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Abstract

Cell-based regenerative medicine approaches and motor rehabilitation are currently being used to overcome the consequences of spinal
cord injury (SCI). However, their success in preclinical studies does not always translate into successful implementation in clinical
practice. Recent work suggests that modern neuromodulation approaches hold great therapeutic promise. Despite these advances, the
complete resolution of functional deficits caused by SCI is impossible, especially in cases of severe injury. Therefore, combined ap-
proaches based on cell transplantation and neuromodulation are needed to enhance the neuroregenerative effect. The additional inclusion
of a dosed locomotor load in the overall therapeutic plan and against a background of combined approaches can have a significant sup-
portive effect. The aim of this review is to evaluate studies that use combinations of different approaches, thereby advancing our current
understanding of the mechanisms that underlie their therapeutic effect. This review will consider mostly the effects and limitations of
regenerative approaches, as well as the effects of locomotor load and neuromodulation on molecular and cellular changes in the spinal

cord.
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1. Introduction

To overcome the consequences of spinal cord injury
(SCI) and restore function, the main goals are neuroprotec-
tion [1-3], the neutralization of endogenous inhibitors of
axon growth, chondroitin sulfate proteoglycans and some
myelin proteins [4-9], maintenance of extended axonal
growth [10,11], stimulation of remyelination [12—14], for-
mation of a new intraspinal neural network [15], and ac-
tivation of the central pattern generator [16,17]. The ef-
fectiveness of pharmacotherapy, electrical stimulation, lo-
comotor load, and of gene, cell and gene-cell therapy at
solving these problems is being actively investigated. So
far, the research results show these approaches are insuf-
ficient to achieve full recovery of function when imple-
mented separately. Recently, it has become clear that a
comprehensive program involving a combination of various
approaches will be needed to more effectively overcome the
consequences of traumatic SCI. With this in mind, results
from numerous clinical and experimental studies indicate
that it will also be essential to include regular and dosed lo-
comotor load in the general therapeutic plan of procedures.

The aim of this review is therefore to evaluate studies
on the various approaches used for SCI therapy in order to
find the most effective combination of regenerative therapy
method and locomotor load, with or without neuromodu-
lation. The review will primarily consider the efficacy and
limitations of regenerative approaches, as well as the effects
of locomotor load and neuromodulation on molecular and
cellular changes in the spinal cord.

2. Cell Therapy as the Most Common
Regenerative Approach in Spinal Cord
Injury

Over the past two decades, various cell types have
been tested as the choice of cell therapy for transplantation
in SCI [18-23]. Neural stem cells (NSCs), cord blood cells,
olfactory ensheathing cells (OECs), Schwann cells (SCs),
and mesenchymal stem cells (MSCs) derived from differ-
ent sources provide significant support to the injured spinal
cord, both individually and in combination [24-26]. They
also enhance the low neuroregenerative potential of central
nervous tissue, which is further weakened by SCI.

Many studies have reported on the characteristics, ori-
gin, and differentiation potential of NSCs [27-30]. NSC
transplantation after SCI can result in favorable therapeutic
outcomes due to anti-inflammatory and neuroprotective ef-
fects, as well as by supporting the remyelination and stimu-
lation of axon growth [31-33]. The sourcing of NSCs from
adult nervous tissue is problematic, however, and NSCs ob-
tained from iPS cells therefore offer the most promise. The
latest iPS-cell technology does not require much time for in-
duction of pluripotency and neuronal differentiation. Nev-
ertheless, iPS cells have yet to be implemented for autolo-
gous transplantation in the early stages of human SCI due to
safety issues involving their possible contribution to tumor
formation [34,35].

Human umbilical cord blood (hUCB) is an ethically
acceptable source of stem and progenitor cells with high
regenerative potential. Obtaining hUCB is a simple pro-
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cedure with no risks for the donor. Especially significant
is the fact that hUCB cells have a lower probability of im-
mune rejection, as they are more tolerant to human leuko-
cyte antigen differences [36]. hUCB contains various types
of stem and progenitor cells, some of which are often used
to stimulate neuroregeneration. These include hematopoi-
etic stem cells, MSCs, endothelial progenitor cells, and
non-restricted somatic stem cells [37,38]. A separate area
of research is the mononuclear hUCB fraction, which is
used in most of the preclinical studies that assess the role
of these cells in stimulating regeneration of neural tissue
[39-42]. Due to its unique cellular composition, hUCB has
properties that allow it to partially overcome the factors that
limit neuroregeneration, but without resulting in significant
restoration of neurological functions in SCI, while also con-
tributing to neuropathic pain following their clinical appli-
cation [43].

