIG1 could regulate the storage of fat in adipocyte [74].
Since the pseudotime trajectory analysis showed the dif-
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ferentiation level of OB5 and OB6 were overlapped with
preosteoblast (OB3), previous studies showed that pre-
osteoblast could form lipid droplets under pathological and
aging conditions [75] and preosteoblast cell line MC3T3-
E1 cells can undergo adipocytic transdifferentiation under
the control of estrogen by canonical Wnt signaling pathway
[76]. We speculated OBS5 and OB6 possibly were the inter-
mediate osteoblasts with adipogenic properties.

The above results suggested that the OB5 and OB6
might possibly affect the development of osteoclasts and
adipogenesis by expressing specific genes, OB5 and OB6
may play important roles in balancing the relative propor-
tions of osteoclasts and participating in adipogenesis in
vivo. Besides, two specific surface marker genes (CH25H,
SEMA4A) were detected from OB5 and OB6, which meant
these cells may be specifically isolated by Fluorescence ac-
tivated Cell Sorting (FACS) for subsequent experimental
analysis (Fig. 5G). The results of this study may thus pro-
vide novel ideas for future treatment/prevention of osteo-
porosis and obesity by increasing the number or functions
of the OBS5.

3.6 Immunomodulatory Ability of Osteoblast
Subpopulations

We further found that in addition to the cytokines
CXCL12, CCL2 and NAMPT, there were more immune-
related cytokines like IL7, IL34 and CXCL14 highly ex-
pressed in OB6 and OB1 (Fig. 5F). Studies have reported
that IL7 derived from osteoblast can promote develop-
ment of lymphocytes in immune response during inflam-
mation [77]. IL34 had a similar function to CSF1 (M-CSF)
and could induce the differentiation of osteoclast and in-
crease the number of CD11b™ cells [78]. CCL2 was also
a known therapeutic target for inflammatory bone destruc-
tion diseases. It can control the migration of monocytes and
macrophages during inflammation, regulate the positioning
and transport of immune cells to participate in immunomod-
ulation [7,79]. CXCL2 and CXCL14 can regulate immune
response by controlling the immune cells migration [65,80].
NAMPT secreted by osteoblasts participated in the inflam-
matory response of osteoarthritis by promoting the release
of IL6 and the expression of monocyte chemoattractant pro-
tein 1 by osteoblasts [81].

Three secrete protein genes /GFBP2, haptoglobin
(HP) and lipopolysaccharide binding protein (LBP) were
highly expressed in OB1 (Fig. 5F). Studies have reported
that IGFBP2 was involved in immunosuppressive activity
[82]. HP participated in immunomodulation by affecting
the activity of immune cells (such as T cells, macrophages,
etc.) [83]. LBP interacted with lipopolysaccharide (LPS)
and CD14 to participate in immunomodulation response
[84].

We further performed GO enrichment analysis and
found that the OB1 and OB6 were enriched in terms related
to immunomodulation, such as “neutrophil mediated immu-
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nity”, “neutrophil activation involved in immune response”,
“positive regulation of innate immune response”, and “reg-
ulation of innate immune response” etc. (Fig. 5C). These
results indicated that the OB1 and OB6 may be important
for regulation of the immune system during inflammation.
Based on the results above, we speculated that OB1 pos-
sibly was the intermediate osteoblasts with immunomod-
ulatory properties, and the OB6 was the intermediate os-
teoblasts with adipogenesis and immunomodulatory prop-
erties. However, further functional experiments are needed
to validate the assumptions.

4. Discussion

In this study, we used scImpute to calculate the miss-
ing values due to the dropout events in the freshly isolated
human osteoblasts scRNA-seq data. scImpute focuses on
imputing the missing expression values of dropout genes
while retaining the expression levels of genes that were
largely unaffected by dropout events [23]. The original data
after imputation have been greatly improved compared with
the previous analysis [22], and the real transcriptome dy-
namics that have been masked were further restored. We
have identified several cell types in vivo in humans without
any in vitro culture from human bones, divided them into
nine subgroups. We further revealed that these osteoblasts
subtypes might play differential roles in bone formation,
osteoclastogenesis, adipogenesis and immunomodulatory
based on their unique gene expression patterns, which fur-
ther illustrated the utility and necessity of imputation of
scRNA-seq data.