Glial cells, most often SCs and OECs, are also used
to stimulate regeneration after SCI. The rationale for us-
ing these cells in neuroregeneration include: (1) the possi-
bility of myelin formation when transplanted into the cen-
tral nervous system (CNS); (2) their ability to produce neu-
rotrophic factors and adhesion molecules; and (3) their
ready availability and the possibility of obtaining autolo-
gous cells [44—46]. Nevertheless, the lack of reliable OEC-
specific markers and hence of a robust method to identify
OECs makes it impossible to differentiate them from other
cell types in human olfactory cultures. This in turn pre-
vents the production of highly enriched populations of hu-
man OECs for transplantation [47]. A further issue is the
limited migration of SCs due to their inability to interact
with other glial cells [48—50]. Clinical trials using SCs and
OECs have not shown efficacy in SCI patients [51,52].

MSCs are the most promising cell type for SCI stimu-
lation due to their high biosafety, immunomodulatory prop-
erties, and ability to synthesize neurotrophic and proangio-
genic factors [23,53,54]. The therapeutic effect of these
cells is due to their paracrine mechanism of action [55,56].
Therefore, special attention must be paid to the preservation
of MSC viability and to the optimal delivery of therapeutic
molecules secreted by these cells [57]. To date, however,
the use of MSCs in clinical practice has not shown any no-
ticeable effects. Their use is limited by the need to establish
the safety of MSC administration in phase I clinical trials,
and also because only partial improvement of neurological
functions have been reported [58—60].

Cell therapy has long been considered one of the most
promising methods for the repair and replacement of dam-
aged nerve tissue following SCI. However, many studies
have shown poor survival and differentiation of stem and/or
progenitor cells after transplantation [61-63], thereby re-
quiring repeat applications to maintain the therapeutic ef-
fect. This in turn creates limitations associated with the
high cost of maintaining cell cultures and the complexity
of repeated cell isolation. Over the past two decades, a

large number of studies have tried to evaluate the effective-
ness of cell therapy and to identify the molecular and cel-
lular mechanisms that mediate the regeneration of injured
spinal cord. So far, however, there has been no agreement
among researchers on the best choice of cell type to stim-
ulate neuroregeneration following transplantation for SCI.
Moreover, it is widely accepted that it is often not possible
to overcome a severe functional deficit in SCI under clinical
conditions. Therefore, the application of several therapeu-
tic tools should be considered, and any approach should not
be limited to the use of regenerative medicine only.

3. The Effect of Locomotor Load on
Post-Traumatic Processes of the Spinal Cord

Evaluation of the recovery of neurological function af-
ter SCI using locomotor load has been performed since the
late 1970s and is still carried out to reveal the fundamental
processes involved in the regeneration of damaged spinal
cord [64—66]. In the modern concept of neurorchabilita-
tion, locomotor load is considered to be an effective, easily
reproducible, and dosed method of motor function recovery
stimulation [67—69]. By acting at different levels along nu-
merous neural pathways, the locomotor load increases the
force of contraction of paralyzed muscles. It also influences
the mechanism of brain plasticity, activates remodeling pro-
cesses, and influences the microenvironment of motoneu-
rons and supports their function by reorganizing synaptic
input. Locomotor load also promotes the restoration of al-
pha motoneuronal soma size and of synaptophysin expres-
sion and Na™, K™-ATPase activity [70—72]. This mode of
rehabilitation has been thoroughly investigated in the clinic
at the phenomenological level, but research into the under-
lying molecular and cellular mechanisms has only begun
recently.

Several studies have reported an increased level of
brain-derived neurotrophic factor (BDNF) in the injured
spinal cord of animals against a background of locomotor
load [73-75]. Important results that support the action of
BDNF have been published [76]. The reduced expression
of myelin-associated glycoprotein (MAG) induced by loco-
motor load was shown to be mediated by increased BDNF
expression, which overcomes the inhibitory effect of MAG
on axonal growth. An increased level of protein kinase A
associated with BDNF expression was also observed, while
the positive effects of locomotor load can be attenuated by
blocking BDNF. Recent work has revealed another path-
way of BDNF action related to the tropomyosin tyrosine
kinase receptor (TrkB) [74,77]. The blocking of BDNF-
TrkB signaling inhibited functional recovery after exercise
[77].

Increased production of BDNF promotes dendrite
growth and synaptogenesis in the SCI region. Several stud-
ies have also found that locomotor load increases axon
growth and the total length of neurites of lumbar motoneu-
rons, while reducing dendrite atrophy [78,79]. Researchers
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have attributed the growth of axons to induction of the
Erk1/2 pathway, which is an important mediator for sig-
nal transmission from the damage site to the cell body.
Suppression of MEK1 by appropriate inhibitors reduced
the collateral growth of descending corticospinal axons due
to inactivation of the Erk1/2 pathway [80]. Other work-
ers showed increases in the expression of NGF, IGF-1 and
neurotrophin NT-3 growth factors, which are normally sup-
pressed following SCI. Jung et al. [81] observed increased
PI3K expression, increased pAkt/Akt and Bcl-2/Bax ratios,
and suppression of cleaved caspase-3 expression. These
authors linked improved motor functions in a background
of locomotor load to the suppression of apoptosis and to
increased expression of neurotrophic factors through acti-
vation of the PI3K/Akt pathway. Hayashibe et al. [82]
reported a more marked locomotor improvement and tis-
sue recovery in their study, including axonal extension,
by forced plantar placement of hind paws during treadmill
training and a focus on the importance of properly orga-
nized training.

The study of gene function is important for under-
standing the molecular mechanisms of neuroplasticity. In
this regard, studies showing significant variability in the
expression of individual genes against a background of lo-
comotor load are important. Microarray analysis of in-
jured spinal cords in mice undergoing treadmill rehabilita-
tion identified 82 upregulated and 297 downregulated dif-
ferentially expressed genes [83]. Also using microarrays,
Shin et al. [84] showed restoration of the expression of
genes related to metabolism and biosynthesis under the in-
fluence of training, which had been reduced following in-
jury. They also showed increased expression of genes in-
volved in neuroplasticity and angiogenesis.

Despite the advances mentioned above, the relation-
ship between intensity of an applied locomotor load and
severity and type of SCI remains uncertain. However, it
is becoming clear that locomotor load induces changes at
each level of organization, thus contributing to a more com-
plete recovery of motor function in mild SCI. A partial neu-
roregenerative effect is a limitation in clinical practice and
hence this method is insufficient. Additional measures must
be included to enhance the reparative effect of locomotor
load in a background of SCI.

4. Mechanisms for the Therapeutic Effect of
Neuromodulation in Spinal Cord Injury

Neuromodulation has been tried as a stimulating
method of therapeutic action on the injured spinal cord since
the last century. It is a promising method and is actively
used in clinical practice. To date, there is no clear ev-
idence regarding the mechanism of action of neuromod-
ulation methods, but studies on motor function recovery
showed a marked effect with such rehabilitation interven-
tions [85,86]. The most common neuromodulation method
includes electrical stimulation at different stages of SCI.
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Electrostimulation, including various direct and indi-
rect effects on the injured spinal cord [86], changes the ex-
citability of nerve fibers by altering the plasticity of neu-
rons. It has a restorative effect on the locomotor sys-
tem and autonomic functions by promoting neurogenesis,
sprouting and regeneration of axons, and reorganization of
spinal circuits [87]. Transcutaneous spinal cord stimulation
(tSCS) is used as a noninvasive electrostimulation method,
but this intervention is less precise. Studies using tSCS
have shown decreased spasticity in patients with SCI [88].
This is associated with the activation of inhibitory circuits
and hence with a reduction in the amplitude of H-reflexes
and F waves [89-91]. tSCS has also been shown to im-
prove upper limb function through an excitatory effect at
the spinal level and an inhibitory effect at the cortical level
[92]. The recovery effect can persist for a long time [93],
contributing to improved connectivity of brain and spinal
cord descending-ascending networks and reorganization of
supraspinal-spinal networks. Consolidation of the effect at
the end of tSCS therapy is associated with changes in the
amplitude of spinally evoked motor responses and with a
significant increase in grip strength of the hand [94]. Con-
sidering the change of lower limb functions against a back-
ground of tSCS in people with varying degrees of injury,
the results of the appearance of involuntary leg movements
like locomotor movements were cited [95], as well as sig-
nificant improvement in the quality, speed of movements
and endurance in cases of incomplete damage [96]. Fur-
thermore, a high level of muscle activity was observed in
chronic paralysis under tSCS conditions, allowing patients
to stand upright independently [97].