Here, we focused on some key findings. In ad-
dition to those osteoblast subtypes found in the previ-
ous analysis [22], including preosteoblasts (OB3), ma-
ture osteoblasts (OB2), and undetermined osteoblast (OBS,
NR4A1M9"/NR442"i9"), we also found three novel os-
teoblast subtypes, including known osteoblast progeni-
tors (OB4), a rare osteoblast subtype (OB1) expressing
IGFBP2 and LOXLI, and another rare osteoblast subtype
(OB6) expressing ATF3 and NAMPT. According to the
gene expression pattern and the inferred osteoblast lin-
eage trajectory, we found that: (1) Osteoblast progenitors
(OB4, LEPR"9"/FOXC1"*9") ranked first in the differ-
entiation lineage, mainly involved in osteoblast prolifera-
tion and inducing hematopoiesis; (2) Preosteoblasts (OB3,
CD99"i9h/4pPhi9hy were located in the early stage of the
lineage, and have functions in formation of ECM organi-
zation during bone formation processes as well as induc-
ing hematopoiesis as detailed previously [22]; (3) Interme-
diate osteoblasts (OB1, IGFBP2"9"/LOXL1"9") were in
the middle stage of the lineage, and may involve in im-
munomodulatory function together with OB6; (4) Inter-
mediate osteoblasts (OB5, NR4A1"9"/NR442"9") were in
the middle stage of the lineage, and had the potential func-
tion of regulating osteoclastogenesis and involving in adi-
pogenesis together with OB6; (5) Intermediate osteoblasts
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(OB6, ATF3"19"/NAMPT"*9") were in the middle stage of
the lineage. It had immunomodulatory function together
with OB1 and had the function of regulating osteoclasto-
genesis and involving in adipogenesis together with unde-
termined osteoblasts 2 (OB5); (6) Mature osteoblasts (OB2,
SPP1"9"/BGALP"'9") appeared at the end of cell differen-
tiation. In our results, the positions of preosteoblasts (OB3)
and undetermined osteoblasts (OBS5) in the cell lineage have
been found in our previously published articles [22], and
new functions of undetermined osteoblasts (OBS5) have also
been discovered [22].

Although we reanalyzed the imputation scRNA-seq
data to further reveal the heterogeneity and potential func-
tions of human osteoblasts, an important limitation was that
all the cells were derived from a 31-year-old Chinese male
subject with osteoarthritis and osteopenia collected from
the femoral head [22]. Compared with healthy individu-
als, this might lead to biases in the identification and espe-
cially in the proportion estimation of osteoblast subpopula-
tions. OB1 and OB6 in our results had immunomodulation
functions, which may be due to the subject’s osteoarthri-
tis condition, because the inflammatory state may stimulate
the formation of such osteoblast subpopulations with spe-
cial functions. But how disease conditions affect the com-
position of cell subpopulations is an open and interesting
question which needs further research. Despite this poten-
tial limitation, our findings provided necessary and valu-
able insights into the cellular heterogeneity of human os-
teoblasts in vivo, and comprehensively and systematically
knowledge in regulation of adipocytes and osteoclasts dif-
ferentiation and cell-specific mechanisms that may lead to
bone metabolism and other related diseases.

5. Conclusions

In conclusion, by performed a novel imputation
method to resolve dropout events in the scRNA-seq data of
freshly isolated human osteoblasts. Three new osteoblast
subtypes been identified after the imputation, by analysis
the biological processes and signaling pathways in each
subtype, these new osteoblast subtypes could involve osteo-
clast and adipocyte differentiation and immune activation.
These findings provided a better understanding about the
osteoblast heterogeneity and a further insight into various
(pathological) physiological conditions.
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