Another important effect of noninvasive neuromod-
ulation, in conjunction with conservative treatment meth-
ods in the form of catheterization and pharmacological sub-
stances, is the restoration of normal gastrointestinal tract
function by reducing intraluminal pressure and increasing
anal sphincter pressure [98,99], of the urinary bladder by
regulation of detrusor hyperreflexion [100], and of the gen-
ital system when dysfunction occurs after SCI [101]. Be-
sides, an earlier and more established method of minimally
invasive sacral neuromodulation, in particular used for pa-
tients refractory to behavioral and pharmacological treat-
ment [102], shows clinical improvement of more than 50%
[103—106]. Non-invasive percutaneous tibial nerve stim-
ulation with minimal side effects demonstrates efficacy in
the treatment of overactive bladder, fecal incontinence, and
pelvic pain, but is limited by the short-term preservation of
the therapy effect [107]. Other percutaneous methods in-
clude interferential electrostimulation, that shows potential
as anovel and more economical means of treating gastroin-
testinal dysfunction such as constipation and for improved
bladder management [108,109].

Epidural electrostimulation (EES) that controls reflex
and locomotor activity is used to achieve a more precise ef-
fect on spinal circuits [110]. There is also the possibility of
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applying various levels of intensity and frequency of EES
to reduce pain in SCI patients at high exposure frequen-
cies [111], improve upper limb control [112], restore volun-
tary movements of lower limbs in complete paralysis [113],
and restore supraspinal control for some leg movements af-
ter prolonged therapy [114]. However, in the absence of
supraspinal input against SCI, control could come from af-
ferents from the moving lower limbs [115]. Implantation
of electrodes in the sacral nerve roots is one of the invasive
methods used for therapy of lower urinary tract dysfunc-
tion when standard catheterization is ineffective. This in-
cludes acral anterior root stimulation combined with rhizo-
tomy of posterior sacral roots to further stimulates afferent
and efferent pathways of lower urinary tract [107,116]. Ob-
served in patients with motor-complete SCI, epidural stim-
ulation of the spinal cord acutely modulates the lower uri-
nary tract and intestinal function [117]. In turn, experimen-
tal data on site-specific areas show that activation of de-
trusor occurs during the stimulation of the L1 and L5-L6
spinal segments and external urethral sphincter was acti-
vated by sacral stimulation [118]. The presence of several
disadvantages of invasive neuromodulation, probability of
infection during electrode implantation and pain in the place
of injection, the temporary effect of the general procedure
[116,119], in general, can worsen the patient’s condition.
Thus, further which further involves understanding of the
neuromodulatory therapy, possibly using methods of opto-
genetics to enable precise and minimally invasive neuro-
modulation [120]. Also, the problem with changes in the
gut microbiome, plays vital role of the individual, after SCI
cannot be solved by neuromodulation, it will require par-
allel therapy with probiotics, fecal microbiota transplanta-
tion, and oral short-chain fatty acid to improve gut-brain
communication [121].

In addition to the electrostimulation methods already
being used in clinical practice, other experimental ap-
proaches have been tested in animal models whereby the
mesencephalic locomotor region (MLR), the medullary
raphe, and the periaqueductal gray act as targets for neu-
rostimulation, along with the spinal cord. Interventions
to the MLR lead to improved locomotion and swimming
to near baseline performance, as well as to restoration of
movement in the paralyzed legs of rats with subtotal SCI.
The authors of this work suggested that activation of the
major supraspinal motor control pathway from the MLR
to the medial brainstem, and from there via reticulospinal
fibers to the lumbar spinal cord, may underlie their re-
sults [122]. Stimulation of the medullary raphe in the
acute phase of SCI persistently improved motor activity
in experimental animals. Further analysis showed an in-
creased number of myelinated axons in perilesional white
matter and of serotonin-containing terminals in gray mat-
ter. Similar findings of an increased number of myelinated
axons and improved locomotion were observed when ex-
posed to periaqueductal gray, thus demonstrating impor-

tant restorative feedback between neurons of the medullary
raphe and the spinal cord after SCI [123]. Restorative feed-
back was also seen with vagus nerve stimulation, which
contributed significantly to improved upper limb conditions
in rats by enhancing the reorganization of synaptic connec-
tions [124,125]. In general, electrostimulation that exploits
the plasticity of residual neural circuits and the regenerative
potential of damaged neurons has positive effects on tissue
organization.

Despite some therapeutic success for neuromodula-
tion methods in SCI, electrostimulation is not widely used
in clinical practice. This is because of the need for expen-
sive equipment and additional training of medical person-
nel, as well as the need to validate neuromodulation pro-
tocols with clear instructions regarding the intensity, fre-
quency and time of influence, as well as the potential targets
for stimulation. Experimentation in this area has already
begun, with the possibility of obtaining synergistic neuro-
protective effects from using combinations based on regen-
erative approaches (cell therapy) and neuromodulation with
active motor rehabilitation (Fig. 1).

Neuromodulation

Cell therapy Locomotor load

-~ ~ m
NSCs others
£y = “y=

OECs MSCs

« Paracrine effects « Stimulation of axonal growth « Activation of pacing generators
« Effects on the motoneuron

microenvironment

« Stimulation of stem and
progenitor cells of the recipient

« Functional reorganization of
the brain and spinal cord

+ Replacement of lost cell « Reactivation of neural circuits

populations
Combined approach

The best recovery of nerve circuits
and function of the injured spinal cord

Fig. 1. Benefits of a combined approach for therapy of spinal
cord injury.

5. Integrated Approach Leading to a
Synergistic Therapeutic Effect

5.1 Neuroregeneration and Locomotor Load

Combinations of known SCI therapy methods can be
divided into several groups depending on the choice of
pharmacotherapy approach, cell or gene therapy, motor re-
habilitation, etc. This chapter will consider the efficacy of
combined approaches based on stem cell therapy and loco-
motor load in animal models of SCI (Table 1, Ref. [126—
132]).
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Table 1. Preclinical in vivo trials with combined approaches based on stem cell therapy and locomotor load.

Organism/Type of SCI Cell therapy and route of administration Locomotor load/training period Treatment effect of combination method References
Female Sprague—Dawley rats; contusion Olfactory ensheathing cells and Schwann cells  Treadmill training Axonal growth, remyelination, decreased GFAP immunor- [126]
SCIl at T10. (OECHSC); Intraspinal injection at 2 weeks. 20 + 10 min 5 days per week, for  eactivity density, increases neuronal plasticity below the 1-

10 weeks. esion.
Female C57BL/6J mice; contusion SCI Neural Stem/Progenitor Cell (NS/PC); Intras-  Treadmill training Improved neuronal differentiation and maturation of CPG [127]
at T9. pinal injection at 49 days. 20 min 5 days per week, for ~8 activity along with trophic support.

weeks.
Male Wistar rats; compression SCI at Stem cells from human exfoliated deciduous Treadmill training Ineffective motor exercise, SHEDs affected decreased [128]
T9. teeth (SHEDs); Intraspinal injection at the d- 20 min 5 days per week, for 6 TNF-q, cystic cavity and glial scar levels.

ay of the SCI. weeks.

Male Sprague-Dawley rats; contusion Bone marrow stromal cells (BMSCs); Intras- Treadmill training More potent decrease of Bax and p-JNK expression, more [129]
SCI at T9-10. pinal injection at 1 week. 30 min 6 days per week, for 6  potent increase of Bcl-2, p-ERK1/2 and p-c-Jun expression.

weeks.
Female C57Black6 mice; compression Bone marrow mesenchymal stem cells (MS- Treadmill training Better preservation/regeneration of tissues with an increased [130]
SCI at T9. Cs); Intraspinal injection at 1 week. 10 min 3 days per week, for 8 number of preserved myelinated fibers and better preservati-

weeks. on of white matter, high expression of neurotrophin 4.
Male Sprague-Dawley rats; compression Neural precursor cells (NPCs); Intraspinal i- Treadmill training Relief of neuropathic pain, reduction of IL13 and TNF« [131]
SCI at T6-T7. njection at 4 weeks. 20 x 2 min 5 days per week, for  markers.

~11 weeks.
Female Wistar rats; contusion/compres- Neural precursor cells (NPCs); Intraspinal i- Treadmill training Improvement of myelination and regeneration of descend- [132]

sion SCI at Cé6.

njection at 10 days.

20 x 2 min every day, for 8 weeks.

ing nerve fiber pathways, tissue preservation.
NPCs survival, as well as increased differentiation into neu-
rons and oligodendrocytes.

SCI, spinal cord injury; CPG, central pattern generator.
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One area of regenerative therapy in SCI is to pre-
vent axonal demyelination and to stimulate their myelina-
tion by inducing migration of endogenous SCs into the in-
jury area through stem/progenitor cell transplantation and
OECs [40,133], and by transplantation of exogenous SCs
[134,135]. To achieve the best therapeutic results, attempts
have been made to co-transplant SCs and OECs in combi-
nation with locomotor load [126]. The experimental results
showed axonal growth and remyelination due to both trans-
planted SCs and OECs. The addition of locomotor load also
led to increased neuronal plasticity and a more stable func-
tional recovery during exercise compared to the group in
which only cell therapy was performed.

Tashiro et al. [127] evaluated the effectiveness of em-
bryonic neural stem/progenitor cell transplantation against
a background of locomotor load in SCI. Their results
showed improved spinal conduction and maturation of the
central pattern generator activity with the combined ther-
apy when compared to cell therapy alone. Furthermore,
the combination of cell therapy with locomotor load pro-
moted neuronal differentiation of the transplanted cells,
leading to significant restoration of motor activity. In sim-
ilar work, transplantation of GABAergic neural progenitor
cells (NPCs) in combination with intensive locomotor load
also had positive functional effects, including the attenua-
tion of neuropathic pain in rats with SCI [131]. In addition
to improving the survival of transplanted NPCs, the loco-
motor load helped to normalize the inhibitory GABAergic
function of the remaining neurons that went into the ex-
cited state. According to the authors, this was mediated by
BDNF-TrkB signaling [136].

Neuronal overexcitation leads to an increase in extra-
cellular glutamate, which in turn causes persistent excito-
toxicity and cell death [137]. Dugan et al. [131] showed
a significant reduction in the pro-inflammatory markers
IL13 and TNF« after treatment with a combination of early
or delayed locomotor load and GABAergic cellular trans-
plantation. Moreover, the lumbar dorsal horn endogenous
GABAergic neuronal and process density was restored to
almost normal levels. Younsi ef al. [132] reported similar
results after transplanting embryonic stem cells, including
NPCs, in combination with locomotor load after SCI at the
cervical level. They also found improvement in myelina-
tion and regeneration of the rubrospinal and reticulospinal
tracts. The effect of locomotor load on the survival and dif-
ferentiation potential of NPCs towards mature neurons is of
practical importance because it increases the effectiveness
of cell therapy, thus reducing the need for repeat transplan-
tations.

Mesenchymal stem cells (MSCs) derived from differ-
ent sources are widely used for neuroregeneration of the in-
jured spinal cord. In this regard, the effect of a combined
approach using bone marrow-derived MSCs and locomo-
tor load in SCI has been investigated [129]. The results
confirm a synergistic effect for the above-mentioned meth-

ods and showed enhanced axonal regeneration mediated by
an increased number of NF-200 positive cells via activa-
tion of the BDNF-ERK1/2 pathway. The locomotor load
promotes activation of the ERK1/2 pathway while also in-
creasing the expression of BDNF. This work also found a
significant change in the expression of factors related to cell
survival and neuroplasticity, which in turn led to the en-
hanced survival of transplanted cells by overcoming apop-
tosis in association with locomotor load. Massoto et al.
[130] obtained similar functional results in a study where
bone marrow-derived MSCs were transplanted in combina-
tion with locomotor load in an SCI model. Morphometric
and ultrastructural analysis of animals treated with the com-
bined approach showed an increased number of preserved
myelinated fibers and better preservation of white matter,
with elevated expression of neurotrophin 4 compared to cell
therapy alone.

In addition to the efficacy reported in the above-
mentioned studies using combined methods, there have also
been reports where the locomotor load, due to a poorly cho-
sen training interval, did not support the injured spinal cord
either alone or in combination with cell therapy [128]. Ac-
cording to the authors, training in the early stages after SCI
did not lead to increased BDNF levels [138], but did in-
crease the expression of toxic substances released by dam-
aged tissue [139].

Studies on the combination of neuroregeneration and
locomotor load have mostly demonstrated synergistic ther-
apeutic effects that manifest as significant improvements in
the structure and function of the damaged spinal cord. This
highlights the importance of a dosed locomotor load that
regulates the differentiation and survival of transplanted
cells to enhance the neuroregenerative effect with consol-
idation in the form of long-term preservation of motor ac-
tivity.

5.2 Neuroregeneration and Neuromodulation

Neuromodulation-activated spinal neural networks re-
quire the support of cellular transplants in order to achieve
further reconstruction and repair of damaged nerve tissue.
Hence, the use of combined approaches based on electros-
timulation and cell transplantation can enhance the thera-
peutic effect, while the inclusion of locomotor load can help
to consolidate the restorative effect.

Several studies that transplanted genetically modified
cells stand out with regard to the use of cell therapy in com-
bination with neuromodulation and locomotor load. Re-
generative therapy using umbilical cord blood mononu-
clear cells that overexpress recombinant vascular endothe-
lial growth factor, glial neurotrophic factor (GDNF), and
nerve cell adhesion molecule, in combination with locomo-
tor load and EES, showed improved motor activity in a pig
SCI model [42]. Decreased astrocyte and microglia reactiv-
ity and increased expression of stress-induced and synap-
tic proteins was observed with the above-mentioned com-
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bined approach. A similar restorative effect was demon-
strated when autologous and genetically-enriched leuco-
concentrate was transplanted in combination with EES and
locomotor load in a pig SCI model [140]. Improvement of
motor functions through the positive reorganization of glial
cells and the restoration of neural connections was demon-
strated.

Siddiqui et al. [141] investigated the implantation of
scaffolds seeded with GDNF-producing SCs and rapamycin
microspheres in combination with locomotor load and EES.
These workers also demonstrated improvement of motor
activity. This combined treatment promoted the synap-
tic reorganization of interneurons and motoneurons against
a background of regenerating axons, thus enhancing the
restoration of lower limb functions. Moreover, the acquired
functional activity was observed even after re-cutting the
spinal cord while continuing the combined treatment.

Thus, in contrast to the lack of efficacy by individ-
ual approaches, combined therapy results in the best recov-
ery of nerve circuits and improved functions of the injured
spinal cord. Nevertheless, a comprehensive study of the
cellular and molecular changes involved in the reorganiza-
tion of nerve circuits is required to better understand the
underlying mechanisms of the combined approaches.

6. Conclusions

Despite years of experience in preclinical and clini-
cal trials, the lack of quality cellular preparations for SCI
treatment on the market highlights the inefficacy of current
regenerative medicine approaches. An overall therapeutic
plan that includes a measured locomotor load and neuro-
modulation may contribute to the activation and reconstruc-
tion of spinal networks under the influence of a trophic sup-
port of cell transplants. The early success of such experi-
mental studies provides hope for the successful implemen-
tation of combined approaches in clinical practice. Addi-
tional preclinical studies should help to elucidate the mech-
anisms that underlie the combined approaches, thus favor-
ing the development of more effective therapeutic interven-
tion protocols for SCI.
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